None.
None.
RuBee™ is a registered trademark of Visible Assets, Inc. of Canada. Other names used herein may be registered trademarks, trademarks or product names of Visible Assets, Inc. or other companies.
The invention disclosed broadly relates to the field of visibility, and in particular to a visibility network of construction materials.
In the building industry, as structures become larger and more complex, so do the costs and complexity associated with designing, building and maintaining the structures. In this, as in most areas of modern-day life, technology has provided high tech methodologies to improve some aspects of the building process. For example, computer aided design (CAD) software is now widely used throughout the building industry to automate and improve the design process.
However, once the design is formulated and the construction begins, high technology is nowhere to be found in the building process. It would be useful to continue using technology throughout the entire building process, not just the design process.
Briefly, according to an embodiment of the invention, method for providing real-time visibility on a construction project includes steps of: attaching a low-frequency, ultra low-power, two-way transceiver radio tag to each construction material to be used in the construction project; storing data relating to the construction material in the tag; and reading the data from the transceiver of the tag by interrogating the radio tag with radio frequency interrogation signals.
To describe the foregoing and other exemplary purposes, aspects, and advantages, we use the following detailed description of an exemplary embodiment of the invention with reference to the drawings, in which:
While the invention as claimed can be modified into alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the present invention.
We describe a smart visibility network for the building trade, providing total quality control and monitoring for all phases of a building project, from fabrication to post-construction. We focus our examples in the area of steel beam construction; however, the smart visibility network that will be described herein can be advantageously used in conjunction with other processes.
Steel beam construction design begins with a CAD layout. From this layout, the bill of materials is generated, along with the beam specification for fabrication and construction. The beams are then fabricated according to specification. According to an embodiment of the present invention, after the beams are fabricated, a visibility tag is attached to each node end of the steel beam. Referring to
Referring to
The tag 40 contains an antenna 41, data storage (not shown), optional LEDs (light-emitting diodes) 42 and optional sensors 43. The components of an exemplary tag 40 have been described in various commonly-owned patent applications. Please refer to, for example, U.S. Ser. No. 11/353,766, “Ultra Low Frequency Tag and System,” filed on Feb. 14, 2006; U.S. Pat. No. 7,049,963, “Networked RF Tag for Tracking Freight,” filed on Apr. 8, 2004; and U.S. Pat. No. 7,277,014, “Networked RF Tags for Tracking Animals,” filed on Jul. 31, 2006.
Following is a brief description of the technology used:
The RuBee™ radio frequency protocol is a long wavelength (LW), inductive, ultra low power, two-way, transceiver radio tag communication protocol. RuBee™ was designed to work reliably over a long-range, wide area (1′-100′), in harsh environments (near metals and liquids), with an extended battery life (10-15 years) and a safety standard consistent for use in any healthcare application. The original design goal was to create a low cost two-way radio tag that could be safely used in hospital patient-based settings, hospital operating rooms, airports, heavy industry and public facilities with no risk to hearing aid wearers, pacemaker or IDC patients, and with no electromagnetic interference (EMI) or electromagnetic compatibility (EMC) issues and high data reliability.
The RuBee™ protocol uses a full duplex 131 KHz data carrier with amplitude modulated data communications. The long wavelength produces little, if any, energy in the form of an electrical field (E), and most radiated energy (99.99%) is in the form of a magnetic field (H). The radio tags typically need a minimum signal of 0.1 milligauss to a maximum of about 300 milligauss for reliable communication. The strongest field near or on top of a base station and high performance (HP) antenna can be about 1,000 milligauss, however most standard antennas are in the 100-800 milligauss range. To provide some context for these values, the earth's magnetic field is 300-600 milligauss.
For these reasons, RuBee™ tags are ideal for use in a heavy industrial setting, near arc welders, welding equipment, and high current welding cables. RuBee™ technology is a low-frequency visibility network protocol that delivers a number of advantages over conventional RFID tags. RuBee™ tags can be made as thin as 1.5 mm and will work in underwater and underground environments that obstruct higher-frequency RFID signals. RuBee™ technology offers supply chain and asset visibility platforms to customers in a variety of industry sectors where real time asset determination is needed.
By networking the tags, a quality control visibility network is generated. The RuBee™ network is able to: 1) manage consumable on-site inventory (wire, spools) and provide just in time events and point of use data; 2) manage use of welding machinery; ID of welder by means of RuBee™ ID card, wire type and feed rates (for the livestock industry); 3) create an active visibility network that provides critical information on the floor in any language; 4) check-in and check-out functions for tools, tips and wire; 5) provide legal audit trails under 21CFRPart11, as well as Sarbanes Oxley logs (SOX logs) linked to use of product; and 6) optionally provide a visibility pedigree and quality control data permanently attached to the product.
The RuBee™ protocol works with both active radio tags and passive tags that have no battery. A controlled reading range of 1 to 100 feet and an integrated clock ensure high security and privacy. The ability of RuBee™ tags to maintain performance around steel removes a key obstacle for low-cost deployment of RFID in retail environments where steel shelving is commonly used.
Steel Beam Embodiment.
Each tag 40 contains the full specification for the beam, as produced by the original design specification. Also, each tag 40 includes a unique identifier so that the beams may be distinguished, one from another. Once the tags 40 are affixed to the steel beams, the beams form part of a visibility network. The data in the tags 40 can be read by a handheld reader or by a base station reader, or another tag. Through the data in the tags, the beams can be identified, located, and inventoried remotely and/or on-site. The data may also be encrypted.
Because RuBee™ tags are two-way radio tags, data may be written to the tags 40 as well as read from the tags 40. Data can be written to the tag before and after it is attached to the beam. Note that the data contained in each tag 40 can be read using a handheld reader, or a computer. The data may be read via a web browser. An on-board crystal can provide time-stamps so that a temporal history of events can be generated to produce a report. The tag 40 can be programmed to log the status of the beam at pre-determined intervals of time or when a status event occurs. The status event can be movement, or jog, detected by an acceleration sensor, a change in temperature, or another event. Using timestamps, the events can be cross-referenced with a timestamp to produce a temporal history.
The visibility network provides many features, as stated earlier. For example, construction quality control is improved because the remote monitoring can be used to assist in the placement of the beams in order to assure conformity to the design specification. Each node of the beams can be crosschecked via the attached tags. Additionally, in combination with an identification tag used by a worker, the network can be used to cross-reference the beams with the worker or workers who installed them, thus providing total quality control on the sub-processes involved in any construction project, such as placement, and welding. The tags can also be affixed to construction tools and equipment, such as torque wrenches, welds, jackhammers, and so on. All of the data from the tags 40 can be transmitted to a central monitoring station where the construction project can be monitored.
Using the tags 40 as part of a visibility network, quality control can be assured for each and every beam from a safe, remote location. Quality control begins as soon as the beams are placed. Keep in mind that the tags 40 are networked and can communicate with each other. As stated earlier, each tag 40 in the building project can be loaded with the specification for the beam on which that tag 40 is attached. Additionally, each tag 40 can contain the specification for a portion of the structure, or the entire structure. The limiting factor here is the amount of data that each tag 40 can hold.
Given this information, one can appreciate that the beams themselves can determine if their placement is correct and emit a warning signal if they determine that the placement is incorrect. For example, assume that the specification for beam 23 mandates that it be placed twelve inches from beam 22, parallel to beam 22 and that it should span and be welded to the same cross-beams as beam 22. Beam 23 emits signals to determine if beam 22 is within range. An answering signal from beam 23 will confirm this. Beam 23 will also communicate with the cross-beams. If the positioning does not conform to the specification, the beams can emit warning signals, either audibly or via the LEDs 41.
The beam tags can be programmed to check their positioning responsive to an indicator from a temperature sensor 43 located on the tag 40. Once the temperature sensor 43 detects a rapid increase in temperature this indicates that welding has begun. At this point, before the welding is completed, the tag 40 communicates with the tags 40 in its network to check the placement. Note that this is just one possible scenario of how the networked tags 40 can be used.
Not only are the tags 40 affixed to the beams networked, but each worker and tool can also be monitored and cross-referenced with the beams in order to provide a full visibility network for a building and/or building project. The boundaries of the network can be determined ahead of time. A network may encompass one floor of a structure, one structure (building or bridge), or a grouping of structures.
The tags 40 and tag sensors 43 will continue to provide information on building integrity well beyond the completion of the construction project. The tag sensors 43 can provide data on stress factors affecting the beams.
Referring to
To complete the total visibility network, worker tags (either placed in identification cards or affixed to helmets) and tool tags can be cross-referenced with the beam in step 820. This provides quality management as well as inventory management. Information from the combination of the tags can be logged to provide a record of the work done by each worker on each workday, including the tools used.
After fabrication, the beams are stored in a warehouse as part of the inventory. The tags 40 now provide inventory management in step 830. During transport to the construction site, the tags provide transport monitoring in step 840.
At the construction site in step 850, the tags 40 provide total visibility during construction. The placement of the beams can be easily monitored and checked using the tags 40. Note that the specification for the beam is contained in the tag 40, thus providing a valuable reference that can be cross-checked during the actual placement of the beams. The beam specification may be easily read by the construction worker using a handheld reader. Optionally, an engineer can check the specification from a remote system.
During the post-construction phase in step 860, the tags 40 will continue to provide information, as needed. Construction sites are often plagued with theft of equipment and supplies. During post-construction clean-up, the tools and equipment can be easily inventoried and tracked using the tags 40. Building integrity can be continuously monitored remotely.
Therefore, it will be understood by those skilled in the art that other modifications can be made within the spirit of the invention. The above descriptions are not intended to be exhaustive or limiting in scope, but are to be construed according to the appended claims.
This application claims priority from commonly-owned, co-pending U.S. patent application Ser. No. 11/353,766, “Ultra Low Frequency Tag and System,” filed Feb. 14, 2006. This application also claims priority from commonly-owned U.S. Patent Application Ser. No. 60/889,902, “Two-Tiered Network Identification Cards,” filed on Feb. 14, 2007; which is a continuation-in-part of commonly-owned, U.S. Application Ser. No. 60/889,198, “Networked Loyalty Cards,” filed Feb. 9, 2007; which is a continuation-in-part of U.S. application Ser. No. 11/461,443, “Networked RF Tag for Tracking Animals,” filed Jul. 31, 2006 now U.S. Pat. No. 7,277,014; which is a continuation of U.S. application Ser. No. 11/276,216 filed Feb. 17, 2006 now U.S. Pat. No. 7,164,359; which is a continuation of U.S. application Ser. No. 10/820,366, filed Apr. 8, 2004 now U.S. Pat. No. 7,049,963; which claims benefit of U.S. Application Ser. No. 60/461,562 filed Apr. 9, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4190830 | Bell | Feb 1980 | A |
4750197 | Denekamp et al. | Jun 1988 | A |
4961028 | Tanaka | Oct 1990 | A |
5517188 | Carroll et al. | May 1996 | A |
5519381 | Marsh et al. | May 1996 | A |
5969595 | Schipper et al. | Oct 1999 | A |
6127976 | Boyd et al. | Oct 2000 | A |
6195006 | Bowers et al. | Feb 2001 | B1 |
6236911 | Kruger | May 2001 | B1 |
6280544 | Fox et al. | Aug 2001 | B1 |
6294997 | Paratore | Sep 2001 | B1 |
6318636 | Reynolds et al. | Nov 2001 | B1 |
6329944 | Richardson et al. | Dec 2001 | B1 |
6354493 | Mon | Mar 2002 | B1 |
6377203 | Doany | Apr 2002 | B1 |
6452340 | Morrissey et al. | Sep 2002 | B1 |
6512478 | Chein | Jan 2003 | B1 |
6720883 | Kuhr et al. | Apr 2004 | B2 |
6724308 | Nicolson | Apr 2004 | B2 |
6745027 | Twitchell, Jr. | Jun 2004 | B2 |
6927687 | Carrender | Aug 2005 | B2 |
7049963 | Waterhouse et al. | May 2006 | B2 |
7277014 | Waterhouse et al. | Oct 2007 | B1 |
7319397 | Chung et al. | Jan 2008 | B2 |
7551058 | Johnson et al. | Jun 2009 | B1 |
20040217864 | Nowak et al. | Nov 2004 | A1 |
20060128023 | Waterhouse et al. | Jun 2006 | A1 |
20060170535 | Watters et al. | Aug 2006 | A1 |
20070033108 | Luhr | Feb 2007 | A1 |
20070096875 | Waterhouse et al. | May 2007 | A1 |
20070210929 | Sabata et al. | Sep 2007 | A1 |
20070282541 | Griess et al. | Dec 2007 | A1 |
20080150727 | Hatori et al. | Jun 2008 | A1 |
20100090089 | Koegel | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090160620 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60461562 | Apr 2003 | US | |
60889902 | Feb 2007 | US | |
60889198 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11276216 | Feb 2006 | US |
Child | 11461443 | US | |
Parent | 10820366 | Apr 2004 | US |
Child | 11276216 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11461443 | Jul 2006 | US |
Child | 11960533 | US |