The present invention relates to methods and apparatus for orthodontics. More particularly, the present invention relates to methods and apparatus for orthodontic treatment planning of malocclusions and optimizing the corresponding smile of the patient with respect to the planned treatment.
Orthodontics is a specialty of dentistry that is concerned with the study and treatment of malocclusions which can result from tooth irregularities, disproportionate facial skeleton relationships, or both. Orthodontics treats malocclusion through the displacement of teeth via bony remodeling and control and modification of facial growth.
This process has been accomplished by using a number of different approaches such as the application of static mechanical forces to induce bone remodeling, thereby enabling teeth to move. Devices such as braces having an archwire interface with brackets are affixed to each tooth. As the teeth respond to the pressure applied via the archwire by shifting their positions, the wires are again tightened to apply additional pressure. This widely accepted approach to treating malocclusions takes about twenty-four months on average to complete, and is used to treat a number of different classifications of clinical malocclusion. Other treatments can also include the use of aligners which are positioned upon the teeth to effect the movement of one or more teeth.
However, corrections which are performed may result in a final arrangement of teeth which are straightened but which may or may not produce a corresponding smile which is aesthetically pleasing to the patient. This may be due to a number of factors such as a shifting of the facial features due to the teeth correction. Simply presenting a projected image of the corrected teeth positioning to the patient may not present the most accurate or aesthetically desirable smile which may correspond to the corrected dentition. Furthermore, other factors relating to the patient's smile may be desirable for alteration to result in an aesthetically pleasing smile. Accordingly, there exists a need for efficiently and effectively performing treatments for moving of one or more teeth and optimizing a corresponding smile for presentation to the patient.
As part of the treatment planning, a three-dimensional (3D) digital scan of the patient's dental arch prior to treatment are typically obtained using any number of scanning methodologies and processes. This 3D scan of the dental arch may be used to generate an image of the patient's smile which results correspondingly from the correction treatment of the teeth positioning. The 3D model may be corrected via software either automatically or manually to adjust for any scale and/or distortion and this corrected 3D model may then be overlaid onto the one or more facial photos. The 3D model may then be manipulated or adjusted in various ways to match a number of various features of the patient's anatomy. The visual image of the smile may be presented to the patient to demonstrate how their corresponding smile would appear after their teeth are corrected for malocclusions.
The image of the face of the patient may be adjusted for positioning using reference lines to allow for the user to reach a natural looking position. These reference lines and areas may be automatically detected upon the facial photo images and/or may be adjusted by the user in order to determine where the teeth of the patient are located upon the facial images.
With the 3D arch model initially overlaid upon the facial photo, the software may be used to highlight the 3D arch model and photo of the patient's teeth for registering the model to the image of the teeth. Various control features may be used upon the graphical user interface to control movement of the 3D arch model relative to the facial image to control fine movements of the model, e.g., linear and angular movement. A calibration process for auto-matching the 3D arch model to the photo image may be implemented in one method by utilizing a number of markers which are generated by the system and placed upon various landmarks of the patient's teeth both upon the 3D arch model and the photo image. Once the registration has been completed, the system may then replace the photo image with the 3D arch model in the facial image of the patient.
Once the registration has been completed so that the arch model is registered to the image of the teeth and the image has been replaced with the arch model, the color of the arch model may not match the actual color the patient's teeth. The user may then select the color from the photo image and apply that color onto the 3D arch model. Additionally and/or alternatively, the color may be further adjusted to be darker or brighter depending upon the desired resulting image. Aside from adjusting the color of the teeth, the color of the gums on the 3D arch model may similarly be adjusted.
With the positioning and registration of the arch model matched to the facial image and with the color of the teeth and gums of the arch model also matched and corrected, the matched 3D arch model may be presented in the facial image and profile image.
Additional parameters of the 3D arch model may be adjusted to alter various features of the model to improve aesthetic features of the patient's smile. One method for adjusting aesthetic features may incorporate the use of a curve or arc which is generated from parameters of the patient's smile to create a “smile arc”. The parameters of the smile arc may be adjusted and the teeth of the patient (as well as other anatomical features) may be manipulated according to the smile arc being used as a guide for adjusting or improving the patient's smile.
The smile arc may be formed to have, e.g., five control points or locations, which may be adjusted and moved to allow for the curvature of the smile arc to be changed. The initial curvature of the smile arc may be obtained from the curvature of, e.g., the patient's lower lip, in order to be used as a guide for having the teeth follow the curvature of the lower lip to enhance the smile. The smile arc can be viewed with or without the frontal image depending upon the preference of the user. The control points may be moved simultaneously together or individually in order to create a symmetrical smile arc or asymmetrical smile arc based on the shape of the lower lip and the user's preferences.
The smile arc may also be adjusted to move upward or downward relative to the patient's lower lip. As the smile arc is translated, the teeth shown in the arch model may be correlated to follow the location of the smile arc, e.g., by having the tips of the teeth (or individual tooth) as well as the FACC lines being used as the indicator for the follow function to allow for the teeth movement. Also, the entire smile arc may be moved upwards and/or downwards while maintaining its curvature unchanged. This may allow for the user to adjust the treatment plan because while the digital tooth movements may appear to be achievable, some or all of the of the teeth may not be movable clinically over the digitally specified long distances; furthermore, the gums may need to be reshaped which the patient may or may not wish to have done. Hence, maintaining a curvature of the smile arc during its adjustment may allow for the smile arc to keep its shape for the smile without having to utilize such aggressive movements.
In some cases where the treatment may utilize the use of brackets rather than aligners to effect the tooth movements, the smile arc may still be used as a guide for following the patient's smile. The 3D arch model may still incorporate the smile arc while preparing the 3D arch model for use with an indirect bonding tray (IDB) for the application of one or more brackets to the teeth.
A plane may be introduced into a 3D arch model which shows a final position of the corrected teeth after a bracket treatment to illustrate where the one or more brackets should be placed upon the teeth. This plane may represent a position of the brackets upon the teeth because as the correction treatment nears completion and the teeth are adjusted to their desired positions, the plane may function as a guide for bracket positioning to remain in an aligned position relative to one another as the bracket wire will become straightened near the end of a correction treatment.
Digitally, a treatment may be planned to bring the fully aligned brackets on to the final stage where the teeth movements are completed. The teeth may then be digitally reverted back to their original pre-treatment positions to enable the user to see where the bracket should be placed at the outset of the treatment to achieve the final position of the teeth and the desired treatment plan.
Once any adjustments of the plane have been completed, rotation of the 3D arch model back to its front view may show the plane aligned in a horizontal orientation. With the plane suitably positioned, models of the brackets may be applied digitally along the plane and upon the teeth such that the wire receiving slot of each bracket is aligned with the plane so as to accommodate the arch wire which also becomes aligned with the plane at the completion of the bracket treatment.
With the brackets superimposed upon the 3D arch model, a distance from the pocket to the gumline and the distance from the pocket to the incisal edge may be measured in order to allow for the user to check and follow the guide for bracket placement. The brackets can also be moved freely when selected.
When the 3D arch model is reverted back to the initial pre-treatment stage, the brackets can be seen in their pre-treatment position for mounting upon the teeth. This may allow for the arch wire to be coupled through the wire receiving slot of each bracket for treatment.
Along with the positioning of the brackets, the smile arc may also adjusted as well as there may be occasions where the bracket cannot be placed clinically at the desired position because of a tooth which is too small or a region of the gums which interfere. The 3D arch model could indicate that bracket is to be placed on the gums if the tooth or gum is not modified. For instance, a tooth may require lengthening with, e.g., a composite resin, or the gum may need to be shaved short to accommodate a bracket. In such a case, the smile arc may be adjusted by moving the arc upwards or downwards while still maintaining the same curvature to achieve the same smile.
In the event that the gums may need clinical adjustment, the gum line may be adjusted on the 3D arch model to mimic what the practitioner can potentially do with respect to, e.g., trimming the gums or applying a patch onto the gums to lengthen it. These results may be reflected in the arch model for presentation to the patient to show the patient what the expected clinical results may look like. In the event that a tooth or several teeth may need clinical adjustment, such as lengthening or reduction, another module may be introduced for adding geometry onto an identified tooth.
In the event that several teeth are to be lengthened, a mold such as an aligner-shaped device may be applied to the teeth. The shape of the mold with respect to the lengthened portions may be fabricated based upon the identified teeth and the shape of the extended teeth.
In addition to lengthening the teeth, another aligner-like device may be used for removing a portion of a tooth or several teeth. The aligner-like device may be fabricated with a portion of the aligner removed corresponding to the region of the tooth to be removed. The exposed portion of the tooth projecting from the aligner opening may be used as a reference guide to the user for removing this excess portion of the tooth.
Aside from the tooth extension or removal, yet another feature of the smile optimization process may include the adjustment of one or more facial features from the facial image. After the course of a correction treatment, the movement of one or more teeth may alter a number of facial features due to the repositioning of the underlying muscles and/or skin. The resulting smile of the patient may accordingly differ as well.
With the movement of the teeth known and the resulting teeth location, the areas likely to be affected are identified and the system may automatically adjust a position of the muscles and/or skin to alter the patient's facial features upon the image. The positions may also be manually adjusted by the user as well. The identified regions may be bounded where the facial regions may be freely moved within the bounds of the identified regions.
In addition to the facial regions, the lips of the patient may be adjusted as well. A number of markers may be applied around each of boundaries to allow for adjustment of the markers by the user. Depending upon the treatment, the upper lips and/or lower lips may be altered.
In yet another feature of the system for optimizing a patient's smile, a “smile score” may be generated for the purpose of providing the user and/or patient some relative scale to provide some indication of how optimized the resulting smile of the patient may appear. Factors such as the patient's smile arc, FACC line, width and height of the teeth, curvature of individual teeth, ABO score, etc., may be input into a smile score engine to automatically calculate the smile score. The user may alter any one of these input parameters to iteratively generate the corresponding smile score and depending upon the results, the user may then implement one or more changes to further increase the corresponding smile score. The changes may then be optionally implemented by the user clinically to achieve an aesthetically pleasing smile.
Yet another feature optionally available through the system may include the generation of an animation of the patient's face. Such an animation can be video based, where the patient may be requested to maintain a natural head position while repeating one or more phrases while recorded. The recorded video may be altered to swap the patient's face with the facial image of the patient with the resulting smile from treatment. The patient may then be able to view the original video and altered video with the replaced arch model for comparison purposes.
While different features are discussed, the system may incorporate any number of different features into a single system in any number of combinations. A single system provided may, for example, include or incorporate every feature described herein or it may include a select number of features depending upon the desired system.
One method for adjusting an image of a smile may generally comprise receiving a three-dimensional (3D) digital model of a dental arch of a patient, receiving a digital facial image of the patient which includes an image of one or more teeth of the patient when smiling, registering the 3D digital model to the one or more teeth of the patient from the digital facial image, correcting the 3D digital model for scale and distortion to create a corrected 3D digital model, and overlaying the corrected 3D digital model onto the digital facial image.
One method of adjusting a smile may generally comprise receiving a three-dimensional (3D) digital model of a dental arch of a patient, receiving a digital facial image of the patient which includes an image of one or more teeth of the patient when smiling, generating a smile curve or arc which corresponds to a curve or arc of a lower lip of the patient from the digital facial image, overlaying the smile curve or arc in proximity to the one or more teeth on the digital facial image, adjusting one or more parameters of the smile curve or arc, and manipulating one or more teeth from the 3D digital model according to the smile curve or arc.
One method of adjusting a facial image may generally comprise receiving a three-dimensional (3D) digital model of a dental arch of a patient, receiving a digital facial image of the patient which includes an image of one or more teeth of the patient when smiling, estimating a facial anatomy from the digital facial image of the patient, identifying one or more areas of the facial anatomy affected by a correction treatment of the one or more teeth, and adjusting the one or more areas of the facial anatomy corresponding to the correction treatment.
One method of improving a smile of a patient may generally comprise receiving a three-dimensional (3D) digital model of a dental arch of a patient, receiving a digital facial image of the patient which includes an image of one or more teeth of the patient when smiling, identifying one or more parameters relating to smile optimization, and generating a smile score based on the one or more parameters.
With treatment planning software, a treatment plan using aligners, brackets, etc. may be used to correct for any number of malocclusions with a patient's teeth. Particular treatment planning processes are described in further detail in U.S. Pat. Nos. 10,624,717; 10,335,250; 10,631,953; 10,357,336; 10,357,342; 10,588,723; 10,548,690, as well as U.S. Pat. Pubs. 2017/0100208; 2019/0321135; 2020/0205936; 2019/0343602; 2020/0170762; 2018/0078343; 2018/0078344; 2018/0078335; 2020/0146775. The details of these references are incorporated herein by reference in their entirety and for any purpose.
As part of the treatment planning, a three-dimensional (3D) digital scan of the patient's dental arch prior to treatment are typically obtained using any number of scanning methodologies and processes. This 3D scan of the dental arch may be used to generate an image of the patient's smile which results correspondingly from the correction treatment of the teeth positioning. As illustrated in
The 3D model may be corrected via the software either automatically or manually to adjust for any scale and/or distortion 16. The corrected 3D model may then be overlaid onto the one or more facial photos 18 and the 3D model may then be manipulated or adjusted in various ways (as described in further detail below) to match a number of various features 20 of the patient's anatomy. The visual image of the smile may be presented to the patient to demonstrate how their corresponding smile would appear after their teeth are corrected for malocclusions.
As further shown in
With the reference lines created upon the facial photo, the 3D arch model 80 may be imported and initially overlaid upon the facial photo, as shown in
Once the registration has been completed, the system may then replace the photo image with the 3D arch model in the facial image of the patient, as shown in
Once the front view of the 3D arch model 96 has been registered to the front view of the facial image, the profile view may also be registered as well, as shown in the profile images 110 of
Once the registration has been completed so that the arch model is registered to the image of the teeth and the image has been replaced with the arch model, the color of the arch model may not match the actual color the patient's teeth.
Aside from adjusting the color of the teeth, the color of the gums on the 3D arch model may similarly be adjusted.
With the positioning and registration of the arch model matched to the facial image and with the color of the teeth and gums of the arch model also matched and corrected, the matched 3D arch model 140 may be presented in the facial image and profile image, as shown in
Additional parameters of the 3D arch model may be adjusted to alter various features of the model to improve aesthetic features of the patient's smile. One method for adjusting aesthetic features may incorporate the use of a curve or arc which is generated from parameters of the patient's smile to create a “smile arc”.
As shown in the image of
In some cases where the treatment may utilize the use of brackets rather than aligners to effect the tooth movements, the smile arc 160 may still be used as a guide for following the patient's smile.
A plane 170 may be introduced into a 3D arch model which shows a final position of the corrected teeth after a bracket treatment to illustrate where the one or more brackets should be placed upon the teeth, as shown in the perspective view of
Digitally, a treatment may be planned to bring the fully aligned brackets on to the final stage where the teeth movements are completed. The teeth may then be digitally reverted back to their original pre-treatment positions to enable the user to see where the bracket should be placed at the outset of the treatment to achieve the final position of the teeth and the desired treatment plan.
As further illustrated, the plane 170 may be adjusted through rotation relative to the 3D arch model, as shown in
With the brackets 180 superimposed upon the 3D arch model, a distance from the pocket to the gumline and the distance from the pocket to the incisal edge may be measured, as indicated in
When the 3D arch model is reverted back to the initial pre-treatment stage, as shown in
Along with the positioning of the brackets, the smile arc 160 may also adjusted as well, as shown in the front view of
With the addition to the brackets to the 3D arch model, the facial images of the patient with the arch model incorporated may be updated to include the brackets 180, as shown in
In the event that the gums may need clinical adjustment, the gum line 190 may be adjusted on the 3D arch model, as shown in
In the event that a tooth or several teeth may need clinical adjustment, such as lengthening or reduction, another module may be introduced for adding geometry onto an identified tooth. As shown in the perspective view of
One example for lengthening a single tooth 220, such as a bicuspid, is illustrated showing how the composite material 222 may be applied upon the tooth 220 to lengthen it. A portion 224 of the added material may be removed, e.g., shaved down, to mimic a natural tooth, as shown in the front view of
In the event that several teeth are to be lengthened, a mold such as an aligner-shaped device may be applied to the teeth.
In addition to lengthening the teeth, another aligner-like device may be used for removing a portion of a tooth or several teeth. The aligner-like device may be fabricated with a portion of the aligner removed corresponding to the region of the tooth to be removed.
Aside from the tooth extension or removal, yet another feature of the smile optimization process may include the adjustment of one or more facial features from the facial image. After the course of a correction treatment, the movement of one or more teeth may alter a number of facial features due to the repositioning of the underlying muscles and/or skin. The resulting smile of the patient may accordingly differ as well.
With the movement of the teeth known and the resulting teeth location, the areas likely to be affected are identified and the system may automatically adjust a position of the muscles and/or skin to alter the patient's facial features upon the image. The positions may also be manually adjusted by the user as well. The identified regions may be bounded, as shown, where the facial regions may be freely moved within the bounds of the identified regions.
In addition to the facial regions, the lips of the patient may be adjusted as well.
In yet another feature of the system for optimizing a patient's smile, a “smile score” may be generated for the purpose of providing the user and/or patient some relative scale to provide some indication of how optimized the resulting smile of the patient may appear.
In one variation, the smile score 294 may be comprised of multiple factors relating to a desirable smile and may be calculated by the following:
Each of the individual factors shown above may be assigned a value of 1 to 5 (e.g., 1, 2, 3, 4, 5) in determining the smile score 294 where a maximum value of 60 total indicates the more aesthetically desirable smile and a lower value indicates a less aesthetically desirable smile. As noted above, one or more of these factors may be altered to iteratively generate the corresponding smile score and depending upon the results, the user may then implement one or more changes to further increase the corresponding smile score. The changes may then be optionally implemented by the user clinically to achieve an aesthetically pleasing smile. Each of the factors are described in further detail below.
One such factor included in the calculation of the smile score 294 is a smile arc factor. As seen in front view of the digital model 320 of the patient's dentition in
For example,
Another factor which may be considered in the smile score calculation is an incisor plane cant (IPC) factor. As disclosed in
Yet another factor which may be considered in the smile score 294 calculation is an occlusal plane cant (OPC) factor. As disclosed in
A max midline factor may also be used to calculate a smile score 294. As disclosed in
A max transverse display (MTD) factor may also be used to calculate a smile score 294. As disclosed in
A cuspid inclination factor may also be used to calculate a smile score 294. As disclosed in
The upright cuspid lines 452, 454 are determined by a process illustrated in
Another factor that may be included in a smile score 294 calculation is a buccal segment inclination (BSI) factor. As shown in
A tooth proportionality factor may also be included in calculating a smile score 294. As disclosed
In using the RED proportion, the ideal portion may be within a targeted range of, for example, between 75-78%. A tooth proportionality of less than 68% or more than 81% may result in an assigned tooth proportionality value of 1. A tooth proportionality of between 68% to 72% or between 78% to 81% may result in an assigned tooth proportionality value of 3, while a tooth proportionality of between 72% and 78% may result in an assigned tooth proportionality value of 5 (as shown in the chart of
A flow factor may also be included in calculating a smile score 294. A number of different templates may be applied upon the teeth of the patient, as shown in
A gingival display (GD) factor may also be included in calculating a smile score 294. As disclosed in
A maxillary central inclination factor may also be included in a smile score 294 calculation. As disclosed in
A COP factor may also be included in a smile score 294 calculation where the COP value is the average line formed by the occlusal surfaces of the teeth, e.g., the visible teeth at least from a profile view of the patient. The COP line 592 may be compared against a true horizontal line 590, as shown in
Yet another feature optionally available through the system may include the generation of an animation of the patient's face. Such an animation can be video based, where the patient may be requested to maintain a natural head position while repeating one or more phrases while recorded. The recorded video may be altered to swap the patient's face with the facial image of the patient with the resulting smile from treatment. The patient may then be able to view the original video and altered video with the replaced arch model for comparison purposes.
While different features are discussed, the system may incorporate any number of different features into a single system in any number of combinations. A single system provided may, for example, include or incorporate every feature described herein or it may include a select number of features depending upon the desired system.
The applications of the devices and methods discussed above are not limited to the one described but may include any number of further treatment applications. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application claims the benefit of priority to U.S. Prov. 63/067,769 filed Aug. 19, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3521355 | Pearlman | Jul 1970 | A |
4068379 | Miller et al. | Jan 1978 | A |
4597739 | Rosenberg | Jul 1986 | A |
4889485 | Iida | Dec 1989 | A |
4983334 | Adell | Jan 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5186623 | Breads et al. | Feb 1993 | A |
5259762 | Farrell | Nov 1993 | A |
5506607 | Sanders et al. | Apr 1996 | A |
5691905 | Dehoff et al. | Nov 1997 | A |
5863198 | Doyle | Jan 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
6120287 | Chen | Sep 2000 | A |
6183248 | Chishti et al. | Feb 2001 | B1 |
6210162 | Chishti et al. | Apr 2001 | B1 |
6217325 | Chishti et al. | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6227851 | Chishti et al. | May 2001 | B1 |
6250918 | Sachdeva et al. | Jun 2001 | B1 |
6293790 | Hilliard | Sep 2001 | B1 |
6299440 | Phan et al. | Oct 2001 | B1 |
6309215 | Phan et al. | Oct 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6386878 | Pavlovskaia et al. | May 2002 | B1 |
6390812 | Chishti et al. | May 2002 | B1 |
6394801 | Chishti et al. | May 2002 | B2 |
6398548 | Chishti et al. | Jun 2002 | B1 |
6454565 | Phan et al. | Sep 2002 | B2 |
6463344 | Pavloskaia | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6485298 | Chishti et al. | Nov 2002 | B2 |
6488499 | Miller | Dec 2002 | B1 |
6524101 | Phan et al. | Feb 2003 | B1 |
6554611 | Chishti et al. | Apr 2003 | B2 |
6572372 | Phan et al. | Jun 2003 | B1 |
6582227 | Phan et al. | Jun 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6607382 | Kuo et al. | Aug 2003 | B1 |
6626666 | Chishti et al. | Sep 2003 | B2 |
6629840 | Chishti et al. | Oct 2003 | B2 |
6682346 | Chishti et al. | Jan 2004 | B2 |
6688885 | Sachdeva | Feb 2004 | B1 |
6699037 | Chishti et al. | Mar 2004 | B2 |
6702575 | Hilliard | Mar 2004 | B2 |
6705861 | Chishti et al. | Mar 2004 | B2 |
6705863 | Phan et al. | Mar 2004 | B2 |
6722880 | Chishti et al. | Apr 2004 | B2 |
6729876 | Chishti et al. | May 2004 | B2 |
6761560 | Miller | Jul 2004 | B2 |
6783360 | Chishti | Aug 2004 | B2 |
6786721 | Chishti et al. | Sep 2004 | B2 |
6802713 | Chishti et al. | Oct 2004 | B1 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6846179 | Chapouland et al. | Jan 2005 | B2 |
6857429 | Eubank | Feb 2005 | B2 |
6886566 | Eubank | May 2005 | B2 |
6964564 | Phan et al. | Nov 2005 | B2 |
7011517 | Nicozisis | Mar 2006 | B2 |
7029275 | Rubbert et al. | Apr 2006 | B2 |
7037108 | Chishti et al. | May 2006 | B2 |
7040896 | Pavlovskaia et al. | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7059850 | Phan et al. | Jun 2006 | B1 |
7063533 | Phan et al. | Jun 2006 | B2 |
7074038 | Miller | Jul 2006 | B1 |
7077647 | Choi et al. | Jul 2006 | B2 |
7092784 | Simkins | Aug 2006 | B1 |
7104790 | Cronauer | Sep 2006 | B2 |
7121825 | Chishti et al. | Oct 2006 | B2 |
7125248 | Phan et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7160110 | Imgrund et al. | Jan 2007 | B2 |
7172417 | Sporbert et al. | Feb 2007 | B2 |
7192275 | Miller | Mar 2007 | B2 |
7220122 | Chishti | May 2007 | B2 |
7320592 | Chishti et al. | Jan 2008 | B2 |
7326051 | Miller | Feb 2008 | B2 |
7331783 | Chishti et al. | Feb 2008 | B2 |
7347688 | Kopelman et al. | Mar 2008 | B2 |
7416407 | Cronauer | Aug 2008 | B2 |
7434582 | Eubank | Oct 2008 | B2 |
7435083 | Chishti et al. | Oct 2008 | B2 |
7442041 | Imgrund et al. | Oct 2008 | B2 |
7458812 | Sporbert et al. | Dec 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7481121 | Cao | Jan 2009 | B1 |
7553157 | Abolfathi et al. | Jun 2009 | B2 |
7559328 | Eubank | Jul 2009 | B2 |
7578673 | Wen et al. | Aug 2009 | B2 |
7590462 | Rubbert et al. | Sep 2009 | B2 |
7637262 | Bailey | Dec 2009 | B2 |
7641828 | Desimone et al. | Jan 2010 | B2 |
7658610 | Knopp | Feb 2010 | B2 |
7689398 | Cheng et al. | Mar 2010 | B2 |
7717708 | Sachdeva et al. | May 2010 | B2 |
7771195 | Knopp et al. | Aug 2010 | B2 |
7802987 | Phan et al. | Sep 2010 | B1 |
7824180 | Abolfathi et al. | Nov 2010 | B2 |
7826646 | Pavlovskaia et al. | Nov 2010 | B2 |
7840247 | Liew et al. | Nov 2010 | B2 |
7841858 | Knopp et al. | Nov 2010 | B2 |
7845938 | Kim et al. | Dec 2010 | B2 |
7854609 | Chen et al. | Dec 2010 | B2 |
7878801 | Abolfathi et al. | Feb 2011 | B2 |
7878804 | Korytov et al. | Feb 2011 | B2 |
7878805 | Moss et al. | Feb 2011 | B2 |
7883334 | Li et al. | Feb 2011 | B2 |
7901207 | Knopp et al. | Mar 2011 | B2 |
7905724 | Kuo et al. | Mar 2011 | B2 |
7914283 | Kuo | Mar 2011 | B2 |
7942672 | Kuo | May 2011 | B2 |
7943079 | Desimone et al. | May 2011 | B2 |
7957824 | Boronvinskih et al. | Jun 2011 | B2 |
7987099 | Kuo et al. | Jul 2011 | B2 |
8001972 | Eubank | Aug 2011 | B2 |
8002543 | Kang et al. | Aug 2011 | B2 |
8021147 | Sporbert et al. | Sep 2011 | B2 |
8033282 | Eubank | Oct 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8070487 | Chishti et al. | Dec 2011 | B2 |
8075306 | Kitching et al. | Dec 2011 | B2 |
8099268 | Kitching et al. | Jan 2012 | B2 |
8099305 | Kuo et al. | Jan 2012 | B2 |
8105080 | Chishti et al. | Jan 2012 | B2 |
8123519 | Schultz | Feb 2012 | B2 |
8152518 | Kuo | Apr 2012 | B2 |
8152523 | Sporbert et al. | Apr 2012 | B2 |
8177551 | Sachdeva et al. | May 2012 | B2 |
8235713 | Phan et al. | Aug 2012 | B2 |
8272866 | Chun et al. | Sep 2012 | B2 |
8275180 | Kuo et al. | Sep 2012 | B2 |
8292617 | Brandt et al. | Oct 2012 | B2 |
8303302 | Teasdale | Nov 2012 | B2 |
8348665 | Kuo | Jan 2013 | B2 |
8356993 | Marston | Jan 2013 | B1 |
8401686 | Moss et al. | Mar 2013 | B2 |
8401826 | Cheng et al. | Mar 2013 | B2 |
8439672 | Matov et al. | May 2013 | B2 |
8439673 | Korytov et al. | May 2013 | B2 |
8444412 | Baughman et al. | May 2013 | B2 |
8465280 | Sachdeva et al. | Jun 2013 | B2 |
8469705 | Sachdeva et al. | Jun 2013 | B2 |
8469706 | Kuo | Jun 2013 | B2 |
8496474 | Chishti et al. | Jul 2013 | B2 |
8512037 | Andreiko | Aug 2013 | B2 |
8517726 | Kakavand et al. | Aug 2013 | B2 |
8535580 | Puttler et al. | Sep 2013 | B2 |
8562337 | Kuo et al. | Oct 2013 | B2 |
8562338 | Kitching et al. | Oct 2013 | B2 |
8562340 | Chishti et al. | Oct 2013 | B2 |
8636509 | Miller | Jan 2014 | B2 |
8636510 | Kitching et al. | Jan 2014 | B2 |
8690568 | Chapoulaud et al. | Apr 2014 | B2 |
8708697 | Li et al. | Apr 2014 | B2 |
8734149 | Phan et al. | May 2014 | B2 |
8734150 | Chishti et al. | May 2014 | B2 |
8738165 | Cinader, Jr. et al. | May 2014 | B2 |
8765031 | Li et al. | Jul 2014 | B2 |
8777611 | Cios | Jul 2014 | B2 |
8780106 | Chishti et al. | Jul 2014 | B2 |
8807999 | Kuo et al. | Aug 2014 | B2 |
8858226 | Phan et al. | Oct 2014 | B2 |
8864493 | Leslie-Martin et al. | Oct 2014 | B2 |
8899976 | Chen et al. | Dec 2014 | B2 |
8899978 | Kitching et al. | Dec 2014 | B2 |
8930219 | Trosien et al. | Jan 2015 | B2 |
8936464 | Kopelman | Jan 2015 | B2 |
8998608 | Trosien et al. | Jan 2015 | B2 |
8944812 | Kuo et al. | Feb 2015 | B2 |
8961173 | Miller | Feb 2015 | B2 |
8986003 | Valoir | Mar 2015 | B2 |
8992215 | Chapoulaud et al. | Mar 2015 | B2 |
9004915 | Moss et al. | Apr 2015 | B2 |
9022781 | Kuo et al. | May 2015 | B2 |
9026238 | Kraemer et al. | May 2015 | B2 |
9060829 | Sterental et al. | Jun 2015 | B2 |
9107722 | Matov et al. | Aug 2015 | B2 |
9119691 | Namiranian et al. | Sep 2015 | B2 |
9119696 | Giordano et al. | Sep 2015 | B2 |
9161823 | Morton et al. | Oct 2015 | B2 |
9161824 | Chishti et al. | Oct 2015 | B2 |
9204942 | Phan et al. | Dec 2015 | B2 |
9211166 | Kuo et al. | Dec 2015 | B2 |
9241774 | Li et al. | Jan 2016 | B2 |
9301814 | Kaza et al. | Apr 2016 | B2 |
9320575 | Chishti et al. | Apr 2016 | B2 |
9326830 | Kitching et al. | May 2016 | B2 |
9326831 | Cheang | May 2016 | B2 |
9333052 | Miller | May 2016 | B2 |
9345557 | Anderson et al. | May 2016 | B2 |
9351809 | Phan et al. | May 2016 | B2 |
9364297 | Kitching et al. | Jun 2016 | B2 |
9375300 | Matov et al. | Jun 2016 | B2 |
9414897 | Wu et al. | Aug 2016 | B2 |
9433476 | Khardekar et al. | Sep 2016 | B2 |
9492245 | Sherwood et al. | Nov 2016 | B2 |
9820829 | Kuo | Nov 2017 | B2 |
9844420 | Cheang | Dec 2017 | B2 |
9917868 | Ahmed | Mar 2018 | B2 |
9922170 | Trosien et al. | Mar 2018 | B2 |
10011050 | Kitching et al. | Jul 2018 | B2 |
10022204 | Cheang | Jul 2018 | B2 |
10335250 | Wen | Jul 2019 | B2 |
10357336 | Wen | Jul 2019 | B2 |
10357342 | Wen | Jul 2019 | B2 |
10548690 | Wen | Feb 2020 | B2 |
10588723 | Falkel | Mar 2020 | B2 |
10624717 | Wen | Apr 2020 | B2 |
10631953 | Wen | Apr 2020 | B2 |
10881486 | Wen | Jan 2021 | B2 |
10925698 | Falkel | Feb 2021 | B2 |
10952821 | Falkel | Mar 2021 | B2 |
11051913 | Wen | Jul 2021 | B2 |
11096763 | Akopov | Aug 2021 | B2 |
11207161 | Brant | Dec 2021 | B2 |
11348257 | Lang | May 2022 | B2 |
11364098 | Falkel | Jun 2022 | B2 |
11553989 | Wen et al. | Jan 2023 | B2 |
11583365 | Wen | Feb 2023 | B2 |
11638628 | Wen | May 2023 | B2 |
11663383 | Cao | May 2023 | B2 |
11707180 | Falkel | Jul 2023 | B2 |
11771524 | Wen | Oct 2023 | B2 |
11833006 | Wen | Dec 2023 | B2 |
12064315 | Schueller et al. | Aug 2024 | B2 |
20010002310 | Chishti et al. | May 2001 | A1 |
20020009686 | Loc et al. | Jan 2002 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020025503 | Chapoulaud et al. | Feb 2002 | A1 |
20020042038 | Miller et al. | Apr 2002 | A1 |
20020051951 | Chishti et al. | May 2002 | A1 |
20020072027 | Chisti | Jun 2002 | A1 |
20020094503 | Chishti et al. | Jul 2002 | A1 |
20020110776 | Abels et al. | Aug 2002 | A1 |
20020150859 | Imgrund et al. | Nov 2002 | A1 |
20020177108 | Pavlovskaia et al. | Nov 2002 | A1 |
20030003416 | Chishti et al. | Jan 2003 | A1 |
20030008259 | Kuo et al. | Jan 2003 | A1 |
20030039940 | Miller | Feb 2003 | A1 |
20030059736 | Lai et al. | Mar 2003 | A1 |
20030190576 | Phan et al. | Oct 2003 | A1 |
20030207224 | Lotte | Nov 2003 | A1 |
20040023188 | Pavlovskaia et al. | Feb 2004 | A1 |
20040029068 | Sachdeva et al. | Feb 2004 | A1 |
20040038168 | Choi et al. | Feb 2004 | A1 |
20040134599 | Wang et al. | Jul 2004 | A1 |
20040142299 | Miller | Jul 2004 | A1 |
20040152036 | Abolfathi | Aug 2004 | A1 |
20040166456 | Chishti et al. | Aug 2004 | A1 |
20040166462 | Phan et al. | Aug 2004 | A1 |
20040166463 | Wen et al. | Aug 2004 | A1 |
20040197728 | Abolfathi et al. | Oct 2004 | A1 |
20040202983 | Tricca et al. | Oct 2004 | A1 |
20040219471 | Cleary et al. | Nov 2004 | A1 |
20040229183 | Knopp et al. | Nov 2004 | A1 |
20040242987 | Liew et al. | Dec 2004 | A1 |
20040253562 | Knopp | Dec 2004 | A1 |
20050010450 | Hultgren et al. | Jan 2005 | A1 |
20050019721 | Chishti | Jan 2005 | A1 |
20050048432 | Choi et al. | Mar 2005 | A1 |
20050095552 | Sporbert et al. | May 2005 | A1 |
20050095562 | Sporbert et al. | May 2005 | A1 |
20050118555 | Sporbert et al. | Jun 2005 | A1 |
20050153255 | Sporbert et al. | Jul 2005 | A1 |
20050192835 | Kuo et al. | Sep 2005 | A1 |
20050194022 | Schwartz | Sep 2005 | A1 |
20050238967 | Rogers et al. | Oct 2005 | A1 |
20050241646 | Sotos et al. | Nov 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20050244782 | Chishti et al. | Nov 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20060003283 | Miller et al. | Jan 2006 | A1 |
20060035197 | Hishimoto | Feb 2006 | A1 |
20060068353 | Abolfathi et al. | Mar 2006 | A1 |
20060078840 | Robson | Apr 2006 | A1 |
20060078841 | Desimone et al. | Apr 2006 | A1 |
20060084030 | Phan et al. | Apr 2006 | A1 |
20060093982 | Wen | May 2006 | A1 |
20060099546 | Bergersen | May 2006 | A1 |
20060115785 | Li et al. | Jun 2006 | A1 |
20060147872 | Andreiko | Jul 2006 | A1 |
20060177789 | O'Bryan | Aug 2006 | A1 |
20060188834 | Hilliard | Aug 2006 | A1 |
20060199142 | Liu et al. | Sep 2006 | A1 |
20060223022 | Solomon | Oct 2006 | A1 |
20060223023 | Lai et al. | Oct 2006 | A1 |
20060275731 | Wen et al. | Dec 2006 | A1 |
20060275736 | Wen et al. | Dec 2006 | A1 |
20070003907 | Chishti et al. | Jan 2007 | A1 |
20070238065 | Sherwood et al. | Oct 2007 | A1 |
20070264606 | Muha et al. | Nov 2007 | A1 |
20070283967 | Bailey | Dec 2007 | A1 |
20080032248 | Kuo | Feb 2008 | A1 |
20080044786 | Kalili | Feb 2008 | A1 |
20080050692 | Hilliard | Feb 2008 | A1 |
20080051650 | Massie et al. | Feb 2008 | A1 |
20080057461 | Cheng et al. | Mar 2008 | A1 |
20080057462 | Kitching et al. | Mar 2008 | A1 |
20080076086 | Kitching et al. | Mar 2008 | A1 |
20080085487 | Kuo et al. | Apr 2008 | A1 |
20080113314 | Pierson et al. | May 2008 | A1 |
20080115791 | Heine | May 2008 | A1 |
20080118882 | Su | May 2008 | A1 |
20080141534 | Hilliard | Jun 2008 | A1 |
20080182220 | Chishti et al. | Jul 2008 | A1 |
20080206702 | Hedge et al. | Aug 2008 | A1 |
20080215176 | Borovinskih et al. | Sep 2008 | A1 |
20080233528 | Kim et al. | Sep 2008 | A1 |
20080233530 | Cinader | Sep 2008 | A1 |
20080248438 | Desimone et al. | Oct 2008 | A1 |
20080248443 | Chisti et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080268400 | Moss et al. | Oct 2008 | A1 |
20080280247 | Sachdeva et al. | Nov 2008 | A1 |
20080305451 | Kitching et al. | Dec 2008 | A1 |
20080305453 | Kitching et al. | Dec 2008 | A1 |
20090081604 | Fisher | Mar 2009 | A1 |
20090098502 | Andreiko | Apr 2009 | A1 |
20090117510 | Minium | May 2009 | A1 |
20090191502 | Cao et al. | Jul 2009 | A1 |
20090269714 | Knopp | Oct 2009 | A1 |
20090280450 | Kuo | Nov 2009 | A1 |
20090291407 | Kuo | Nov 2009 | A1 |
20090291408 | Stone-Collonge et al. | Nov 2009 | A1 |
20100036682 | Trosien et al. | Feb 2010 | A1 |
20100055635 | Kakavand | Mar 2010 | A1 |
20100086890 | Kuo | Apr 2010 | A1 |
20100138025 | Morton et al. | Jun 2010 | A1 |
20100167225 | Kuo | Jul 2010 | A1 |
20100173266 | Lu et al. | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100239992 | Brandt et al. | Sep 2010 | A1 |
20100280798 | Pattijn et al. | Nov 2010 | A1 |
20110005527 | Andrew et al. | Jan 2011 | A1 |
20110015591 | Hanson et al. | Jan 2011 | A1 |
20110020761 | Kalili | Jan 2011 | A1 |
20110039223 | Li et al. | Feb 2011 | A1 |
20110091832 | Kim et al. | Apr 2011 | A1 |
20110114100 | Alvarez et al. | May 2011 | A1 |
20110123944 | Knopp et al. | May 2011 | A1 |
20110129786 | Chun et al. | Jun 2011 | A1 |
20110159451 | Kuo et al. | Jun 2011 | A1 |
20110165533 | Li et al. | Jul 2011 | A1 |
20110269092 | Kuo et al. | Nov 2011 | A1 |
20110269097 | Sporbert et al. | Nov 2011 | A1 |
20110270588 | Kuo et al. | Nov 2011 | A1 |
20110281229 | Abolfathi | Nov 2011 | A1 |
20120028221 | Williams | Feb 2012 | A1 |
20120035901 | Kitching et al. | Feb 2012 | A1 |
20120123577 | Chapoulaud et al. | May 2012 | A1 |
20120150494 | Anderson et al. | Jun 2012 | A1 |
20120186589 | Singh | Jul 2012 | A1 |
20120199136 | Urbano | Aug 2012 | A1 |
20120214121 | Greenberg | Aug 2012 | A1 |
20120225399 | Teasdale | Sep 2012 | A1 |
20120225400 | Chishti et al. | Sep 2012 | A1 |
20120225401 | Kitching et al. | Sep 2012 | A1 |
20120227750 | Tucker | Sep 2012 | A1 |
20120244488 | Chishti et al. | Sep 2012 | A1 |
20120270173 | Pumphrey et al. | Oct 2012 | A1 |
20120288818 | Vendittelli | Nov 2012 | A1 |
20130004634 | McCaskey et al. | Jan 2013 | A1 |
20130022255 | Chen et al. | Jan 2013 | A1 |
20130052625 | Wagner | Feb 2013 | A1 |
20130078593 | Andreiko | Mar 2013 | A1 |
20130081271 | Farzin-Nia et al. | Apr 2013 | A1 |
20130085018 | Jensen et al. | Apr 2013 | A1 |
20130095446 | Andreiko et al. | Apr 2013 | A1 |
20130122445 | Marston | May 2013 | A1 |
20130122448 | Kitching | May 2013 | A1 |
20130157213 | Arruda | Jun 2013 | A1 |
20130201450 | Bailey et al. | Aug 2013 | A1 |
20130204583 | Matov et al. | Aug 2013 | A1 |
20130230819 | Arruda | Sep 2013 | A1 |
20130231899 | Khardekar et al. | Sep 2013 | A1 |
20130236848 | Arruda | Sep 2013 | A1 |
20130266906 | Soo | Oct 2013 | A1 |
20130302742 | Li et al. | Nov 2013 | A1 |
20130308846 | Chen et al. | Nov 2013 | A1 |
20130317800 | Wu et al. | Nov 2013 | A1 |
20130323665 | Dinh et al. | Dec 2013 | A1 |
20130325431 | See et al. | Dec 2013 | A1 |
20140023980 | Kitching et al. | Jan 2014 | A1 |
20140072926 | Valoir | Mar 2014 | A1 |
20140073212 | Lee | Mar 2014 | A1 |
20140076332 | Luco | Mar 2014 | A1 |
20140122027 | Andreiko | May 2014 | A1 |
20140124968 | Kim | May 2014 | A1 |
20140167300 | Lee | Jun 2014 | A1 |
20140172375 | Grove | Jun 2014 | A1 |
20140178830 | Widu | Jun 2014 | A1 |
20140193765 | Kitching et al. | Jul 2014 | A1 |
20140193767 | Li et al. | Jul 2014 | A1 |
20140229878 | Wen et al. | Aug 2014 | A1 |
20140242532 | Arruda | Aug 2014 | A1 |
20140255864 | Machata et al. | Sep 2014 | A1 |
20140272757 | Chishti | Sep 2014 | A1 |
20140287376 | Hultgren et al. | Sep 2014 | A1 |
20140288894 | Chishti et al. | Sep 2014 | A1 |
20140315153 | Kitching | Oct 2014 | A1 |
20140315154 | Jung et al. | Oct 2014 | A1 |
20140067335 | Andreiko | Nov 2014 | A1 |
20140329194 | Sachdeva et al. | Nov 2014 | A1 |
20140349242 | Phan et al. | Nov 2014 | A1 |
20140358497 | Kuo et al. | Dec 2014 | A1 |
20140363779 | Kopelman | Dec 2014 | A1 |
20140370452 | Tseng | Dec 2014 | A1 |
20150004553 | Li et al. | Jan 2015 | A1 |
20150004554 | Cao et al. | Jan 2015 | A1 |
20150018956 | Steinmann et al. | Jan 2015 | A1 |
20150025907 | Trosien et al. | Jan 2015 | A1 |
20150044623 | Rundlett | Feb 2015 | A1 |
20150044627 | German | Feb 2015 | A1 |
20150057983 | See et al. | Feb 2015 | A1 |
20150064641 | Gardner | Mar 2015 | A1 |
20150093713 | Chen et al. | Apr 2015 | A1 |
20150093714 | Kopelman | Apr 2015 | A1 |
20150125802 | Tal | May 2015 | A1 |
20150128421 | Mason et al. | May 2015 | A1 |
20150157421 | Martz et al. | Jun 2015 | A1 |
20150182303 | Abraham et al. | Jul 2015 | A1 |
20150182321 | Karazivan et al. | Jul 2015 | A1 |
20150216626 | Ranjbar | Aug 2015 | A1 |
20150216627 | Kopelman | Aug 2015 | A1 |
20150238280 | Wu et al. | Aug 2015 | A1 |
20150238282 | Kuo et al. | Aug 2015 | A1 |
20150238283 | Tanugula et al. | Aug 2015 | A1 |
20150238284 | Wu et al. | Aug 2015 | A1 |
20150245887 | Izugami et al. | Sep 2015 | A1 |
20150254410 | Sterental et al. | Sep 2015 | A1 |
20150265376 | Kopelman | Sep 2015 | A1 |
20150289949 | Moss et al. | Oct 2015 | A1 |
20150289950 | Khan | Oct 2015 | A1 |
20150305830 | Howard et al. | Oct 2015 | A1 |
20150305831 | Cosse | Oct 2015 | A1 |
20150305919 | Stubbs et al. | Oct 2015 | A1 |
20150313687 | Blees et al. | Nov 2015 | A1 |
20150320518 | Namiranian et al. | Nov 2015 | A1 |
20150320532 | Matty et al. | Nov 2015 | A1 |
20150335399 | Caraballo | Nov 2015 | A1 |
20150335404 | Webber et al. | Nov 2015 | A1 |
20150336299 | Tanugula et al. | Nov 2015 | A1 |
20150342464 | Wundrak et al. | Dec 2015 | A1 |
20150351870 | Mah | Dec 2015 | A1 |
20150351871 | Chishti et al. | Dec 2015 | A1 |
20150359609 | Khan | Dec 2015 | A1 |
20150366637 | Kopelman et al. | Dec 2015 | A1 |
20150366638 | Kopelman et al. | Dec 2015 | A1 |
20160000527 | Arruda | Jan 2016 | A1 |
20160008095 | Matov et al. | Jan 2016 | A1 |
20160008097 | Chen et al. | Jan 2016 | A1 |
20160051341 | Webber | Feb 2016 | A1 |
20160051342 | Phan et al. | Feb 2016 | A1 |
20160051348 | Boerjes et al. | Feb 2016 | A1 |
20160067013 | Morton et al. | Mar 2016 | A1 |
20160067014 | Kottemann et al. | Mar 2016 | A1 |
20160074137 | Kuo et al. | Mar 2016 | A1 |
20160074138 | Kitching et al. | Mar 2016 | A1 |
20160095668 | Kuo et al. | Apr 2016 | A1 |
20160095670 | Witte et al. | Apr 2016 | A1 |
20160106521 | Tanugula et al. | Apr 2016 | A1 |
20160120617 | Lee | May 2016 | A1 |
20160120621 | Li et al. | May 2016 | A1 |
20160128803 | Webber et al. | May 2016 | A1 |
20160135924 | Choi et al. | May 2016 | A1 |
20160135925 | Mason et al. | May 2016 | A1 |
20160135926 | Djamchidi | May 2016 | A1 |
20160135927 | Boltunov et al. | May 2016 | A1 |
20160157961 | Lee | Jun 2016 | A1 |
20160166363 | Varsano | Jun 2016 | A1 |
20160175068 | Cai et al. | Jun 2016 | A1 |
20160175069 | Korytov et al. | Jun 2016 | A1 |
20160184129 | Liptak et al. | Jun 2016 | A1 |
20160193014 | Morton et al. | Jul 2016 | A1 |
20160199216 | Cam et al. | Jul 2016 | A1 |
20160203604 | Gupta et al. | Jul 2016 | A1 |
20160206402 | Kitching et al. | Jul 2016 | A1 |
20160220200 | Sanholm et al. | Aug 2016 | A1 |
20160228213 | Tod et al. | Aug 2016 | A1 |
20160256240 | Shivapuja et al. | Sep 2016 | A1 |
20160310235 | Derakhshan et al. | Oct 2016 | A1 |
20160338799 | Wu et al. | Nov 2016 | A1 |
20160367339 | Khardekar et al. | Dec 2016 | A1 |
20170007359 | Kopelman et al. | Jan 2017 | A1 |
20170065373 | Martz et al. | Mar 2017 | A1 |
20170079748 | Andreiko | Mar 2017 | A1 |
20170100207 | Wen | Apr 2017 | A1 |
20170100208 | Wen | Apr 2017 | A1 |
20170100209 | Wen | Apr 2017 | A1 |
20170100210 | Wen | Apr 2017 | A1 |
20170100211 | Wen | Apr 2017 | A1 |
20170100214 | Wen | Apr 2017 | A1 |
20170224444 | Viecilli et al. | Aug 2017 | A1 |
20170231721 | Akeel et al. | Aug 2017 | A1 |
20170325911 | Marshall | Nov 2017 | A1 |
20180014912 | Radmand | Jan 2018 | A1 |
20180028065 | Elbaz et al. | Feb 2018 | A1 |
20180042708 | Caron et al. | Feb 2018 | A1 |
20180055611 | Sun et al. | Mar 2018 | A1 |
20180078335 | Falkel | Mar 2018 | A1 |
20180078343 | Falkel | Mar 2018 | A1 |
20180078344 | Falkel | Mar 2018 | A1 |
20180078347 | Falkel | Mar 2018 | A1 |
20180092714 | Kitching et al. | Apr 2018 | A1 |
20180092715 | Kitching et al. | Apr 2018 | A1 |
20180125610 | Carrier, Jr. | May 2018 | A1 |
20180158544 | Trosien et al. | Jun 2018 | A1 |
20180161126 | Marshall et al. | Jun 2018 | A1 |
20180168781 | Kopelman et al. | Jun 2018 | A1 |
20180174367 | Marom | Jun 2018 | A1 |
20180333226 | Tsai et al. | Nov 2018 | A1 |
20180344431 | Kuo et al. | Dec 2018 | A1 |
20190008612 | Kitching et al. | Jan 2019 | A1 |
20190046297 | Kopelman et al. | Feb 2019 | A1 |
20190090987 | Hung | Mar 2019 | A1 |
20190155789 | Dorman | May 2019 | A1 |
20190231478 | Kopelman | Aug 2019 | A1 |
20190321135 | Wen | Oct 2019 | A1 |
20190343602 | Wen | Nov 2019 | A1 |
20190350680 | Chekh | Nov 2019 | A1 |
20190358002 | Falkel | Nov 2019 | A1 |
20190388189 | Shivapuja et al. | Dec 2019 | A1 |
20200000552 | Mednikov et al. | Jan 2020 | A1 |
20200047868 | Young et al. | Feb 2020 | A1 |
20200081413 | Georg et al. | Mar 2020 | A1 |
20200105028 | Gao | Apr 2020 | A1 |
20200146775 | Wen | May 2020 | A1 |
20200170762 | Falkel | Jun 2020 | A1 |
20200205936 | Wen | Jul 2020 | A1 |
20200214598 | Li et al. | Jul 2020 | A1 |
20200214801 | Wang et al. | Jul 2020 | A1 |
20200253693 | Wen | Aug 2020 | A1 |
20200316856 | Mojdeh et al. | Oct 2020 | A1 |
20200345459 | Schueller et al. | Nov 2020 | A1 |
20200357186 | Pokotilov et al. | Nov 2020 | A1 |
20200360120 | Inoue et al. | Nov 2020 | A1 |
20200390523 | Sato et al. | Dec 2020 | A1 |
20210106404 | Wen | Apr 2021 | A1 |
20210153981 | Falkel | May 2021 | A1 |
20210186668 | Falkel | Jun 2021 | A1 |
20210244518 | Ryu et al. | Aug 2021 | A1 |
20210282899 | Wen | Sep 2021 | A1 |
20210369417 | Wen et al. | Dec 2021 | A1 |
20210393376 | Wu et al. | Dec 2021 | A1 |
20210393385 | Parkar et al. | Dec 2021 | A1 |
20220265395 | Falkel | Aug 2022 | A1 |
20220266577 | Sharma et al. | Aug 2022 | A1 |
20220323182 | Lee | Oct 2022 | A1 |
20220409338 | Cao | Dec 2022 | A1 |
20230005593 | Raslambekov | Jan 2023 | A1 |
20230053766 | Cao et al. | Feb 2023 | A1 |
20230058890 | Kenworthy | Feb 2023 | A1 |
20230233288 | Wen | Jul 2023 | A1 |
20230240808 | Schueller et al. | Aug 2023 | A1 |
20230320565 | Falkel | Oct 2023 | A1 |
20230380936 | Wen | Nov 2023 | A1 |
20230380938 | Sharma et al. | Nov 2023 | A1 |
20230380939 | Lai et al. | Nov 2023 | A1 |
20230414324 | Wen | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
2557573 | Jul 2012 | CA |
1575782 | Feb 2005 | CN |
1997324 | Jul 2007 | CN |
101427256 | May 2009 | CN |
101636122 | Jan 2010 | CN |
1973291 | Sep 2010 | CN |
102438545 | May 2012 | CN |
101528152 | Dec 2012 | CN |
103932807 | Jul 2014 | CN |
105748163 | Jul 2016 | CN |
106580509 | Apr 2017 | CN |
1474062 | Apr 2011 | EP |
2056734 | Sep 2015 | EP |
2957252 | Dec 2015 | EP |
40004866 | Aug 2022 | HK |
2005-515826 | Jun 2005 | JP |
2006-500999 | Jan 2006 | JP |
2008-532563 | Aug 2008 | JP |
2009-202031 | Sep 2009 | JP |
4323322 | Sep 2009 | JP |
2010-502246 | Jan 2010 | JP |
2010-528748 | Aug 2010 | JP |
4566746 | Oct 2010 | JP |
2012-139540 | Jul 2012 | JP |
5015197 | Aug 2012 | JP |
5015765 | Aug 2012 | JP |
5149898 | Feb 2013 | JP |
2013-081785 | May 2013 | JP |
5291218 | Sep 2013 | JP |
2007-525289 | Sep 2017 | JP |
2019-013463 | Jan 2019 | JP |
2019-529042 | Oct 2019 | JP |
2019-537033 | Dec 2019 | JP |
2004-46323 | Oct 2009 | KR |
10-1450866 | Oct 2014 | KR |
2018-0090481 | Aug 2018 | KR |
WO 2001082192 | Nov 2001 | WO |
WO 2002047571 | Jun 2002 | WO |
WO 2003063721 | Aug 2003 | WO |
WO 2004028391 | Apr 2004 | WO |
WO 2005086058 | Sep 2005 | WO |
WO 2004098379 | Nov 2005 | WO |
WO 2006050452 | May 2006 | WO |
WO 2006096558 | Sep 2006 | WO |
WO 2008026064 | Mar 2008 | WO |
WO 2008102132 | Aug 2008 | WO |
WO 2008118546 | Oct 2008 | WO |
WO 2008149222 | Dec 2008 | WO |
WO 2009057937 | May 2009 | WO |
WO 2009068892 | Jun 2009 | WO |
WO 2016004415 | Jan 2016 | WO |
WO 2016100577 | Jun 2016 | WO |
WO 2017062207 | Apr 2017 | WO |
WO 2017062208 | Apr 2017 | WO |
WO 2017062209 | Apr 2017 | WO |
WO 2017062210 | Apr 2017 | WO |
WO 2018057622 | Mar 2018 | WO |
WO 2018112273 | Jun 2018 | WO |
WO 2018118200 | Jun 2018 | WO |
WO 2020222905 | Nov 2020 | WO |
WO 2020223384 | Nov 2020 | WO |
WO 2020239429 | Dec 2020 | WO |
WO 2020257724 | Dec 2020 | WO |
WO 2021105878 | Jun 2021 | WO |
WO 2021247145 | Dec 2021 | WO |
WO 2021247950 | Dec 2021 | WO |
WO 2022040671 | Feb 2022 | WO |
WO 2022178514 | Aug 2022 | WO |
WO 2023023417 | Feb 2023 | WO |
WO 2023023418 | Feb 2023 | WO |
WO 2023230460 | Nov 2023 | WO |
Entry |
---|
Kovach, I. V. et al., “Clinic, diagnosis, treatment, prevention, prosthetics various dentofacial anomalies and deformities,” DMA, 2018. |
Number | Date | Country | |
---|---|---|---|
20220054232 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
63067769 | Aug 2020 | US |