A television viewer may desire to watch and/or record multiple television channels at the same time. For instance, during weekday primetime, many television programs may be broadcast simultaneously on different television channels that the television viewer desires to either watch live or store for later viewing. For many cable and satellite television distribution systems, a set-top box may be used to receive, store, and display television channels on a television (or other form of display device). Such set-top boxes may have limited capabilities to concurrently display and/or store multiple television channels at the same time.
In some embodiments, a system for encrypting multiple television channels, is presented. The system may include one or more processors. The system may include a memory communicatively coupled with and readable by the one or more processors and having stored therein processor-readable instructions. When executed by the one or more processors, the instructions may cause the one or more processors to designate a first television channel of a plurality of television channels to be protected via a first entitlement control message using a first encryption scheme. The plurality of television channels may be transmitted using a single transponder stream. The instructions may cause the one or more processors to designate a second television channel of the plurality of television channels to be protected via a second entitlement control message encrypted using a second encryption scheme while the first television channel of the plurality of television channels is protected using the first encryption scheme. The instructions may cause the one or more processors to cause the first entitlement control message encrypted using the first encryption scheme and a second entitlement control message encrypted using the second encryption scheme to be transmitted to a plurality of television receivers. Data from the first entitlement control message may be used for descrambling of the first television channel by the plurality of television receivers. Data from the second entitlement control message may be used for descrambling of the second television channel by the plurality of television receivers.
Embodiments of such a system may include one or more of the following: The first entitlement control message encrypted using the first encryption scheme may require more processing by a television receiver of the plurality of television receivers to decrypt than the second entitlement control message encrypted using the second encryption scheme. The instructions may cause the one or more processors to cause the plurality of channels to be transmitted concurrently to a plurality of television receivers using the single transponder stream. Data from the first entitlement control message may be required to descramble the first television channel. Data from the second entitlement control message may be required to concurrently descramble the second television channel during a time period the first television channel is being descrambled. At a given time, only one television channel of the plurality of television channels transmitted concurrently using the single transponder stream may be protected using the first encryption scheme. The system may include a television receiver comprising a smartcard, the television receiver configured to decrypt the first entitlement control message, wherein the television receiver is of the plurality of television receivers. The television receiver may be configured to decrypt the second entitlement control message. The television receiver may be configured to descramble the first television channel using data from the first entitlement control message. The television receiver may be configured to descramble the second television channel using data from the second entitlement control message concurrently while descrambling the first television channel using data from the first entitlement control message.
Additionally or alternatively, embodiments of such a system may include one or more of the following: The television receiver being configured to decrypt the first entitlement control message may take a longer period of time to process than decrypting the second entitlement control message. The instructions may cause the one or more processors to, after the television service provider has transmitted the first entitlement control message and the second entitlement control message: designate the first television channel of the plurality of television channels to be protected via a third entitlement control message encrypted using the second encryption scheme; designate the second television channel of the plurality of television channels to be protected via a fourth entitlement control message encrypted using the first encryption scheme while the first television channel of the plurality of television channels is protected using the second encryption scheme; and cause the third entitlement control message encrypted using the second encryption scheme and the fourth entitlement control message encrypted using the first encryption scheme to be transmitted. The third entitlement control message may be used for decryption of the first television channel. The fourth entitlement control message may be used for decryption of the second television channel.
In some embodiments, a method for encrypting multiple television channels is presented. The method may include designating, by the television service provider system, a first television channel of a plurality of television channels to be protected via a first entitlement control message using a first encryption scheme. The plurality of television channels may be transmitted using a single transponder stream. The method may include designating, by the television service provider system, a second television channel of the plurality of television channels to be protected via a second entitlement control message encrypted using a second encryption scheme while the first television channel of the plurality of television channels is protected using the first encryption scheme. The method may include transmitting, by the television service provider system, the first entitlement control message encrypted using the first encryption scheme and a second entitlement control message encrypted using the second encryption scheme to a plurality of television receivers. Data from the first entitlement control message may be used for descrambling of the first television channel by the plurality of television receivers. Data from the second entitlement control message may be used for descrambling of the second television channel by the plurality of television receivers.
Embodiments of such a method may include one or more of the following: The first entitlement control message encrypted using the first encryption scheme may require more processing by a television receiver of the plurality of television receivers to decrypt than the second entitlement control message encrypted using the second encryption scheme. The method may include transmitting, by the television service provider system, the plurality of channels concurrently to a plurality of television receivers using the single transponder stream. Data from the first entitlement control message may be required to descramble the first television channel. Data from the second entitlement control message may be required to concurrently descramble the second television channel during a time period the first television channel is being descrambled. At a given time, only one television channel of the plurality of television channels transmitted concurrently using the single transponder stream may be protected using the first encryption scheme.
The method may include decrypting, by a smartcard of a television receiver, the first entitlement control message, wherein the television receiver is of the plurality of television receivers. The method may include decrypting, by the smartcard of the television receiver, the second entitlement control message. The method may include descrambling, by the television receiver, the first television channel using data from the first entitlement control message. The method may include descrambling, by the television receiver, the second television channel using data from the second entitlement control message concurrently while descrambling the first television channel using data from the first entitlement control message. Decrypting, by the smartcard of the television receiver, the first entitlement control message may take a longer period of time than decrypting the second entitlement control message. The method may include, after the television service provider has transmitted the first entitlement control message and the second entitlement control message: designating, by the television service provider system, the first television channel of the plurality of television channels to be protected via a third entitlement control message encrypted using the second encryption scheme; designating, by the television service provider system, the second television channel of the plurality of television channels to be protected via a fourth entitlement control message encrypted using the first encryption scheme while the first television channel of the plurality of television channels is protected using the second encryption scheme; and transmitting, by the television service provider system, the third entitlement control message encrypted using the second encryption scheme and the fourth entitlement control message encrypted using the first encryption scheme. The third entitlement control message may be used for decryption of the first television channel. The fourth entitlement control message may be used for decryption of the second television channel.
In some embodiments, a non-transitory processor-readable medium for encrypting multiple television channels is presented. The non-transitory processor-readable medium may include processor-readable instructions configured to cause one or more processors to designate a first television channel of a plurality of television channels to be protected via a first entitlement control message using a first encryption scheme. The plurality of television channels may be transmitted using a single transponder stream. The instructions may be configured to cause one or more processors to designate a second television channel of the plurality of television channels to be protected via a second entitlement control message encrypted using a second encryption scheme while the first television channel of the plurality of television channels is protected using the first encryption scheme. The instructions may be configured to cause one or more processors to cause the first entitlement control message encrypted using the first encryption scheme and a second entitlement control message encrypted using the second encryption scheme to be transmitted to a plurality of television receivers. Data from the first entitlement control message may be used for descrambling of the first television channel by the plurality of television receivers. Data from the second entitlement control message may be used for descrambling of the second television channel by the plurality of television receivers.
Embodiments of such a non-transitory processor-readable medium may include one or more of the following: The first entitlement control message encrypted using the first encryption scheme may require more processing by a television receiver of the plurality of television receivers to decrypt than the second entitlement control message encrypted using the second encryption scheme. The instructions may be configured to cause one or more processors to cause the plurality of channels to be transmitted concurrently to a plurality of television receivers using the single transponder stream. Data from the first entitlement control message may be required to descramble the first television channel. Data from the second entitlement control message may be required to concurrently descramble the second television channel during a time period the first television channel is being descrambled. At a given time, only one television channel of the plurality of television channels transmitted concurrently using the single transponder stream may be protected using the first encryption scheme. The instructions may be configured to cause one or more processors to, after the television service provider has transmitted the first entitlement control message and the second entitlement control message: designate the first television channel of the plurality of television channels to be protected via a third entitlement control message encrypted using the second encryption scheme; designate the second television channel of the plurality of television channels to be protected via a fourth entitlement control message encrypted using the first encryption scheme while the first television channel of the plurality of television channels is protected using the second encryption scheme; and cause the third entitlement control message encrypted using the second encryption scheme and the fourth entitlement control message encrypted using the first encryption scheme to be transmitted. The third entitlement control message may be used for decryption of the first television channel. The fourth entitlement control message may be used for decryption of the second television channel.
A further understanding of embodiments of the invention may be realized by reference to the following figures. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
In some situations, a user (e.g., a television service subscriber) may desire to watch and/or record multiple television channels concurrently. For example, while the user is watching a first television program on a first television channel, the user may be recording a second television program on a second television channel using a digital video recorder (DVR). As such, the second television program may be available for presentation to the user (or someone else) at a later time. In some situations, rather than a user desiring to watch and/or record two television channels at a given time, three or more television channels may be watched and/or recorded simultaneously (e.g., one television channel may be watched while three others are concurrently recorded). Such a situation may be common in a household where multiple persons each desire to watch different television programs broadcast simultaneously. While in an ideal situation it may be possible to watch and/or record every available television channel concurrently, a limiting factor may be the television service receiving equipment. For instance, for many television service providers, a set top box (STB) is necessary to decrypt and/or decode television channels (and/or other related television services) from the television service provider for storage and/or presentation via a presentation device (e.g., a television). Such a STB may only be able to tune to and/or decode a finite number of television channels simultaneously.
In order to control access to television channels distributed by the television service provider, television channels may be protected by the television service provider to prevent non-subscribers from acquiring unauthorized (e.g., free) access. In some embodiments, to accomplish this goal, STBs contain a smartcard that is used to decrypt entitlement control messages. An entitlement control message may contain data (possibly referred to as a control word (CW)), that is used to descramble television channels. As such, to descramble a television channel using a control word, the control word may need to be obtained from a corresponding ECM. An ECM may be encrypted and may need to be decrypted to obtain one or more CWs from the ECM. These CWs may then be used to descramble one or more television channels.
A smartcard may have a finite ability to decrypt ECMs. Such a finite ability may be due to the smartcard's processing power and/or other limits on the ability of the smartcard to decrypt multiple ECMs during a given time period. Such a finite ability may not be an issue when a single television channel is tuned to by a STB. However, if a user is attempting to view and/or record multiple television channels simultaneously, the number of ECMs requiring decryption during a given time period may increase. For instance, in some embodiments, each television channel is associated with its own ECMs. Therefore, for a given time period, a different ECM may need to be decrypted for each television channel being received for presentation and/or recording. In some embodiments, a new ECM is decrypted for a television channel every ten seconds. If the STB is receiving five television channels, this may mean that five different ECMs are to be decrypted every ten seconds.
While it may be possible to use multiple smartcards or a smartcard with increased processing power to increase the number of ECMs that can be decrypted over a given time period, it may be worthwhile, such as for cost concerns, to use a smartcard with limited abilities to decrypt ECMs. In order to increase the number of television channels that can be simultaneously stored and/or recorded, the number of ECMs that can be decrypted over a given time period may need to be increased.
It should be understood that data may be received by a STB from a television service provider in the form of one or more transponder streams; as such “simultaneously” or “concurrently” storing and/or recording multiple television channels may refer to over a given period of time performing such functions for multiple television channels. For example, simultaneously or concurrently recording two television channels refers to performing functions related to recording two television channels transmitted during the same time period (e.g., 8:00 PM-8:30 PM). During this time period, ECMs may need to be decrypted for each of the multiple television channels in order for the television channels to be simultaneously or concurrent presented and/or recorded.
Instead of each television channel being protected via an ECM encrypted using the same encryption scheme, one or more television channels may be protected via ECMs encrypted using a higher level of encryption (referred to as “heavy” encryption) than other television channels. An ECM encrypted using heavy encryption may require more processing to decode by a STB's smartcard than an ECM encrypted using a lower level of encryption (referred to as “light” encryption). To enable a smartcard to decode ECMs related to multiple channels desired to be decoded for storage and/or viewing simultaneously, television channels may be protected by ECMs encrypted using light encryption. Such light encrypted ECMs may be more quickly (e.g., requiring less processing) decrypted by a STB's decryption smartcard. Some number of television channels may be protected by ECMs encrypted using heavy encryption that require longer (e.g., requiring more processing) to be decrypted by the decryption smartcard. A smartcard may be able to handle decryption for a given number of television channels protected by “heavy” encrypted ECMs and by “light” encrypted ECMs concurrently. As such, if only a limited number of television channels (e.g., one) are being received for recording and/or presentation, at a given time, is protected using heavy encryption, a smartcard may be able to handle decryption of the ECMs for multiple television channels due to the majority of television channels being protected by ECMs with “light” encryption (which require less processing for the smartcard to decrypt).
Which one or more television channels are protected by ECMs encrypted using heavy and light encryption may rotate. For example, on a particular transponder used to transmit a transponder stream containing multiple television channels, at a given time one of the television channels may be protected by an ECM encrypted using heavy encryption. Each other television channel in the transponder stream at the given time may be protected by ECMs encrypted using light encryption. After a predefined period of time, the television channels protected by an ECM encrypted using heavy encryption may rotate. As such, at any given time, in this example, only a single television channel transmitted in the transponder stream may be protected by an ECM encrypted using heavy encryption. Therefore, at a STB receiving at least some of the multiple television channels, a smartcard may only need to decrypt one ECM encrypted using heavy encryption (with the other ECMs encrypted using light encryption) over a given period of time, thus allowing the smartcard to decode all required ECMs in a timely manner.
Rotating which television channels out of a group of television channels is protected by an ECM encrypted using heavy or light encryption may be sufficient to protect all of the television channels. For instance, while a non-subscriber (e.g., a person making unauthorized access to the television service provider's network) may have equipment sufficient to crack the light encryption, the equipment may not be sufficient to crack the heavy encryption in a timely manner. If, for example, ten seconds of a television channel transmitted by the television service provider is protected by a heavy encrypted ECM (with the remainder of the time being protected by a light encrypted ECM), the television channel may be rendered unenjoyable to the non-subscriber because 10 seconds of each minute of the television channel's audio and/or video would be unable to be descrambled, thus ruining the non-subscribers viewing/listening experience. Since each of the television channels would have a ten second chunk each minute protected by a heavy encrypted ECM, each of the television channels may be rendered unenjoyable to the non-subscriber.
Such arrangements may be especially useful when multiple television channels are to be watched and/or recorded from a single transponder stream. For instance, a television service provider may group television channels that are likely to be desired by users to be watched and/or recorded concurrently onto a single transponder stream. For instance, a single transponder stream may be used to carry each of the major television networks (e.g., ABC, CBS, NBC, and FOX). A single tuner of a STB may be used to simultaneously receive each of the television channels transmitted in the same transponder stream. The television service provider may rotate which of the television channel channels in the transponder stream are protected by an ECM encrypted by heavy and light encryption.
Television service provider system 110 and satellite transmitter equipment 120 may be operated by a television service provider. A television service provider may distribute television channels, on-demand programming, programming information, and/or other services to users. Television service provider system 110 may receive feeds of one or more television channels from various sources. Such television channels may include multiple television channels that contain the same content (but may be in different formats, such as high-definition and standard-definition). To distribute such television channels to users, feeds of the television channels may be relayed to user equipment via one or more satellites via transponder streams. Satellite transmitter equipment 120 may be used to transmit a feed of one or more television channels from television service provider system 110 to one or more satellites 130. While a single television service provider system 110 and satellite transmitter equipment 120 are illustrated as part of satellite television distribution system 100, it should be understood that multiple instances of transmitter equipment may be used, possibly scattered geographically to communicate with satellites 130. Such multiple instances satellite transmitting equipment may communicate with the same or with different satellites. Different television channels may be transmitted to satellites 130 from different instances of transmitting equipment. For instance, a different satellite dish of transmitting equipment 120 may be used for communication with satellites in different orbital slots.
Satellites 130 may be configured to receive signals, such as transponder streams of television channels, from one or more satellite uplinks such as satellite transmitter equipment 120. Satellites 130 may relay received signals from satellite transmitter equipment 120 (and/or other satellite transmitter equipment) to multiple instances of user equipment via transponder streams. Different frequencies may be used for uplink transponder streams 170 from transponder stream 180. Satellites 130 may be in geosynchronous orbit. Each satellite 130 may be in a different orbital slot, such that the signal path between each satellite, uplink stations, and user equipment vary. Multiple satellites 130 may be used to relay television channels from television service provider system 110 to satellite dish 140. Different television channels may be carried using different satellites. Different television channels may also be carried using different transponders of the same satellite; thus, such television channels may be transmitted at different frequencies and/or different frequency ranges. As an example, a first and second television channel may be carried on a first transponder of satellite 130-1. A third, fourth, and fifth television channel may be carried using a different satellite or a different transponder of the same satellite relaying the transponder stream at a different frequency. A transponder stream transmitted by a particular transponder of a particular satellite may include a finite number of television channels, such as seven. Accordingly, if many television channels are to be made available for viewing and recording, multiple transponder streams may be necessary to transmit all of the television channels to the instances of user equipment.
Satellite dish 140 may be a piece of user equipment that is used to receive transponder streams from one or more satellites, such as satellites 130. Satellite dish 140 may be provided to a user for use on a subscription basis to receive television channels provided by the television service provider system 110, satellite uplink 120, and/or satellites 130. Satellite dish 140 may be configured to receive transponder streams from multiple satellites and/or multiple transponders of the same satellite. Satellite dish 140 may be configured to receive television channels via transponder streams on multiple frequencies. Based on the characteristics of set-top box (STB) 150 and/or satellite dish 140, it may only be possible to capture transponder streams from a limited number of transponders concurrently. For example, a tuner of STB 150 may only be able to tune to a single transponder stream from a transponder of a single satellite at a time.
In communication with satellite dish 140, may be one or more sets of receiving equipment. Receiving equipment may be configured to decode signals received from satellites 130 via satellite dish 140 for display on a display device, such as television 160. Receiving equipment may be incorporated as part of a television or may be part of a separate device, commonly referred to as a set-top box (STB). Receiving equipment may include a satellite tuner configured to receive television channels via a satellite. In
Television 160 may be used to present video and/or audio decoded by set-top box 150. Set-top box 150 may also output a display of one or more interfaces to television 160, such as an electronic programming guide (EPG). In some embodiments, a display device other than a television may be used.
Uplink transponder stream 170-1 represents a signal between satellite uplink 120 and satellite 130-1. Uplink transponder stream 170-2 represents a signal between satellite uplink 120 and satellite 130-2. Each of uplink transponder streams 170 may contain streams of one or more different television channels. For example, uplink transponder stream 170-1 may contain a certain group of television channels, while uplink transponder stream 170-2 contains a different grouping of television channels. Each of these television channels may be scrambled such that unauthorized persons are prevented from accessing the television channels.
Transponder stream 180-1 represents a signal between satellite 130-1 and satellite dish 140. Transponder stream 180-2 represents a signal path between satellite 130-2 and satellite dish 140. Each of transponder streams 180 may contain one or more different television channels in the form of transponder streams, which may be at least partially scrambled. For example, transponder stream 180-1 may include a first transponder stream containing a first group of television channels, while transponder stream 180-2 may include a second transponder stream containing a different group of television channels. A satellite may transmit multiple transponder streams to user equipment. For example, a typical satellite may relay 32 transponder streams via corresponding transponders to user equipment. Further, spot beams are possible. For example, a satellite may be able to transmit a transponder stream to a particular geographic region (e.g., to distribute local television channels to the relevant market). Different television channels may be transmitted using the same frequency of the transponder stream to a different geographic region.
Network 190 may serve as a secondary communication channel between television service provider system 110 and set-top box 150. Via such a secondary communication channel, bidirectional exchange of data may occur. As such, data may be transmitted to television service provider system 110 via network 190. Data may also be transmitted from television service provider system 110 to STB 150 via network 190. Network 190 may be the Internet. While audio and video services may be provided to STB 150 via satellites 130, feedback from STB 150 to television service provider system 110 may be transmitted via network 190.
Processors 210 may include one or more general-purpose processors configured to perform processes such as tuning to a particular channel, displaying the EPG, and/or receiving and processing input from a user. Processors 210 may include one or more special purpose processors. For example, processors 210 may include one or more processors dedicated to decoding video signals from a particular format, such as MPEG, for output and display on a television and for performing decryption. It should be understood that the functions performed by various modules of
Tuners 215 may include one or more tuners used to tune to television channels, such as television channels transmitted via satellite or cable. Each tuner contained in tuners 215 may be capable of receiving and processing a single stream of data from a satellite transponder (or a cable RF channel) at a given time. As such, a single tuner may tune to a single transponder (or cable RF channel). If tuners 215 include multiple tuners, one tuner may be used to tune to a television channel on a first transponder for display using a television, while another tuner may be used to tune to a television channel on a second transponder for recording and viewing at some other time. Still another tuner may be used to check various television channels to determine if they are available or not. If multiple television channels transmitted on the same transponder stream are desired, a single tuner of tuners 215 may be used to receive the signal containing the multiple television channels for presentation and/or recording.
Network interface 220 may be used to communicate via an alternate communication channel with a television service provider. For example, the primary communication channel may be via satellite (which may be unidirectional to the STB) and the alternate communication channel (which may be bidirectional) may be via a network, such as the Internet. Referring back to
Storage medium 225 may represent a non-transitory computer readable storage medium. Storage medium 225 may include memory and/or a hard drive. Storage medium 225 may be used to store information received from one or more satellites and/or information received via network interface 220. Storage medium 225 may store information related to EPG 230, NIT 240, and/or DVR 245. Recorded television programs may be stored using storage medium 225.
EPG 230 may store information related to television channels and the timing of programs appearing on such television channels. EPG 230 may be stored using non-transitory storage medium 225, which may be a hard drive. EPG 230 may be used to inform users of what television channels or programs are popular and/or provide recommendations to the user. EPG 230 may provide the user with a visual interface displayed by a television that allows a user to browse and select television channels and/or television programs for viewing and/or recording via DVR 245. Information used to populate EPG 230 may be received via network interface 220 and/or via satellites, such as satellites 130 of
Audio/video decoder 233 may serve to convert encoded video and audio into a format suitable for output to a display device. For instance, audio/video decoder 233 may receive MPEG video and audio from storage medium 225 or descrambling engine 265 to be output to a television. Audio/video decoder 233 may convert the MPEG video and audio into a format appropriate to be displayed by a television or other form of display device and audio into a format appropriate to be output from speakers, respectively.
Television interface 235 may serve to output a signal to a television (or another form of display device) in a proper format for display of video and playback of audio. As such, television interface 235 may output one or more television channels, stored television programming from storage medium 225 (e.g., DVR 245 and/or information from EPG 230) to a television for presentation.
The network information table (NIT) 240 may store information used by set-top box 200 to access various television channels. NIT 240 may be stored using storage medium 225. Information used to populate NIT 240 may be received via satellite (or cable) through tuners 215 and/or may be received via network interface 220 from the television service provider. As such, information present in NIT 240 may be periodically updated. NIT 240 may be locally-stored by STB 200 using storage medium 225. Information that may be present in NIT 240 may include: television channel numbers, a satellite identifier, a frequency identifier, a transponder identifier, an ECM PID, one or more audio PIDs, and a video PID. (A second audio PID of a channel may correspond to a second audio program (SAP), such as in another language). In some embodiments, NIT 240 may be divided into additional tables. For example, rather than the specific audio PIDs and video PIDs being present in NIT 240, a channel identifier may be present within NIT 240 which may be used to lookup the audio PIDs and video PIDs in another table.
Table 1 provides a simplified example of NIT 240 for several television channels. It should be understood that in other embodiments, many more television channels may be represented in NIT 240. NIT 240 may be periodically updated by a television service provider. As such, television channels may be reassigned to different satellites and/or transponders, and STB 200 may be able to handle this reassignment as long as NIT 240 is updated.
It should be understood that the values provided in Table 1 are for example purposes only. Actual values, including how satellites and transponders are identified, may vary. Additional information may also be stored in NIT 240. Additional information on how NIT 240, as indicated in Table 1, may be used is provided in reference to
Digital Video Recorder (DVR) 245 may permit a television channel to be recorded for a period of time. DVR 245 may store timers that are used by processors 210 to determine when a television channel should be tuned to and recorded to DVR 245 of storage medium 225. In some embodiments, a limited amount of storage medium 225 may be devoted to DVR 245. Timers may be set by the television service provider and/or one or more users of the STB. DVR 245 may be configured by a user to record particular television programs. Whether a user directly tunes to a television channel or DVR 245 tunes to a first television channel, NIT 240 may be used to determine the satellite, transponder, ECM PID (packet identifier), audio PID, and video PID.
User interface 250 may include a remote control (physically separate from STB 200) and/or one or more button on STB 200 that allows a user to interact with STB 200. User interface 250 may be used to select a television channel for viewing, view EPG 230, and/or program DVR 245.
Referring back to tuners 215, television channels received via satellite (or cable) may contain at least some encrypted data. Packets of audio and video may be scrambled to prevent unauthorized users (e.g., nonsubscribers) from receiving television programming without paying the television service provider. When a tuner of tuners 215 is receiving data from a particular transponder of a satellite, the transponder stream may be a series of data packets corresponding to multiple television channels. Each data packet may contain a packet identifier (PID), which in combination with NIT 240, can be determined to be associated with particular television channel. Particular data packets, referred to as entitlement control messages (ECMs) may be periodically transmitted. ECMs may be encrypted; STB 200 may use smart card 260 to decrypt ECMs. Decryption of an ECM may only be possible if the user has authorization to access the particular television channel associated with the ECM. When an ECM is received by demultiplexer 255 and the ECM is determined to correspond to a television channel being stored and/or displayed, the ECM may be provided to smart card 260 for decryption.
When smart card 260 receives an encrypted ECM from demultiplexer 255, smart card 260 may decrypt the ECM to obtain some number of control words. In some embodiments, from each ECM received by smart card 260, two control words are obtained. In some embodiments, when smart card 260 receives an ECM, it compares the ECM to the previously received ECM. If the two ECMs match, the second ECM is not decrypted because the same control words would be obtained. In other embodiments, each ECM received by smart card 260 is decrypted; however, if a second ECM matches a first ECM, the outputted control words will match; thus, effectively, the second ECM does not affect the control words output by smart card 260.
When an ECM is received by smart card 260, it may take a period of time for the ECM to be decrypted to obtain the control words. As such, a period of time, such as 2 seconds, may elapse before the control words indicated by the ECM can be obtained. Smart card 260 may be permanently part of STB 200 or maybe configured to be inserted and removed from STB 200.
When an ECM is received by smart card 260, smart card 260 may not need to be informed which encryption scheme (e.g., a first or second encryption scheme) was used to encrypt the ECM. The encryption scheme may be determined by the number of bits present in the encrypted ECM. For instance, an encrypted ECM with a greater number of bits may be indicative of heavy encryption while an encrypted ECM with a fewer number of bits may be indicative of light encryption. Regardless of the type of encryption, upon receiving the encrypted ECM, the smartcard may perform the processing necessary to output the control words from the ECM. It may take a longer period of time for the smartcard to output the CWs determined from a heavy encrypted ECM than from a light encrypted ECM. For an ECM encrypted using the heavy encryption scheme, decryption may take a longer period of time (and, thus, more processing) than an ECM encrypted using a light encryption scheme. Regardless of whether CWs are obtained from a heavy encrypted ECM or a light encrypted ECM, descrambling of audio and/or video may be performed in a same manner using the CWs by descrambling engine 265.
It should be understood throughout that why embodiments detailed herein refer to heavy and light encryption, the encryption schemes used do not necessary need have one encryption scheme stronger than the other. For instance, two encryption schemes may be different, without one being stronger than the other (however, one may take less time to decrypt). As such, similar embodiments may be created that use a first encryption scheme and a second encryption scheme. Further, more than encryption schemes may be possible to be used, such as a light, medium, and heavy encryption scheme.
If greater than some number of television channels (e.g., 2) has its associated ECMs encrypted using heavy encryption, the smartcard may not be able (due to programmed limits or processing limits of the smartcard) to decrypt the ECMs fast enough for both television channels to be recorded and/or presented simultaneously. Synchronization may be coordinated by the television service provider. Accordingly, the smartcard may receive combinations of heavy encrypted ECMs and light encrypted ECMs that the smartcard is known to be able to decode sufficiently timely to permit simultaneous recording and/or presentation of the associated television channels.
Demultiplexer 255 may be configured to filter data packets based on PIDs. For example, if a transponder data stream includes multiple television channels, data packets corresponding to a television channel that is not desired to be stored or displayed by the user, may be ignored by demultiplexer 255. As such, only data packets corresponding to the one or more television channels desired to be stored and/or displayed may be passed to either descrambling engine 265 or smart card 260, other data packets may be ignored. For each channel, a stream of video packets, a stream of audio packets and/or a stream of ECM packets may be present, each stream identified by a PID. In some embodiments, a common ECM stream may be used for multiple television channels. Additional data packets corresponding to other information, such as updates to NIT 240, may be appropriately routed by demultiplexer 255.
Descrambling engine 265 may use the control words output by smart card 260 in order to descramble video and/or audio corresponding to television channels for storage and/or presentation. Video and/or audio data contained in the transponder data stream received by tuners 215 may be scrambled. The video and/or audio may be descrambled by descrambling engine 265 using a particular control word. Which control word output by smart card 260 to be used for successful descrambling may be indicated by a scramble control identifier present within the data packet containing the scrambled video or audio. Descrambled video and/or audio may be output by descrambling engine 265 to storage medium 225 for storage (via DVR 245) and/or to audio/video decoder 233 for output to a television or other presentation equipment via television interface 235.
For simplicity, STB 200 of
Television programming module 310 may receive television channels from multiple different sources, such as directly from the networks that produced the content on the television channels. Each television channel that is to be transmitted on a particular transponder stream via a transponder of the satellite may be provided to multiplexer 340. Multiplexer 340 may create a digital stream of data packets containing the video, audio, and other data, such as ECMs, to be transmitted on the transponder data stream. The data stream, which includes video and/or audio data packets that are not scrambled, may be passed to scrambling engine 350. Scrambling engine 350 may use a control word to scramble video or audio present in a data packet. Some audio and video packets may also pass through with no scrambling, if desired by the television service provider.
Control word generator 320 may generate the control word that is used by scrambling engine 350 to scramble the video or audio present in the data packet. Control words generated by control word generator 320 may be passed to security system 330, which may be operated by the television service provider or by a third-party security provider.
The control words generated by control word generator 320 may be used by security system 330 to generate an ECM. Each ECM may indicate two control words. The control words indicated may be the current control word being used to scramble video and audio, and the control word that will next be used to scramble video and audio. Whether an ECM is created for the two controls words using heavy or light encryption may be determined by encryption synchronizer 370.
Encryption synchronizer 370 may determine which television channels are to be encrypted using heavy or light encryption and may control how the heavy and light encryption is cycled through the channels. For instance, encryption synchronizer 370 may receive data from multiplexer 340 (or some other source, such as an administrator of the television service provider) that indicates which television channels are transmitted using the same transponder stream. In some embodiments, heavy encryption is rotated among television channels transmitted as part of the same transponder stream. Encryption synchronizer 370 may provide security system 330 with an indication of which television channels should be associated with a heavy encrypted ECM and which television channels should be associated with a light encrypted ECM. The designation may change periodically, such as every ten seconds.
As an example, if television channels 1, 2, 3, 4, and 5 are grouped together for transmission using a single transponder stream, multiplexer 340 may provide an indication of this group of television channels to encryption synchronizer 370, which may be operated by the television service provider or a third-party entity which may be operating security system 330. Based on the group of television channels and having an indication of the number of heavy encrypted ECMs (e.g., one) that a smartcard of a STB can handle over a given period, encryption synchronizer 370 may provide an indication to security system 330 of how ECMs should be encrypted, such as exemplified in Table 2.
Since the processing capabilities of a television service provider's STBs' smartcards may be known, encryption synchronizer 370 may be configured such that a smartcard does not receive more heavy encrypted ECMs than the smartcard can handle for a given time period (such that when a particular CW is needed for descrambling by the STB, the CW has been decrypted from the ECM by the smartcard and is available for use).
Security system 330 may create and output an ECM to multiplexer 340 for transmission to subscribers' set-top boxes based on the encryption scheme indicated by encryption synchronizer 370 and the CWs indicated by control word generator 320. Each data packet, whether it contains audio, video, an ECM, or some other form of data, may be associated with a PID. PIDs may be used by the set-top box in combination with the networking information table to determine which television channel the data contained within the data packet corresponds. After video and audio contained within data packets has been scrambled by scrambling using a CW engine 350, the transponder data stream may be transmitted by transmitter 360 to a satellite, such as satellite 130-1 of
For simplicity, television service provider scrambling system 300 of
Data packet 420 illustrates an exemplary video or audio packet. Data packet 420 may contain at least: PID 430, sync 440, scramble control 450, and payload 460. The packet header of the packet (which may be an MPEG packet) may include PID 430, sync 440, and scramble control 450. PID 430 may be a packet identifier used to indicate the particular television channel (or other type of data, such as an ECM) with which the data packet is associated. Multiple video packets associated with the same PID may be referred to as a video packet stream, likewise for ECMs and audio packets. Referring back to Table 1, if a particular television channel is attempting to be accessed, such as television channel four, using the NIT, the STB may be able to determine that a data packet with a PID of 1001 corresponds to audio for channel 4, a data packet with a PID of 1011 corresponds to video for channel 4, and a data packet with a PID of 27 corresponds to an ECM for channel 4. Sync 440 may contain some number of bits that are used to synchronize with the transport stream. Scramble control 450 may serve to indicate which control word, if any, should be used to descramble payload 440. In some embodiments, scramble control 450 may indicate either an even control word or an odd control word is to be used for decryption. In a video or audio packet, payload 460 may contain scrambled video or audio, respectively.
When a data packet is received that indicates a PID corresponding to an ECM of a television channel desired to be recorded or viewed, the encrypted ECM in the payload may be passed to a smart card for decryption. As the control word used for descrambling is changed over time, so is the ECM. Each ECM may contain the currently used control word for descrambling and the control word that will be used for descrambling next. As such, an ECM may contain one control word that is the same as the previous ECM and a new control word. For example, an ECM may be represented in the format of (CWodd, CWeven). Whether the even or the odd control word is used for descrambling may be based on the scramble control identifier present within a data packet.
During the time period 410-1 the odd control word, CW1, may be used for descrambling. During this time period, the same ECM may be received multiple times (which may allow a set-top box that just tuned to the transponder stream to access television channels using the ECM's CWs as soon the ECMs are decrypted and the CW recovered). This ECM may include encrypted (CW1, CW2). As such, the ECM indicates the current control word (CW1) and the next control word to be used (CW2). During time period 410-1 data packets containing scrambled data may have scramble control bits that indicate the odd control word should be used for descrambling, as such CW1 may be used for descrambling.
Starting at the beginning of time period 410-2, the scramble control bits of a data packet containing scrambled video or audio may indicate the even control word should be used, as such CW2 may be used for descrambling. Once time period 410-2 begins, and control word CW1 is no longer being used for descrambling, a different ECM may be transmitted to the STB that indicates the current control word and the next control word to be used. This ECM may be transmitted periodically during time period 410-2, such as every tenth of a second. In this instance, the ECM may indicate: (CW3, CW2). As such, the current control word CW2 remains the same and continues to be used for descrambling during time period 410-2 during which the data packets indicate, via their scramble control bits, that the even control word is to be used for descrambling. When decrypted, the new ECM indicates a new odd control word, CW3, which will be used for descrambling when the scramble control bits indicate the odd control word should be used for descrambling. This process may continue, with descrambling switching between the even and odd control words as long as the STB is tuned to the transponder stream. In some embodiments, the time period during which any particular control word is used may be approximately 10 seconds. Such a time period may allow ample time for a smartcard to decrypt an ECM such that the next control word to be used will be decrypted by the smart card prior to data packets being received that indicate, via the scramble control bits, that this next control word is to be used for descrambling.
Transponder data stream 400 may contain audio and video for multiple television channels, the packets of which may be indicated by different PIDs. In
While data packet 420 indicates only PID 430, sync 440, scramble control 450, and payload 460 as parameters that are present, it should be understood that data may be present that corresponds to other parameters, such as other header parameters. Further, based on the embodiment, the number of bits or bytes present in scramble control 450, payload 460, PID 430, sync 440 and/or any other parameter may vary. The boxes present in data packet 420 are not intended to be representative of a particular number of bits or bytes.
In
Each ECM received by the STB may be encrypted. While each ECM may be encrypted, the encryption scheme for one or more of the ECMs may vary. In
During the time period of 10 seconds to 20 seconds, which television channel requires a control word from a heavy encrypted ECM has rotated. Audio/video data packet groups 530, 540, and 545 each are descrambled using control words obtained from light encrypted ECMs. Audio/video data packets from audio/video data packet group 535 are descrambled using a control word decrypted from a heavy encrypted ECM. Accordingly, for the time period of 10 seconds to 20 seconds, a smartcard of a set top box is again only required to decrypt a single heavy encrypted ECM and three light encrypted ECMs, albeit during this time period the television channel descrambled using a control word decrypted from a heavy encrypted ECM has changed. This pattern may continue for additional audio/video data packet groups later in time such that audio/video data packet groups for television channel three and television channel four are also associated with an ECM encrypted using heavy encryption. In the illustrated embodiment, at 40 seconds, after each of the television channels have been associated with an ECM encrypted using heavy encryption, audio/video data packets associated with channel one may again need to be descrambled using a control word obtained from a heavy encrypted ECM. As such, audio/video data packet group 550 may require a control word be obtained from a heavy encrypted ECM, while audio/video data packet groups 555, 560, and 565 require control words from light encrypted ECMs for descrambling. Regardless of whether control words are obtained from a heavy or light encrypted ECM, the descrambling process using the CWs may remain the same across the television channels.
Each of television channels one through four may be transmitted using a single transponder stream. As such, if a set top box has been configured to present and/or store some or all of the television channels transmitted using a particular transponder stream, encryption of the ECMs for each television channel can be synchronized such that the STB's smartcard has only a limited number of heavy encrypted ECMs to decrypt for a given time period (such as one every ten seconds). As such, it can be ensured that a smartcard receives ECMs than can be decrypted to obtain the CWs in time for descrambling of the associated television channels.
In the illustrated embodiment of
In multiple encryption schemes of ECMs 500 of
In
As in
For the time period of 10 s-20 s, the encryption scheme may rotate such that the ECM used to obtain the control words for audio/video data packet groups 640 and 645 is heavy encrypted, while the ECM used to obtain the control words for audio/video data packet groups 630 and 635 is light encrypted. For time period of 20 s-30 s, the encryption may rotate back to the same arrangement as the first time period. As such, the ECM used to obtain the control words for audio/video data packet groups 650 and 655 are heavy encrypted, while the ECM used to obtain the control words for audio/video data packet groups 660 and 665 are light encrypted. In such an embodiment, each television channel is protected by a heavy encrypted ECM for 50% of the time. However, the smartcard of the STB may have to perform less overall processing because only two ECMs are needed for the four television channels. In some embodiments, because fewer ECMs need to be decrypted, a heavier level of encryption may be used for each ECM (which may take the smartcard of a STB longer to decrypt). Such an arrangement may be preferable because it may be more difficult for a non-subscriber to crack a heavier encrypted ECM used for multiple television channels rather than a lighter encrypted ECM used for a fewer (e.g., one) television channels.
From the embodiments of
The various encryption schemes and systems described herein may be used to perform various methods.
At step 710, a group of television channels may be selected to transmit to multiple STBs using a single transponder stream. By using a single transponder stream, it may be possible to use a single tuner at a set top box to receive each of the television channels. In a satellite-based television distribution system, groups of television channels may be transmitted to user equipment via multiple transponders which may be located on one or more satellites. The television channels may be grouped into particular transponder streams based on television channels that a subscriber may be likely to want to watch and/or record at the same time. As such, the amount of hardware necessary at the set top box may be minimized by having such television channels transmitted in the same transponder stream.
At step 720, within the group of television channels selected at step 710, a first television channel may be designated to be protected via a first ECM that is encrypted using a first encryption scheme. For example, this first encryption scheme may be heavy encryption which takes longer to decrypt by a set top box than an ECM encrypted using light encryption. At step 730, within the group of television channels selected it step 710, a second television channel may be designated to be protected via a second ECM that is encrypted using a second encryption scheme. As an example, if the group of television channels selected at step 710 includes 6 television channels, one of the television channels may be selected to be protected using an ECM encrypted using a first encryption scheme while the other five television channels are protected using ECMs that are encrypted using a second encryption scheme. This second encryption scheme may be a light encryption scheme which takes less time and/or less processing to decrypt that an ECM encrypted using heavy encryption. As a simple example, the heavy encryption may be 128-bit encryption while the light encryption may be 64-bit encryption. The designations of steps 720 and 730 may be for predefined period of time after which encryption may rotate such that the television channels are protected using other encryption schemes.
At step 740, the first encrypted ECM and the second encrypted ECM may be created. The first encrypted ECM may be created in accordance with the first encryption scheme and the second encrypted ECM may be created in accordance with the second encryption scheme. Each encrypted ECM may be created to contain control words that are provided to the component creating the ECMs. An indication may also be provided to the component creating the ECMs as to which encryption scheme should be used to encrypt the ECM. In some embodiments, each ECM contains two control words. Referring to
At step 750, the first encrypted ECM and a second encrypted ECM may be transmitted to the multiple set top boxes. Referring to
At step 760, audio and video packets corresponding to the first television channel and the second television channel may be transmitted to the set top boxes possibly using the single transponder stream. Over a given time period, such as a period of 10 seconds, audio and video data packets corresponding to each television channel may be transmitted as part of the transponder stream. Over this time period, the set top box may have the ability to record and/or present either television channel. As such, the first television channel and second television channel are considered to be concurrently transmitted and concurrently received. For example, over the same time period, such as from 8 PM to 8:30 PM, either television channel may be tuned to for different television programs. The first television channel may be scrambled using one or more control words encrypted in the first ECM. The second television channel may be scrambled using one or more control words encrypted in the second ECM. Accordingly, in order to descramble the first and second television channels, the ECM encrypted using the first encryption scheme and the second ECM encrypted using the second encryption scheme may need to be decrypted by a set top box. Such decryption may be performed by the smart card at the set top box. By using two different encryption schemes, the amount of processing necessary to be performed at the set top box may be decreased. Such a decrease in processing may permit control words to be obtained from the ECMs in time to permit descrambling of the corresponding television channels when the control words have started being used to scramble the television channels.
At step 770, the encryption schemes may be rotated. Rotating the encryption schemes may involve ECMs that were previously encrypted using the first encryption scheme now being encrypted using the second encryption scheme. Similarly, ECMs that were previously encrypted using the second encryption scheme may now be encrypted using the first encryption scheme. Therefore, when method 700 repeats, at step 720, the second encryption scheme may be used and at step 730 the first encryption scheme may be used. Such rotation may allow each television channel at different periods of time to be encrypted using each encryption scheme. It may not be necessary for the television service provider to provide any indication of which encryption scheme is used for which ECM to a STB. Based on the properties of the ECM, a smartcard of a set top box may be able to determine the processing necessary to decrypt the ECM.
At step 810, a first ECM encrypted using a first encryption scheme may be received by a set top box. The first encrypted ECM may contain an unencrypted PID. Based on this period, the set top box may determine whether the first encrypted ECM is associated with a television channel that is being presented and/or stored. If the television channel is not being presented or stored, the first encrypted ECM may be ignored. However, if the first encrypted ECM is associated with a television channel that is being output for presentation (e.g., via a television) and/or stored by the set top box, the first encrypted ECM may be routed within the set top box for decryption. The first encrypted ECM may be routed to a smartcard within the set top box for decryption. For the example of method 800, it is assumed that the first encrypted ECM is associated with a television channel that is being output for presentation and/or recorded by the set top box. The first encrypted ECM may be received as part of a transponder stream that contains multiple television channels that were grouped together into a single transponder stream by the television service provider.
At step 820, the first encrypted ECM may be decrypted by the set top box. The decryption may be performed by a smartcard at the set top box. As such, the first encrypted ECM may be routed within the set top box to the smartcard for decryption. When the first encrypted ECM is received by the smart card, the smartcard may process the first encrypted ECM until it is decrypted. Once successfully decrypted, two control words may be obtained from the first encrypted ECM. The smartcard may be able to determine the proper way to decrypt the first encrypted ECM regardless of whether the ECM is encrypted using the first or second encryption scheme. For instance, based on the number of bits received, the smartcard may be able to determine the proper way to decrypt the first encrypted ECM. The smartcard may continue processing the first encrypted ECM until it has been successfully decrypted. The amount of time the smartcard requires to successfully decrypt the first encrypted ECM may be based on the encryption scheme used for encryption of the first ECM.
At step 830, a second ECM encrypted using a second encryption scheme may be received by the set top box. This second encrypted ECM may be associated with one or more television channels other than the one or more television channels associated with the first encrypted ECM. The first encrypted ECM and the second encrypted ECM may be received as part of the same transponder stream. The first encrypted ECM and the second encrypted ECM may correspond to different television channels transmitted and received via the same transponder stream.
The second encrypted ECM may contain an unencrypted PID. Based on this PID, the set top box may determine whether the second encrypted ECM is associated with a television channel that is being presented and/or stored. If the television channel is not being presented or stored, the second encrypted ECM may be ignored. However, if the second encrypted ECM is associated with the television channel that is being output for presentation (e.g., via a television) and/or stored by the set top box, the second encrypted ECM may be routed within the set top box for decryption. The second encrypted ECM may be routed to the smartcard within the set top box for decryption. For the example of method 800, it is assumed that, like the first encrypted ECM, the second encrypted ECM is associated with one or more television channels that are being output for presentation and/or recorded by the set top box. The second encrypted ECM may be received as part of the transponder stream that contains multiple television channels that were grouped together into a single transponder stream by the television service provider, including the first television channel.
At step 840, the second encrypted ECM may be decrypted by the set top box. The decryption may be performed by the smartcard at the set top box. As such, the second encrypted ECM may be routed within the set top box to the smartcard for decryption. When the second encrypted ECM is received by the smart card, the smartcard may process the second encrypted ECM until it is decrypted. Once successfully decrypted, two control words may be obtained from the second encrypted ECM for use in descrambling a second television channel. The smartcard may be able to determine the proper way to decrypt the second encrypted ECM regardless of whether the ECM is encrypted using the first or second encryption scheme. The smartcard may process the second encrypted ECM until it has been successfully decrypted. The amount of time the smartcard requires to successfully decrypt the second encrypted ECM may be based on the encryption scheme used for encryption of the second ECM. For example, if the second encryption scheme is a light encryption scheme while the first encryption scheme is a heavy encryption scheme, the second encrypted ECM may take less time for the smartcard to decrypt than the first encrypted ECM.
At step 850, audio and video packets corresponding to the first television channel and the second television channel may be received. Based on a locally stored network information table that identifies the associated ECM PID and the scramble control bits of the audio and video packets, the proper control words decrypted from the first encrypted ECM and the second encrypted ECM may be determined for use in descrambling the audio and video data packets. For the first television channel and a second television channel to be properly output for presentation and/or recorded by the set top box, it may be necessary for the appropriate control words to have been decrypted from the ECMs for use in descrambling. As such, when the television channel is being presented or recorded, the smartcard may be required to successfully decrypt the associated ECM to obtain the necessary control word for descrambling prior to the STB processing audio and/or video packets scrambled using that control word. To ensure that the smartcard decrypts all necessary ECMs prior to the control words contained in the ECMs being needed, the encryption schemes used for encryption of the ECMs may be synchronized by the television service provider such that the smartcard will have sufficient time to decrypt each necessary ECM. This may occur on a transponder stream by transponder stream basis, meaning, it may be assured that a smartcard can decrypt the ECMs for all television channels in a particular transponder stream in a timely manner.
At step 860, the control words from the first ECM and the second ECM may be used to descramble the first television channel and the second television channel concurrently. As such, television programs broadcast simultaneously on the two television channels may both be output for presentation and/or recorded by the set top box. Once the control words have been obtained from the first ECM and the second ECM, regardless of the encryption scheme used for each ECM, the scrambling may be performed using the control words obtained in the same manner. At step 870, the descrambled first television channel and the descrambled second television channel may be output for presentation and/or stored by the set top box. Following step 870, after a period of time, such as 10 seconds, new ECMs may need to be decrypted to obtain new control words for descrambling of the television channels. As such, method 800 may repeat the encryption scheme for each ECM may change.
It should be understood that while method 800 is directed to two television channels and encryption schemes, other embodiments of method 800 may involve more than two encryption schemes and/or more than two television channels. Further, a single ECM, based on its PID, may be associated with more than one television channel. For example, referring to
The computer system 900 is shown comprising hardware elements that can be electrically coupled via a bus 905 (or may otherwise be in communication, as appropriate). The hardware elements may include one or more processors 910, including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration processors, and/or the like); one or more input devices 915, which can include without limitation a mouse, a keyboard, and/or the like; and one or more output devices 920, which can include without limitation a display device, a printer, and/or the like.
The computer system 900 may further include (and/or be in communication with) one or more non-transitory storage devices 925, which can comprise, without limitation, local and/or network accessible storage, and/or can include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (“RAM”), and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like. Such storage devices may be configured to implement any appropriate data stores, including without limitation, various file systems, database structures, and/or the like.
The computer system 900 might also include a communications subsystem 930, which can include without limitation a modem, a network card (wireless or wired), an infrared communication device, a wireless communication device, and/or a chipset (such as a Bluetooth™ device, an 802.11 device, a WiFi device, a WiMax device, cellular communication facilities, etc.), and/or the like. The communications subsystem 930 may permit data to be exchanged with a network (such as the network described below, to name one example), other computer systems, and/or any other devices described herein. In many embodiments, the computer system 900 will further comprise a working memory 935, which can include a RAM or ROM device, as described above.
The computer system 900 also can comprise software elements, shown as being currently located within the working memory 935, including an operating system 940, device drivers, executable libraries, and/or other code, such as one or more application programs 945, which may comprise computer programs provided by various embodiments, and/or may be designed to implement methods, and/or configure systems, provided by other embodiments, as described herein. Merely by way of example, one or more procedures described with respect to the method(s) discussed above might be implemented as code and/or instructions executable by a computer (and/or a processor within a computer); in an aspect, then, such code and/or instructions can be used to configure and/or adapt a general purpose computer (or other device) to perform one or more operations in accordance with the described methods.
A set of these instructions and/or code might be stored on a non-transitory computer-readable storage medium, such as the non-transitory storage device(s) 925 described above. In some cases, the storage medium might be incorporated within a computer system, such as computer system 900. In other embodiments, the storage medium might be separate from a computer system (e.g., a removable medium, such as a compact disc), and/or provided in an installation package, such that the storage medium can be used to program, configure, and/or adapt a general purpose computer with the instructions/code stored thereon. These instructions might take the form of executable code, which is executable by the computer system 900 and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the computer system 900 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.), then takes the form of executable code.
It will be apparent to those skilled in the art that substantial variations may be made in accordance with specific requirements. For example, customized hardware might also be used, and/or particular elements might be implemented in hardware, software (including portable software, such as applets, etc.), or both. Further, connection to other computing devices such as network input/output devices may be employed.
As mentioned above, in one aspect, some embodiments may employ a computer system (such as the computer system 900) to perform methods in accordance with various embodiments of the invention. According to a set of embodiments, some or all of the procedures of such methods are performed by the computer system 900 in response to processor 910 executing one or more sequences of one or more instructions (which might be incorporated into the operating system 940 and/or other code, such as an application program 945) contained in the working memory 935. Such instructions may be read into the working memory 935 from another computer-readable medium, such as one or more of the non-transitory storage device(s) 925. Merely by way of example, execution of the sequences of instructions contained in the working memory 935 might cause the processor(s) 910 to perform one or more procedures of the methods described herein.
The terms “machine-readable medium” and “computer-readable medium,” as used herein, refer to any medium that participates in providing data that causes a machine to operate in a specific fashion. In an embodiment implemented using the computer system 900, various computer-readable media might be involved in providing instructions/code to processor(s) 910 for execution and/or might be used to store and/or carry such instructions/code. In many implementations, a computer-readable medium is a physical and/or tangible storage medium. Such a medium may take the form of a non-volatile media or volatile media. Non-volatile media include, for example, optical and/or magnetic disks, such as the non-transitory storage device(s) 925. Volatile media include, without limitation, dynamic memory, such as the working memory 935.
Common forms of physical and/or tangible computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punchcards, papertape, any other physical medium with patterns of holes, a RAM, a PROM, EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other medium from which a computer can read instructions and/or code.
Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to the processor(s) 910 for execution. Merely by way of example, the instructions may initially be carried on a magnetic disk and/or optical disc of a remote computer. A remote computer might load the instructions into its dynamic memory and send the instructions as signals over a transmission medium to be received and/or executed by the computer system 900.
The communications subsystem 930 (and/or components thereof) generally will receive signals, and the bus 905 then might carry the signals (and/or the data, instructions, etc. carried by the signals) to the working memory 935, from which the processor(s) 910 retrieves and executes the instructions. The instructions received by the working memory 935 may optionally be stored on a non-transitory storage device 925 either before or after execution by the processor(s) 910.
It should further be understood that the components of computer system 900 can be distributed across a network. For example, some processing may be performed in one location using a first processor while other processing may be performed by another processor remote from the first processor. Other components of computer system 900 may be similarly distributed.
The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various procedures or components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.
Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations will provide those skilled in the art with an enabling description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.
Also, configurations may be described as a process which is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, examples of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware, or microcode, the program code or code segments to perform the necessary tasks may be stored in a non-transitory computer-readable medium such as a storage medium. Processors may perform the described tasks.
Having described several example configurations, various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. For example, the above elements may be components of a larger system, wherein other rules may take precedence over or otherwise modify the application of the invention. Also, a number of steps may be undertaken before, during, or after the above elements are considered. Accordingly, the above description does not bound the scope of the claims.
This application is a continuation of U.S. application Ser. No. 13/828,001, filed Mar. 14, 2013, entitled “Smartcard Encryption Cycling, which claims priority to U.S. provisional application 61/611,483, filed Mar. 15, 2012, entitled “Reception, Recording, Storage, and Manipulation of Multiple Television Channels, the entire disclosure of which is hereby incorporated by reference for all purposes. U.S. application Ser. No. 13/828,001 also claims priority to U.S. provisional application 61/745,710, filed Dec. 24, 2012, entitled “Smartcard Encryption Cycling,” the entire disclosure of which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4706121 | Young | Nov 1987 | A |
4723246 | Weldon, Jr. | Feb 1988 | A |
4802215 | Mason | Jan 1989 | A |
5187589 | Kono et al. | Feb 1993 | A |
5335277 | Harvey et al. | Aug 1994 | A |
5483277 | Granger | Jan 1996 | A |
5488658 | Hirashima | Jan 1996 | A |
5541738 | Mankovitz | Jul 1996 | A |
5642153 | Chaney et al. | Jun 1997 | A |
5682597 | Ganek et al. | Oct 1997 | A |
5684969 | Ishida | Nov 1997 | A |
5724646 | Ganek et al. | Mar 1998 | A |
5805763 | Lawler et al. | Sep 1998 | A |
5974218 | Nagasaka et al. | Oct 1999 | A |
6049333 | LaJoie et al. | Apr 2000 | A |
6263504 | Ebisawa | Jul 2001 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6628891 | Vantalon et al. | Sep 2003 | B1 |
6701528 | Arsenault et al. | Mar 2004 | B1 |
6766523 | Herley | Jul 2004 | B2 |
6798971 | Potrebic | Sep 2004 | B2 |
6938208 | Reichardt | Aug 2005 | B2 |
7024676 | Klopfenstein | Apr 2006 | B1 |
7409140 | Rodriguez et al. | Aug 2008 | B2 |
7487529 | Orlick | Feb 2009 | B1 |
7490169 | Ogdon et al. | Feb 2009 | B1 |
7493312 | Liu et al. | Feb 2009 | B2 |
7505081 | Eshleman | Mar 2009 | B2 |
7542656 | Cho et al. | Jun 2009 | B2 |
7577751 | Vinson et al. | Aug 2009 | B2 |
7590993 | Hendricks et al. | Sep 2009 | B1 |
7684672 | Matoba | Mar 2010 | B2 |
7715552 | Pinder et al. | May 2010 | B2 |
7730517 | Rey et al. | Jun 2010 | B1 |
7739711 | Finseth et al. | Jun 2010 | B2 |
7760986 | Beuque | Jul 2010 | B2 |
7804861 | Kim | Sep 2010 | B2 |
7848618 | Potrebic et al. | Dec 2010 | B2 |
7856557 | Beuque | Dec 2010 | B2 |
7926078 | Arsenault et al. | Apr 2011 | B2 |
7929697 | McNeely et al. | Apr 2011 | B2 |
7962937 | Cho et al. | Jun 2011 | B2 |
8006268 | Sloo | Aug 2011 | B2 |
8201194 | Wijnands et al. | Jun 2012 | B2 |
8321466 | Black et al. | Nov 2012 | B2 |
8364671 | Sinton et al. | Jan 2013 | B1 |
8437622 | Casagrande | May 2013 | B2 |
8447170 | Casagrande | May 2013 | B2 |
8566873 | Sie et al. | Oct 2013 | B2 |
8584167 | Vanduyn | Nov 2013 | B2 |
8606088 | Kummer et al. | Dec 2013 | B2 |
8627349 | Kirby et al. | Jan 2014 | B2 |
8660412 | Kummer et al. | Feb 2014 | B2 |
8763027 | Martch | Jun 2014 | B2 |
8774608 | Kummer et al. | Jul 2014 | B2 |
8819722 | Kummer et al. | Aug 2014 | B2 |
8819761 | Minnick | Aug 2014 | B2 |
8850476 | VanDuyn et al. | Sep 2014 | B2 |
8867893 | Kirby | Oct 2014 | B2 |
8959544 | Kummer et al. | Feb 2015 | B2 |
8959566 | Kummer | Feb 2015 | B2 |
8989562 | Kummer et al. | Mar 2015 | B2 |
8997153 | Templeman | Mar 2015 | B2 |
9031385 | Casagrande et al. | May 2015 | B2 |
9043843 | Templeman et al. | May 2015 | B2 |
9055274 | Casagrande | Jun 2015 | B2 |
9088763 | Martch et al. | Jul 2015 | B2 |
9113222 | VanDuyn | Aug 2015 | B2 |
9177605 | Minnick et al. | Nov 2015 | B2 |
9177606 | Kirby | Nov 2015 | B2 |
9185331 | Martch et al. | Nov 2015 | B2 |
9191694 | Casagrande | Nov 2015 | B2 |
9202524 | Martch et al. | Dec 2015 | B2 |
9264779 | Kirby et al. | Feb 2016 | B2 |
9269397 | Casagrande et al. | Feb 2016 | B2 |
9349412 | Templeman | May 2016 | B2 |
9350937 | Kummer et al. | May 2016 | B2 |
9357159 | Martch et al. | May 2016 | B2 |
9361940 | Minnick | Jun 2016 | B2 |
20010028782 | Ohno et al. | Oct 2001 | A1 |
20010033736 | Yap et al. | Oct 2001 | A1 |
20010034787 | Takao et al. | Oct 2001 | A1 |
20020044658 | Wasilewski et al. | Apr 2002 | A1 |
20020054752 | Wood et al. | May 2002 | A1 |
20020055343 | Stetzler et al. | May 2002 | A1 |
20020087979 | Dudkiewicz et al. | Jul 2002 | A1 |
20020087983 | Son et al. | Jul 2002 | A1 |
20020092021 | Yap et al. | Jul 2002 | A1 |
20020095510 | Sie et al. | Jul 2002 | A1 |
20020097340 | Takagi et al. | Jul 2002 | A1 |
20020116705 | Perlman | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020126221 | Link | Sep 2002 | A1 |
20020141431 | Tripathy | Oct 2002 | A1 |
20020144259 | Gutta et al. | Oct 2002 | A1 |
20020144266 | Goldman et al. | Oct 2002 | A1 |
20020152299 | Traversat et al. | Oct 2002 | A1 |
20020164147 | Suda | Nov 2002 | A1 |
20020168178 | Rodriguez et al. | Nov 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020184638 | Agnihortri et al. | Dec 2002 | A1 |
20020188943 | Freeman et al. | Dec 2002 | A1 |
20030005454 | Rodriguez et al. | Jan 2003 | A1 |
20030026423 | Unger et al. | Feb 2003 | A1 |
20030078930 | Surcouf et al. | Apr 2003 | A1 |
20030097659 | Goldman | May 2003 | A1 |
20030110514 | West et al. | Jun 2003 | A1 |
20030149988 | Ellis et al. | Aug 2003 | A1 |
20030152360 | Mukai et al. | Aug 2003 | A1 |
20030156826 | Sonoda et al. | Aug 2003 | A1 |
20030177492 | Kanou | Sep 2003 | A1 |
20030177495 | Needham et al. | Sep 2003 | A1 |
20030200548 | Baran et al. | Oct 2003 | A1 |
20030208763 | McElhatten et al. | Nov 2003 | A1 |
20030208767 | Williamson et al. | Nov 2003 | A1 |
20030226150 | Berberet et al. | Dec 2003 | A1 |
20040001087 | Warmus et al. | Jan 2004 | A1 |
20040003118 | Brown et al. | Jan 2004 | A1 |
20040015992 | Hasegawa et al. | Jan 2004 | A1 |
20040015999 | Carlucci et al. | Jan 2004 | A1 |
20040078829 | Patel et al. | Apr 2004 | A1 |
20040080672 | Kessler et al. | Apr 2004 | A1 |
20040103428 | Seok et al. | May 2004 | A1 |
20040128682 | Liga et al. | Jul 2004 | A1 |
20040133923 | Watson et al. | Jul 2004 | A1 |
20040162871 | Pabla et al. | Aug 2004 | A1 |
20040218905 | Green et al. | Nov 2004 | A1 |
20040242150 | Wright et al. | Dec 2004 | A1 |
20040268387 | Wendling | Dec 2004 | A1 |
20050002640 | Putterman | Jan 2005 | A1 |
20050034171 | Benya | Feb 2005 | A1 |
20050083865 | Ashley et al. | Apr 2005 | A1 |
20050120049 | Kanegae et al. | Jun 2005 | A1 |
20050125683 | Matsuyama et al. | Jun 2005 | A1 |
20050147383 | Ihara | Jul 2005 | A1 |
20050180568 | Krause | Aug 2005 | A1 |
20050229213 | Ellis et al. | Oct 2005 | A1 |
20050237435 | Potrebic et al. | Oct 2005 | A1 |
20050271365 | Hisatomi | Dec 2005 | A1 |
20050273819 | Knudson et al. | Dec 2005 | A1 |
20050281531 | Unmehopa | Dec 2005 | A1 |
20060010464 | Azami | Jan 2006 | A1 |
20060020962 | Stark et al. | Jan 2006 | A1 |
20060056800 | Shimagami et al. | Mar 2006 | A1 |
20060075434 | Chaney et al. | Apr 2006 | A1 |
20060080716 | Nishikawa et al. | Apr 2006 | A1 |
20060085828 | Dureau et al. | Apr 2006 | A1 |
20060120523 | Kurotaki | Jun 2006 | A1 |
20060206819 | Tsuji et al. | Sep 2006 | A1 |
20060212900 | Ismail et al. | Sep 2006 | A1 |
20060215993 | Yamada | Sep 2006 | A1 |
20060257099 | Potrebic et al. | Nov 2006 | A1 |
20060274208 | Pedlow | Dec 2006 | A1 |
20070016546 | De Vorchik et al. | Jan 2007 | A1 |
20070039032 | Goldey et al. | Feb 2007 | A1 |
20070061378 | Lee et al. | Mar 2007 | A1 |
20070154163 | Cordray | Jul 2007 | A1 |
20070157248 | Ellis | Jul 2007 | A1 |
20070157253 | Ellis et al. | Jul 2007 | A1 |
20070165855 | Inui | Jul 2007 | A1 |
20070183745 | White | Aug 2007 | A1 |
20070192586 | McNeely | Aug 2007 | A1 |
20070204288 | Candelore | Aug 2007 | A1 |
20070234395 | Dureau et al. | Oct 2007 | A1 |
20070250856 | Leavens et al. | Oct 2007 | A1 |
20070258596 | Kahn et al. | Nov 2007 | A1 |
20080022347 | Cohen | Jan 2008 | A1 |
20080044158 | Kido | Feb 2008 | A1 |
20080046929 | Cho et al. | Feb 2008 | A1 |
20080052743 | Moore | Feb 2008 | A1 |
20080074547 | Ida | Mar 2008 | A1 |
20080092164 | Agarwal et al. | Apr 2008 | A1 |
20080092181 | Britt | Apr 2008 | A1 |
20080101760 | Waller | May 2008 | A1 |
20080104534 | Park et al. | May 2008 | A1 |
20080127253 | Zhang et al. | May 2008 | A1 |
20080137850 | Mamidwar | Jun 2008 | A1 |
20080141322 | Jang et al. | Jun 2008 | A1 |
20080144747 | Tomizawa | Jun 2008 | A1 |
20080152039 | Shah et al. | Jun 2008 | A1 |
20080184327 | Ellis et al. | Jul 2008 | A1 |
20080216119 | Pfeffer et al. | Sep 2008 | A1 |
20080216136 | Pfeffer et al. | Sep 2008 | A1 |
20080222678 | Burke et al. | Sep 2008 | A1 |
20080222681 | Kwon | Sep 2008 | A1 |
20080271077 | Kim et al. | Oct 2008 | A1 |
20080273698 | Manders et al. | Nov 2008 | A1 |
20080273856 | Bumgardner | Nov 2008 | A1 |
20080276284 | Bumgardner et al. | Nov 2008 | A1 |
20080288461 | Glennon et al. | Nov 2008 | A1 |
20080291206 | Uchimura et al. | Nov 2008 | A1 |
20080298585 | Maillard et al. | Dec 2008 | A1 |
20080301740 | Tsutsui | Dec 2008 | A1 |
20080307217 | Yukimatsu | Dec 2008 | A1 |
20090025027 | Craner | Jan 2009 | A1 |
20090051579 | Inaba et al. | Feb 2009 | A1 |
20090067621 | Wajs | Mar 2009 | A9 |
20090080930 | Shinotsuka et al. | Mar 2009 | A1 |
20090100466 | Migos | Apr 2009 | A1 |
20090110367 | Fukui | Apr 2009 | A1 |
20090129741 | Kim | May 2009 | A1 |
20090129749 | Oyamatsu et al. | May 2009 | A1 |
20090136206 | Aisu | May 2009 | A1 |
20090150941 | Riedl et al. | Jun 2009 | A1 |
20090165057 | Miller et al. | Jun 2009 | A1 |
20090172722 | Kahn et al. | Jul 2009 | A1 |
20090178098 | Westbrook et al. | Jul 2009 | A1 |
20090210912 | Cholas et al. | Aug 2009 | A1 |
20090235298 | Carlberg et al. | Sep 2009 | A1 |
20090254962 | Hendricks et al. | Oct 2009 | A1 |
20090260038 | Acton et al. | Oct 2009 | A1 |
20090320073 | Reisman | Dec 2009 | A1 |
20090320084 | Azam et al. | Dec 2009 | A1 |
20090324203 | Wiklof | Dec 2009 | A1 |
20100020794 | Cholas et al. | Jan 2010 | A1 |
20100037282 | Iwata et al. | Feb 2010 | A1 |
20100043022 | Kaftan | Feb 2010 | A1 |
20100050225 | Bennett | Feb 2010 | A1 |
20100086277 | Craner | Apr 2010 | A1 |
20100095323 | Williamson et al. | Apr 2010 | A1 |
20100100899 | Bradbury et al. | Apr 2010 | A1 |
20100115121 | Roos et al. | May 2010 | A1 |
20100135639 | Ellis et al. | Jun 2010 | A1 |
20100146581 | Erk | Jun 2010 | A1 |
20100158479 | Craner | Jun 2010 | A1 |
20100158480 | Jung et al. | Jun 2010 | A1 |
20100162285 | Cohen et al. | Jun 2010 | A1 |
20100169926 | Westberg et al. | Jul 2010 | A1 |
20100195827 | Lee et al. | Aug 2010 | A1 |
20100217613 | Kelly | Aug 2010 | A1 |
20100232604 | Eklund, II | Sep 2010 | A1 |
20100235862 | Adachi | Sep 2010 | A1 |
20100239228 | Sano | Sep 2010 | A1 |
20100242079 | Riedl et al. | Sep 2010 | A1 |
20100246582 | Salinger et al. | Sep 2010 | A1 |
20100247067 | Gratton | Sep 2010 | A1 |
20100251304 | Donoghue et al. | Sep 2010 | A1 |
20100251305 | Kimble et al. | Sep 2010 | A1 |
20100254386 | Salinger et al. | Oct 2010 | A1 |
20100265391 | Muramatsu et al. | Oct 2010 | A1 |
20100284537 | Inbar | Nov 2010 | A1 |
20100293583 | Loebig et al. | Nov 2010 | A1 |
20100299528 | Le Floch | Nov 2010 | A1 |
20100306401 | Gilson | Dec 2010 | A1 |
20100313222 | Lee et al. | Dec 2010 | A1 |
20100319037 | Kim | Dec 2010 | A1 |
20100329645 | Sakamoto | Dec 2010 | A1 |
20110001879 | Goldey et al. | Jan 2011 | A1 |
20110007218 | Moran et al. | Jan 2011 | A1 |
20110043652 | King et al. | Feb 2011 | A1 |
20110078750 | Tam et al. | Mar 2011 | A1 |
20110080529 | Wong | Apr 2011 | A1 |
20110099364 | Robyr et al. | Apr 2011 | A1 |
20110131413 | Moon et al. | Jun 2011 | A1 |
20110138169 | Michel | Jun 2011 | A1 |
20110138424 | Vlot | Jun 2011 | A1 |
20110145854 | Bacon | Jun 2011 | A1 |
20110150429 | Kaneko | Jun 2011 | A1 |
20110162011 | Hassell et al. | Jun 2011 | A1 |
20110179453 | Poniatowski | Jul 2011 | A1 |
20110225616 | Ellis | Sep 2011 | A1 |
20110235701 | Kim | Sep 2011 | A1 |
20110239249 | Murison et al. | Sep 2011 | A1 |
20110286719 | Woods | Nov 2011 | A1 |
20110311045 | Candelore et al. | Dec 2011 | A1 |
20120183276 | Quan et al. | Jul 2012 | A1 |
20120195433 | Eppolito et al. | Aug 2012 | A1 |
20120198501 | Ruan et al. | Aug 2012 | A1 |
20120236933 | Saitoh et al. | Sep 2012 | A1 |
20120278837 | Curtis et al. | Nov 2012 | A1 |
20120296745 | Harper et al. | Nov 2012 | A1 |
20120301104 | Dove | Nov 2012 | A1 |
20120311534 | Fox et al. | Dec 2012 | A1 |
20120311634 | Van Duyn | Dec 2012 | A1 |
20120331505 | Chun et al. | Dec 2012 | A1 |
20130014146 | Bhatia et al. | Jan 2013 | A1 |
20130014159 | Wiser et al. | Jan 2013 | A1 |
20130051555 | Martch et al. | Feb 2013 | A1 |
20130051758 | Kummer et al. | Feb 2013 | A1 |
20130051764 | Casagrande | Feb 2013 | A1 |
20130051766 | Martch et al. | Feb 2013 | A1 |
20130051773 | Casagrande | Feb 2013 | A1 |
20130054579 | Kennedy | Feb 2013 | A1 |
20130055304 | Kirby et al. | Feb 2013 | A1 |
20130055305 | Martch et al. | Feb 2013 | A1 |
20130055310 | VanDuyn et al. | Feb 2013 | A1 |
20130055311 | Kirby et al. | Feb 2013 | A1 |
20130055314 | Martch | Feb 2013 | A1 |
20130055333 | Kummer | Feb 2013 | A1 |
20130216208 | Kummer et al. | Aug 2013 | A1 |
20130223814 | Casagrande | Aug 2013 | A1 |
20130243397 | Minnick et al. | Sep 2013 | A1 |
20130243398 | Templeman et al. | Sep 2013 | A1 |
20130243399 | Casagrande et al. | Sep 2013 | A1 |
20130243401 | Casagrande | Sep 2013 | A1 |
20130243402 | Kummer et al. | Sep 2013 | A1 |
20130243403 | Martch | Sep 2013 | A1 |
20130243405 | Templeman et al. | Sep 2013 | A1 |
20130243406 | Kirby | Sep 2013 | A1 |
20130247089 | Kummer et al. | Sep 2013 | A1 |
20130247090 | Kummer et al. | Sep 2013 | A1 |
20130247106 | Martch et al. | Sep 2013 | A1 |
20130247107 | Templeman | Sep 2013 | A1 |
20130247111 | Templeman et al. | Sep 2013 | A1 |
20130247115 | Minnick | Sep 2013 | A1 |
20130298166 | Herrington et al. | Nov 2013 | A1 |
20130347037 | Soroushian | Dec 2013 | A1 |
20140047477 | VanDuyn | Feb 2014 | A1 |
20140050462 | Kummer et al. | Feb 2014 | A1 |
20140126889 | Kummer et al. | May 2014 | A1 |
20140130094 | Kirby et al. | May 2014 | A1 |
20140147102 | Shartzer et al. | May 2014 | A1 |
20140201767 | Seiden et al. | Jul 2014 | A1 |
20140344858 | Minnick | Nov 2014 | A1 |
20140363139 | Kirby | Dec 2014 | A1 |
20140376884 | Lovell | Dec 2014 | A1 |
20150040166 | Tamura et al. | Feb 2015 | A1 |
20150095948 | Kummer et al. | Apr 2015 | A1 |
20150104146 | Higuchi et al. | Apr 2015 | A1 |
20150121430 | Templeman | Apr 2015 | A1 |
20150208119 | Casagrande et al. | Jul 2015 | A1 |
20150208125 | Robinson | Jul 2015 | A1 |
20150228305 | Templeman et al. | Aug 2015 | A1 |
20150245089 | Potrebic | Aug 2015 | A1 |
20150245113 | Casagrande | Aug 2015 | A1 |
20150319400 | Golyshko | Nov 2015 | A1 |
20160073144 | Robinson | Mar 2016 | A1 |
20160080800 | Casagrande | Mar 2016 | A1 |
20160105711 | Martch et al. | Apr 2016 | A1 |
20160134926 | Casagrande et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
1595975 | Mar 2005 | CN |
1615017 | May 2005 | CN |
1926793 | Mar 2007 | CN |
101174946 | May 2008 | CN |
101202600 | Jun 2008 | CN |
101310532 | Nov 2008 | CN |
101 404 780 | Apr 2009 | CN |
101978690 | Feb 2011 | CN |
0 903 743 | Mar 1999 | EP |
0 973 333 | Jan 2000 | EP |
1 001 631 | May 2000 | EP |
1 168 347 | Jan 2002 | EP |
1372339 | Dec 2003 | EP |
1 447 983 | Aug 2004 | EP |
1 667 452 | Jun 2006 | EP |
1 742 467 | Jan 2007 | EP |
2 018 059 | Jan 2009 | EP |
2 317 767 | May 2011 | EP |
2 357 563 | Aug 2011 | EP |
2 403 239 | Jan 2012 | EP |
2 541 929 | Jan 2013 | EP |
2 826 197 | Jan 2015 | EP |
2 826 238 | Jan 2015 | EP |
2 459 705 | Nov 2009 | GB |
9740CHENP2013 | Sep 2014 | IN |
2007 116525 | May 2007 | JP |
2010165058 | Jul 2010 | JP |
9812872 | Mar 1998 | WO |
0241625 | May 2002 | WO |
2004057610 | Jul 2004 | WO |
2007047410 | Apr 2007 | WO |
2008010118 | Jan 2008 | WO |
2008010689 | Jan 2008 | WO |
2008060486 | May 2008 | WO |
2011027236 | Mar 2011 | WO |
2011081729 | Jul 2011 | WO |
2012003693 | Mar 2012 | WO |
2013028824 | Feb 2013 | WO |
2013028829 | Feb 2013 | WO |
2013028835 | Feb 2013 | WO |
2013138606 | Sep 2013 | WO |
2013138608 | Sep 2013 | WO |
2013138610 | Sep 2013 | WO |
2013138638 | Sep 2013 | WO |
2013138689 | Sep 2013 | WO |
2013138740 | Sep 2013 | WO |
2016066443 | May 2016 | WO |
Entry |
---|
U.S. Appl. No. 13/856,752, filed Apr. 4, 2013 Notice of Allowance mailed Feb. 10, 2015, 20 pages. |
U.S. Appl. No. 13/799,604, filed Mar. 13, 2013, Final Office Action mailed Jan. 14, 2015, 36 pages. |
U.S. Appl. No. 13/797,173, filed Mar. 12, 2013 Notice of Allowance mailed Feb. 26, 2015, 19 pages. |
U.S. Appl. No. 13/793,636, filed Mar. 11, 2013, Notice of Allowance mailed Jan. 28, 2015, 43 pages. |
U.S. Appl. No. 13/800,477, filed Mar. 13, 2013 Notice of Allowance mailed Feb. 18, 2015, 18 pages. |
Extended European Search Report for EP 12825474 mailed Jan. 7, 2015, 6 pages. |
Extended European Search Report for EP 12825430 mailed Feb. 3, 2015, all pages. |
The Office Action dated Nov. 7, 2014 for Mexican Patent Application No. MX/a/2013/014907 is not translated into English, 3 pages. |
The Office Action dated Jan. 23, 2015 for Mexican Patent Application No. MX/a/2013/014671 is not translated into English, 3 pages. |
U.S. Appl. No. 14/467,959, filed Aug. 25, 2014 Notice of Allowance mailed Jun. 22, 2015, 36 pages. |
U.S. Appl. No. 14/154,887, filed Jan. 14, 2014 Non-Final Rejection mailed Jul. 17, 2015, 33 pages. |
U.S. Appl. No. 14/095,860, filed Dec. 3, 2013 Notice of Allowance mailed Jul. 13, 2015, 31 pages. |
U.S. Appl. No. 14/043,617, filed Oct. 1, 2013 Final Office Action mailed Jul. 16, 2015, 45 pages. |
U.S. Appl. No. 13/888,012, filed May 6, 2013 Notice of Allowance mailed Jul. 14, 2015, 18 pages. |
U.S. Appl. No. 13/799,604, filed Mar. 13, 2013, Notice of Allowance mailed May 29, 2015, 46 pages. |
U.S. Appl. No. 13/302,852, filed Nov. 22, 2011, Notice of Allowance mailed Jun. 19, 2015, 26 pages. |
U.S. Appl. No. 13/292,047, filed Nov. 8, 2011 Non-Final Office Action mailed Jul. 7, 2015, 28 pages. |
Supplementary European Search Report for EP 13761291.7 mailed Jul. 9, 2015, 8 pages. |
The Notice of Allowance by the Mexican Institute of Industrial Property for Mexican Patent Application No. MX/a/2013/014671 dated Apr. 17, 2015, 1 page. |
Office Action dated May 18, 2015 for Mexican Patent Application No. MX/a/2014/009776, 2 pages. |
Office Action dated May 12, 2015 for Mexican Patent Application No. MX/a/2014/009723, 2 pages. |
U.S. Appl. No. 13/288,002, filed Nov. 2, 2011 Non Final Rejection mailed Jul. 28, 2015, 29 pages. |
U.S. Appl. No. 13/829,350, filed Mar. 14, 2013 Notice of Allowance mailed Jul. 24, 2015, 29 pages. |
Extended European Search Report for EP 12825080 mailed Sep. 11, 2014, 10 pages. |
Extended European Search Report for EP 12825521 mailed Nov. 24, 2014, 7 pages. |
International Search Report and Written Opinion of PCT/US2013/031440 mailed May 30, 2013, 14 pages. |
International Preliminary Report on Patentability for PCT/US2013/031440 mailed Sep. 25, 2014, 8 pages. |
The Office Action dated Nov. 6, 2014 for Mexican Patent Application No. MX/a/2013/014677 is not translated into English. This document is from prosecution of the corresponding foreign matter for which we do not have a translation, 2 pages. |
U.S. Appl. No. 14/095,860, filed Dec. 3, 2013 Non-Final Office Action mailed Dec. 26, 2014, 45 pages. |
U.S. Appl. No. 14/043,617, filed Oct. 1, 2013 Non-Final Office Action mailed Jan. 5, 2015, 45 pages. |
U.S. Appl. No. 13/856,752, filed Apr. 4, 2013 Non Final Office Action mailed Nov. 5, 2014, 34 pages. |
U.S. Appl. No. 13/829,350, filed Mar. 14, 2013 Final Office Action mailed Jan. 23, 2015, 18 pages. |
U.S. Appl. No. 13/799,653, filed Mar. 13, 2013 Notice of Allowance mailed Nov. 26, 2014, 32 pages. |
U.S. Appl. No. 13/797,173, filed Mar. 12, 2013 Notice of Allowance mailed Nov. 24, 2014, 37 pages. |
U.S. Appl. No. 13/757,168, filed Feb. 1, 2013 Notice of Allowance mailed Oct. 14, 2014, 28 pages. |
U.S. Appl. No. 13/294,005, filed Nov. 11, 2011 Notice of Allowance mailed Oct. 31, 2014, 24 pages. |
U.S. Appl. No. 13/292,047, filed Nov. 8, 2011 Final Office Action mailed Jan. 13, 2015, 22 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011 Non-Final Office Action mailed Nov. 25, 2014, 18 pages. |
International Search Report and Written Opinion of PCT/US2012/51992 mailed Nov. 2, 2012, 15 pages. |
International Search Report and Written Opinion of PCT/US2012/51987 mailed Oct. 23, 2012, 20 pages. |
International Search Report and Written Opinion of PCT/US2012/051984 mailed Nov. 5, 2012, 13 pages. |
International Search Report and Written Opinion of PCT/US2012/52002 mailed Oct. 16, 2012, 17 pages. |
International Search Report and Written Opinion of PCT/US2013/031432 mailed May 28, 2013, 10 pages. |
International Preliminary Report on Patentability for PCT/US2013/031432 issued Sep. 16, 2014, 9 pages. |
International Search Report and Written Opinion of PCT/US2013/031445 mailed May 24, 2013, 11 pages. |
International Preliminary Report on Patentability for PCT/US2013/031445 issued Sep. 16, 2014, 10 pages. |
International Preliminary Report on Patentability for PCT/US2012/052002 mailed on Apr. 17, 2014, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/51964 mailed Nov. 2, 2012, 13 pages. |
International Search Report and Written Opinion of PCT/US2012/052011 mailed Dec. 17, 2012, 44 pages. |
International Preliminary Report on Patentability, PCT/US2012/052011, mailed on Mar. 6, 2014, 6 pages. |
International Preliminary Report on Patentability, PCT/US2012/051984, mailed on Mar. 6, 2014, 8 pages. |
International Preliminary Report on Patentability, PCT/US2012/051964, mailed on Apr. 10, 2014, 7 pages. |
International Preliminary Report on Patentability, PCT/US2012/051992, mailed on Apr. 3, 2014, 7 pages. |
International Preliminary Report on Patentability, PCT/US2012/051987, mailed on Mar. 6, 2014, 7 pages. |
Author Unknown, “EE Launches home TV service in UK,” dated Oct. 8, 2014, 3 pages. Retrieved on Oct. 13, 2014 from http://www.bbc.com/news/technology-29535279. |
Author Unknown, “Move Networks is Delivering the Next Generation of Television,” Move Networks, 2010, obtained online at http://movenetworks.com/, 2 pages. |
Author Unknown, “EE TV Its simply great television,” Accessed on Oct. 13, 2014, 11 pages. Retrieved from https//ee.co.uk/ee-and-me/ee-tv. |
Design and implementation of a multi-stream cableCARD with a high-speed DVB-common descrambler; Joonyoung Jung, Ohyung Kwon, Sooin Lee; In proceeding of: Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, Oct. 23-27, 2006, 4 pages. |
Jensen, C., “Fragmentation: the condition, the cause, the cure” Online!, Executive Software International, 1994; ISBN: 0964004909; retrieved from Internet: <URL: www.executive.com/fragbook/fragbook.htm>* Chapter: “How a disk works”, Section: “The original problem”. Retrieved on Jan. 9, 2014, 70 pages. |
McCann, John, “EE TV set top takes aim at Sky, Virgin Media and YouView,” dated Oct. 8, 2014, 5 pages. Retrieved on Oct. 13, 2014 from http://www.techradar.com/news/television/ee-tv-set-top-box-takes-aim-at-sky-virgin-media-and-youview-1268223. |
Williams, Christopher, “EE to launch TV set-top box,” dated Oct. 7, 2014, 2 pages. Retrieved on Oct. 13, 2014 from http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/telecoms/11147319/EE-to-launch-TV-set-top-box.html. |
U.S. Appl. No. 13/757,168, filed Feb. 1, 2013, Non Final Office Action mailed Jun. 4, 2014, 23 pages. |
U.S. Appl. No. 13/799,604, filed Mar. 13, 2013, Non Final Office Action mailed Jun. 6, 2014, 24 pages. |
U.S. Appl. No. 13/149,852, filed May 31, 2011, Non-Final Office Action mailed Dec. 12, 2012, 9 pages. |
U.S. Appl. No. 13/149,852, filed May 31, 2011, Final Office Action mailed Mar. 26, 2013, 13 pages. |
U.S. Appl. No. 13/149,852, filed May 31, 2011, Notice of Allowance mailed Jul. 11, 2013, 13 pages. |
U.S. Appl. No. 13/286,157, filed Oct. 31, 2011, Non-Final Office Action mailed Jan. 17, 2013, 20 pages. |
U.S. Appl. No. 13/286,157, filed Oct. 31, 2011, Non-Final Office Action mailed Jul. 25, 2013, 49 pages. |
U.S. Appl. No. 13/286,157, filed Oct. 31, 2011, Notice of Allowance mailed Feb. 3, 2014, 81 pages. |
U.S. Appl. No. 13/215,702, filed Aug. 23, 2011, Notice of Allowance mailed Feb. 11, 2013, 13 pages. |
U.S. Appl. No. 13/288,002, filed Nov. 2, 2011, Non-final Office Action mailed Sep. 26, 2013, 15 pages. |
U.S. Appl. No. 13/288,002, filed Nov. 2, 2011, Final Office Action mailed Mar. 27, 2014, 20 pages. |
U.S. Appl. No. 13/302,852, filed Nov. 22, 2011, Non-Final Rejection mailed May 23, 2013, 19 pages. |
U.S. Appl. No. 13/302,852, filed Nov. 22, 2011, Final Rejection mailed Dec. 9, 2013, 23 pages. |
U.S. Appl. No. 13/302,852, filed Nov. 22, 2011, Non-Final Rejection mailed Sep. 2, 2014, 28 pages. |
U.S. Appl. No. 13/324,831, filed Dec. 13, 2011, Non-Final Office Action mailed Feb. 28, 2013, 23 pages. |
U.S. Appl. No. 13/324,831, filed Dec. 13, 2011, Notice of Allowance mailed Sep. 4, 2013, 22 pages. |
U.S. Appl. No. 13/292,047, filed Nov. 8, 2011, Non-Final Office Action mailed Jan. 18, 2013, 17 pages. |
U.S. Appl. No. 13/292,047, filed Nov. 8, 2011, Final Office Action mailed Aug. 19, 2013, 17 pages. |
U.S. Appl. No. 13/614,899, filed Sep. 13, 2012, Non-Final Office Action mailed Feb. 5, 2013, 17 pages. |
U.S. Appl. No. 13/614,899, filed Sep. 13, 2012, Non-Final Office Action mailed May 20, 2014, 25 pages. |
U.S. Appl. No. 13/614,899, filed Sep. 13, 2012, Non-Final Office Action mailed Sep. 17, 2013, 17 pages. |
U.S. Appl. No. 13/614,899, filed Sep. 13, 2012, Final Office Action mailed Mar. 17, 2014, 41 pages. |
U.S. Appl. No. 13/291,014, filed Nov. 7, 2011, Non-Final Office Action mailed Mar. 29, 2013, 21 pages. |
U.S. Appl. No. 13/291,014, filed Nov. 7, 2011, Notice of Allowance mailed Aug. 7, 2013, 16 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011, Non-Final Office Action mailed Jun. 20, 2013, 15 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011, Final Office Action mailed Nov. 21, 2013, 23 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011, Non-Final Office Action mailed Feb. 6, 2014, 12 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011, Final Office Action mailed Jul. 2, 2014, 22 pages. |
U.S. Appl. No. 13/215,655, filed Aug. 23, 2011, Non-Final Office Action mailed Sep. 6, 2013, 27 pages. |
U.S. Appl. No. 13/215,655, filed Aug. 23, 2011, Final Office Action mailed Dec. 18, 2013, 20 pages. |
U.S. Appl. No. 13/215,916, filed Aug. 23, 2011, Notice of Allowance mailed Jan. 4, 2013, 10 pages. |
U.S. Appl. No. 13/294,005, filed Nov. 11, 2011, Non-Final Office Action mailed May 20, 2014, 33 pages. |
U.S. Appl. No. 13/294,005, filed Nov. 11, 2011, Non-Final Office Action mailed Aug. 14, 2013, 32 pages. |
U.S. Appl. No. 13/294,005, filed Nov. 11, 2011, Final Office Action mailed Jan. 3, 2014, 29 pages. |
U.S. Appl. No. 13/592,976, filed Aug. 23, 2012, Notice of Allowance mailed Oct. 7, 2013, 18 pages. |
U.S. Appl. No. 13/797,173, filed Mar. 12, 2013, Non Final Office Action mailed May 15, 2014, 28 pages. |
U.S. Appl. No. 13/799,653, filed Mar. 13, 2013, Non Final Office Action mailed May 8, 2014, 24 pages. |
U.S. Appl. No. 13/829,350, filed Mar. 14, 2013, Non Final Office Action mailed Feb. 28, 2014, 29 pages. |
U.S. Appl. No. 13/829,350, filed Mar. 14, 2013, Non Final Office Action mailed Jul. 29, 2014, 24 pages. |
U.S. Appl. No. 13/828,001, filed Mar. 14, 2013, Notice of Allowance mailed Apr. 25, 2014, 43 pages. |
U.S. Appl. No. 13/799,719, filed Mar. 13, 2013, Non Final Office Action mailed Oct. 25, 2013, 79 pages. |
U.S. Appl. No. 13/799,719, filed Mar. 13, 2013, Notice of Allowance mailed Apr. 23, 2014, 141 pages. |
U.S. Appl. No. 14/064,423, filed Oct. 28, 2013, Non-Final Office Action mailed Dec. 20, 2013, 18 pages. |
U.S. Appl. No. 14/064,423, filed Oct. 28, 2013, Notice of Allowance mailed Mar. 4, 2013, 37 pages. |
U.S. Appl. No. 13/793,636, filed Mar. 11, 2013, Non-Final Office Action mailed Sep. 29, 2014, 27 pages. |
U.S. Appl. No. 13/795,914, filed Mar. 6, 2013, Notice of Allowance mailed Jul. 21, 2014, 13 pages. |
U.S. Appl. No. 13/795,914, filed Mar. 6, 2013, Final Office Action mailed Apr. 3, 2014, 17 pages. |
U.S. Appl. No. 13/795,914, filed Mar. 6, 2013, Non-Final Office Action mailed Oct. 11, 2013, 17 pages. |
U.S. Appl. No. 13/800,477, filed Mar. 13, 2013, Non-Final Office Action mailed Sep. 11, 2014, 34 pages. |
International Preliminary Report on Patentability for PCT/US2013/032176 mailed Sep. 25, 2014, 7 pages. |
International Search Report and Written Opinion of PCT/US2013/32176 mailed on Jun. 25, 2013, 15 pages. |
International Search Report and Written Opinion of PCT/US2013/031565 mailed on May 31, 2013, 82 pages. |
International Preliminary Report on Patentability for PCT/US2013/031565 issued Sep. 16, 2014, 18 pages. |
International Preliminary Report on Patentability for PCT/US2013/031915 issued Sep. 16, 2014, 5 pages. |
International Search Report and Written Opinion of PCT/US2013/031915 mailed on Jun. 3, 2013, 7 pages. |
International Search Report of PCT/KR2007/003521 mailed on Oct. 23, 2007, 22 pages. |
International Search Report of PCT/IB2003/005737 mailed on Mar. 2, 2004, 21 pages. |
U.S. Appl. No. 14/095,860, filed Dec. 3, 2013 Final Office Action mailed May 1, 2015, 18 pages. |
U.S. Appl. No. 14/060,388, filed Oct. 22, 2013 Notice of Allowance mailed Apr. 13, 2015, 44 pages. |
U.S. Appl. No. 13/888,012, filed May 6, 2013 Non-Final Rejection mailed Apr. 6, 2015, 36 pages. |
U.S. Appl. No. 13/801,968, filed Mar. 13, 2013 Non Final Office Action mailed May 21, 2015, 49 pages. |
U.S. Appl. No. 13/614,899, filed Sep. 13, 2012 Notice of Allowance mailed Mar. 13, 2015, 35 pages. |
U.S. Appl. No. 13/302,852, filed Nov. 22, 2011 Final Rejection mailed Mar. 30, 2015, 29 pages. |
U.S. Appl. No. 13/215,598, filed Aug 23, 2011 Final Office Action mailed May 5, 2015, 17 pages. |
European Search Report for EP 12825653 dated Mar. 11, 2015, 7 pages. |
Supplementary European Search Report for Application No. EP 12825147 dated Mar. 27, 2015, 9 pages. |
The Notice of Allowance by the Mexican Institute of Industrial Property for Mexican Patent Application No. MX/a/2013/014907 dated Feb. 20, 2015 is not translated into English, 1 page. |
The Notice of Allowance by the Mexican Institute of Industrial Property for Mexican Patent Application No. MX/a/2013/014677 dated Mar. 19, 2015 is not translated into English, 1 page. |
The second Office Action dated Feb. 26, 2015 for Mexican Pat. Appln. No. MX/a/2013/014217 is not translated into English, 3 pages. |
U.S. Appl. No. 13/799,604, filed Mar. 13, 2013, Notice of Allowance mailed Jul. 24, 2015, 34 pages. |
U.S. Appl. No. 13/786,915, filed Mar. 6, 2013, Non Final Rejection mailed Oct. 15, 2015, 59 pages. |
U.S. Appl. No. 13/801,994, Non Final Office Action mailed Oct. 7, 2015, 55 pages. |
U.S. Appl. No. 14/095,860, filed Dec. 3, 2013 Notice of Allowance mailed Oct. 19, 2015, 14 pages. |
U.S. Appl. No. 14/338,114, filed Jul. 22, 2014 Non-Final Office Action mailed Sep. 30, 2015, all pages. |
U.S. Appl. No. 14/529,989, filed Oct. 31, 2014 Non-Final Office Action mailed Nov. 4, 2015, all pages. |
U.S. Appl. No. 14/043,617, filed Oct. 1, 2013 Non-Final Office Action mailed Oct. 23, 2015, all pages. |
U.S. Appl. No. 14/676,137, filed Apr. 1, 2015 Notice of Allowance mailed Sep. 28, 2015, 35 pages. |
Supplementary European Search Report for EP 13760902 mailed Oct. 20, 2015, all pages. |
Supplementary European Search Report for EP 13761427 mailed Oct. 19, 2015, all pages. |
Office Action dated Jul. 31, 2015 for Mexican Patent Application No. MX/a/2014/009919, 2 pages. |
Extended European Search Report for EP 13760237.1 received Jul. 21, 2015, 8 pages. |
First Office Action and Search Report from the State Intellectual Property Office (SIPO) for CN 201280031434.7, issued Jul. 17, 2015, 12 pages. |
Office Action dated Jul. 31, 2015 for Mexican Patent Application No. MX/a/2014/009928, 2 pages. |
International Search Report and Written Opinion of PCT/US2015/065934 mailed Apr. 8, 2016, all pages. |
International Search Report and Written Opinion of PCT/EP2015/073937 mailed Apr. 15, 2016, all pages. |
U.S. Appl. No. 13/786,915, filed Mar. 6, 2013, Final Rejection mailed May 12, 2016, 27 pages. |
U.S. Appl. No. 14/757,606, filed Dec. 23, 2015, Non Final Rejection mailed Mar. 24, 2016, 33 pages. |
U.S. Appl. No. 13/215,598, filed Aug. 23, 2011 Notice of Allowance mailed May 24, 2016, all pages. |
U.S. Appl. No. 13/801,968, filed Mar. 13, 2013 Final Office Action mailed Nov. 19, 2015, all pages. |
U.S. Appl. No. 13/801,968, filed Mar. 13, 2013 Notice of Allowance mailed Apr. 7, 2016, 33 pages. |
U.S. Appl. No. 13/801,994, Final Office Action mailed May 4, 2016, 37 pages. |
U.S. Appl. No. 14/529,989, filed Oct. 31, 2014, Final Rejection mailed May 6, 2016, 27 pages. |
U.S. Appl. No. 14/043,617, filed Oct. 1, 2013, Final Office Action mailed May 6, 2016, 56 pages. |
Decision to Grant from the State Intellectual Property Office (SIPO) for CN 201280031434.7, issued May 12, 2016, 2 pages. |
Notice of Allowance dated Jan. 15, 2016 for Mexican Patent Application No. MX/a/2014/009928, 1 page. |
Notice of Allowance dated Dec. 16, 2015 for Mexican Patent Application No. MX/a/2014/009919, 1 page. |
U.S. Appl. No. 14/154,887, filed Jan. 14, 2014 Notice of Allowance mailed Jan. 21, 2016, 26 pages. |
U.S. Appl. No. 13/288,002, filed Nov. 2, 2011 Final Rejection mailed Jan. 13, 2016, 22 pages. |
U.S. Appl. No. 13/292,047, filed Nov. 8, 2011 Notice of Allowance mailed Jan. 29, 2016, 45 pages. |
U.S. Appl. No. 13/215,598, filed Aug 23, 2011 Non Final Office Action mailed Dec. 15, 2015, all pages. |
U.S. Appl. No. 14/589,090, Notice of Allowance mailed Feb. 9, 2016, 47 pages. |
U.S. Appl. No. 14/591,549, Non Final Office Action mailed Dec. 31, 2015, 19 pages. |
U.S. Appl. No. 14/338,114, filed Jul. 22, 2014 Notice of Allowance mailed Feb. 3, 2016, all pages. |
Second Office Action for CN 201280031434.7, issued Dec. 23, 2015, 6 pages. |
First Office Action issued by State Intellectual Property Office (SIPO) for CN 201280028697.2, issued Dec. 16, 2015, 11 pages. |
Notice of Allowance received for Mexican Patent Appln. MX/a/2013/014991, mailed on Dec. 9, 2015, 1 page. |
Notice of Allowance mailed Dec. 4, 2015 for Mexican Patent Application No. MX/a/2014/009723, 1 page. |
First Office Action and Search Report for CN Appln No. 201380014409.2 issued on Oct. 9, 2016, all pages. |
First Office Action and Search Report from the State Intellectual Property Office (SIPO) for CN 201280031150.8, issued Aug. 3, 2016, 10 pages. |
First Office Action and Search Report for CN Appin no. 201280030476.9 issued Aug. 9, 2016, all pages. |
Notice of Allowance mailed Jul. 21, 2016 for Mexican Patent Application No. MX/a/2015/10334, 1 page. |
Number | Date | Country | |
---|---|---|---|
20140341377 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61611483 | Mar 2012 | US | |
61745710 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13828001 | Mar 2013 | US |
Child | 14340190 | US |