The present invention relates to the field of mechanical structures, and specifically, to a smartwatch with a pressure sensing function.
Pressure sensing can not only determine user action information more accurately, but also provide more possibilities for UI (User interface) design. Especially for a 1.2- to 1.4-inch screen commonly used by a smartwatch, more functions can be developed in limited watch face space based on pressure sensing to enhance user experience.
In the prior art, a capacitive pressure sensor is added under a screen. The pressure sensor is in a chip or annular form, and is attached to a bottom of a display module or a metal middle frame carrying the display module. There is a slight gap between the display module and the metal middle frame. Pressure from the screen causes minor deformation of the sensor, and further results in a capacitance change. A signal processing circuit detects a capacitance change value, so as to sense pressure of different levels. This solution has a relatively high requirement on structural fit design, and especially, imposes a rather high requirement on a device assembly technology.
In another prior art, a pressure sensor is directly embedded in a display module. For example, a layer of transparent pressure sensor is added under a glass cover (cover lens), and the pressure sensor may be resistive or capacitive. The sensor can directly sense pressure from a screen, and a resistance or capacitance change is generated. A signal processing circuit identifies a resistance or capacitance change value, so as to sense pressure of different levels. In this solution, an existing display module fabrication process needs to be changed, and a yield rate of the display module is reduced.
In view of this, embodiments of the present invention provide a smartwatch with a pressure sensing function, so as to overcome such prior-art disadvantages as high fabrication difficulty and complex processes in smartwatch pressure sensing, and implement a simple and practical pressure sensing function.
According to a first aspect, an embodiment of the present invention provides a smartwatch, including a watch body and a wristband, where the watch body includes a front case, a touchscreen, and a bottom case, a circuit board is included inside the watch body, there are components such as a processor on the circuit board, and a pressure sensor is disposed on the bottom case. Optionally, the pressure sensor may be a pressure-sensitive film and is attached to the bottom case, so as to reduce an overall thickness of the watch body. The attachment may be implemented by using viscose glue, a buckle, a screw, or the like.
With reference to the first aspect, in a first implementation of the first aspect, there is a through-hole in the bottom case, and a signal connection line of the pressure sensor may pass through the through-hole and be electrically connected to a connection point of the circuit board, so as to implement communication between the pressure sensor and the processor.
With reference to the first aspect, in a second implementation of the first aspect, there is a groove in a lower surface of the bottom case, and a shape of the groove may be the same as a shape of the pressure sensor, that is, the pressure sensor may be placed in the groove. A bottom case thickness at a groove position is less than a bottom case thickness at a non-groove position. Optionally, there may be a through-hole in the groove, and a signal connection line of the pressure sensor passes through the through-hole and is electrically connected to a connection point of the circuit board, so as to implement communication between the pressure sensor and the processor. Optionally, when the pressure sensor is placed in the groove, a plane on which the pressure sensor is located may be slightly higher than the lower surface of the bottom case, that is, a part of the pressure sensor may protrude from the groove. This reduces an overall thickness of the smartwatch and also ensures detection sensitivity.
With reference to the first aspect, in a third implementation of the first aspect, there is a hole in the bottom case, and a shape of the hole may be the same as a shape of the pressure sensor, that is, the pressure sensor may be placed in the hole. Optionally, a signal connection line of the pressure sensor may directly pass through the hole and be electrically connected to a connection point of the circuit board, so as to implement communication between the pressure sensor and the processor. Optionally, diameters of the hole on both surfaces of the bottom case may be different. A diameter on an upper surface may be slightly smaller than a diameter on a lower surface, so that the pressure sensor is better secured. Optionally, when the pressure sensor is placed in the hole, a plane on which the pressure sensor is located may be slightly higher than the lower surface of the bottom case, that is, a part of the pressure sensor may protrude from a groove. This reduces an overall thickness of the smartwatch and also ensures detection sensitivity.
In all of the foregoing implementations, the pressure sensor may be covered with a protective cover for protection and decoration. The protective cover may be insulative.
According to the foregoing solutions, difficulty in implementing pressure sensing is reduced, and practical and diverse pressure sensing functions and man-machine interaction modes are provided for a user.
The technical solutions according to the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings.
Referring to
Referring to
A signal connection line 251 of the pressure sensor 25 may be an FPC board (Flexible Printed Circuit board). Specifically, a BTB (Board to Board) connector or a spring clip may be connected to the connection point 231 of the circuit board 23, so as to implement communication between the pressure sensor 25 and a processor. Optionally, the pressure sensor 25 may be a pressure-sensitive film, and is attached to the bottom case 24, so as to further reduce an overall thickness of a watch body. Specifically, the attachment may be implemented by using viscose glue, a buckle, a screw, or the like.
Referring to
Referring to
Referring to
Referring to
The smartwatch in the embodiments of the present invention may detect position coordinates and a pressure value of a touch operation of a user. The touch operation may be performed by touching a touchscreen by using an appropriate part or object such as a finger or a stylus. The touchscreen includes a touch-sensitive surface (touch-sensitive surface) and a display (display). The touch-sensitive surface is used to perform various operations related to detection of contact, such as determining whether contact has occurred (for example, detecting a finger press event), determining whether there is a contact movement and tracking the movement on the entire touch-sensitive surface (for example, detecting a drag event by one or more fingers), and determining whether the contact has been terminated (for example, detecting a finger lift event or a contact interruption). Determining a movement of a contact point may include determining a speed (a value), a velocity (a value and a direction), and/or an acceleration (a change of a value and/or a direction) of the contact point. The movement of the contact point is indicated by a series of contact data. These operations can be applied to a single-point touch (such as touch by one finger) and a simultaneous multi-point touch (such as a multi-point touch/touch by multiple fingers). The display displays a visual output to a user. The visual output includes a text, a graphic, an icon, a video, and any combination thereof.
Referring to
When a user performs a touch operation on the touchscreen, the touchscreen can detect position coordinate information (x,y) of the touch operation, and the pressure sensor can detect a pressure value z of the touch operation. The position coordinate information and the pressure value may be sent to a processor. The processor processes the received position coordinate information and pressure value to obtain a position and a pressure of the touch operation. With reference to parameters such as a touch time, a moving speed of touch, and a moving acceleration of touch as well as UI design and an upper-layer application, practical and diverse pressure sensing functions and man-machine interaction modes are provided for users, and more functions are developed in limited watch face space to enhance user experience.
The foregoing descriptions are merely some specific implementations of the present invention, but are not intended to limit the protection scope of the present invention. Any equivalent change or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present invention shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/079288 | 4/14/2016 | WO | 00 |