The present invention relates to a smoke detector.
German Published Patent Application No. 100 11 411 describes a smoke detector that is implemented utilizing a video camera or infrared camera. This may provide for a light source having a suitable wavelength range that is provided for the image sensor, since the particle size of the smoke particles is detected via the scattering of light on these smoke particles, whereby a corona is formed around the defined light source.
The smoke detector according to the present invention has advantages over the above art in that the image sensor, which is located in the smoke detector, is configured to monitor an area very close to the smoke detector, and the light source is controllable in such a way that the light source is able to be activated when there is insufficient ambient light for the image sensor.
It is particularly advantageous that the smoke detector is configured in such a way that, based on a signal from the image sensor, the smoke detector detects the intensity of the ambient light. In this way it is possible to activate the light source as soon as the ambient light is insufficient based on the analysis of the signal from the image sensor. The analysis of the signal from the image sensor is performed by a processor that possesses the algorithms that are customarily used for image analysis.
Alternatively, it is possible to provide an additional ambient light sensor, a photodiode for example, to measure the intensity of the ambient light. The light source is then activated as a function of this signal.
A further advantage is that the image sensor is configured to observe smoke at a distance of from 5 to 20 cm. These 5 to 20 cm define what is here considered to be a close distance. In this way in particular it is possible to replace the function of a conventional scattered-light smoke detector by the smoke detector of the invention, which likewise only senses the immediate vicinity.
It is also advantageous that the image sensor is disposed in a labyrinth. Here the similarity with a scattered-light smoke detector becomes apparent. Normally, a light source and a photodiode are disposed in the labyrinth in order to detect light scattered by the smoke. In the present invention, an image sensor is used to directly detect the image of the penetrating air or smoke. The light source is then used for the purpose of illumination. The light source may preferably be a light-emitting diode. This is an advantageous embodiment, one that is also possible, for example, as a white light-emitting diode.
For practical and aesthetic reasons the smoke detector may be mounted flush with the surface of a wall or a ceiling. In this way, the detector does not project into the room and therefore does not inhibit movement in the room. In addition, this allows the detector to be installed in an unobtrusive manner in rooms in which a smoke detector should be as inconspicuous as possible.
The image sensor may preferably be embodied as a miniature camera. Such cameras, for example those utilizing CMOS technology, are available at economical prices.
The image sensor may be advantageously mounted in such a way that its field of view may be aimed downward or at an angle to the side from the detector cover. This allows the immediate environment to be observed in an optimal manner. The optical system is set in such a way that the focal point is located about 10 cm below the cover. This is the distance at which smoke is to be expected in the event of a fire and where, because of the proximity to the ceiling, no objects are to be expected. Due to the proximal focal point, the visible background is represented out-of-focus. If smoke is rising from a fire, however, the image that is produced in the vicinity of the image sensor is sharp because of the optical settings. The image of smoke from a fire will differ significantly from the background because of the image sharpness of the brightness distribution, of the movement of the swirls of smoke, and of the of contour formation. Suitable image processing routines may be utilized to discriminate between smoke and background.
In contrast to a scattered-light smoke detector, which measures the intensity of the scattered light coming from a specifically activated light source, in the present invention, the smoke is detected via properties present in the image. Filters or geometric measurement chambers used to block out the effects of surrounding light sources are not required; they are automatically used to make the smoke visible. Therefore, the apparatus is completely independent of extraneous light. Moreover, the extremely high information content provided by an image sensor allows additional information to be derived from the image signal. Insects, spiders, moths present on the surface of the detector cover may be classified on the basis of their image sizes and structures and therefore differentiated from smoke. Objects that come into the more in-focus measurement range of the detector, for example ladders, cabinets, or stacks of boxes, are sharply imaged; they have a markedly different structure from smoke, and they may therefore be blocked out, and an error message concerning the now limited function range is able to be generated. Dust and dirt on the cover plate exhibit significant differences compared with a reference image without dust and dirt, so that a gradual buildup of dust and dirt is able to be detected. If the detector is completely covered or painted over, significant image changes also occur, and may cause an error message to be generated. In order to function properly, the image sensor requires a certain ambient brightness, although because of the control response it is largely independent of the actual brightness. The signal processing system is able to react to an intentional blocking (overriding) of the image sensor, issuing an error message. In the event of total darkness or insufficient light for the image sensor to function properly, for example in the case of operation in basements or at night, a pointedly controlled light source is used with scattered-light smoke detectors. In the event of darkness, this light source is sufficient to illuminate the smoke from a fire, so that the image sensor receives the corresponding image.
Today, the detection of smoke is one of the most reliable methods of detecting fires at an early point in time. Primarily punctiform detectors that function based on the principle of scattered light are used to detect smoke. These detectors utilize a measurement chamber having labyrinthine smoke inlet openings in order to exclude the effect of ambient light when measuring the very small measurement signals. The theoretical structure of a labyrinth as a measurement chamber has the disadvantage that small insects or, on the other hand, dust that has entered the measurement chamber, may appear as deceptive phenomena. In addition, the installation location of the measurement chamber must be a certain distance from the ceiling so that smoke is able to enter the measurement chamber. This results in units that are visibly mounted on the ceiling, something that often is not desirable in environments where aesthetic appearance is important. However, ambient light-type detectors that have an open arrangement of the paths of the light beams and do not use a surrounding measurement chamber are also known. This results in a unit that is able to be integrated into the environment in an unobtrusive manner, thereby meeting requirements for high aesthetic appeal, especially in representative environments. The advantage of installation flush with the ceiling comes at the expense of the now unhindered effect of ambient light due to the elimination of the optical measurement chamber. The effect of light is suppressed by electrical filtering, which differentiates between extraneous light and that which is emitted by the unit itself for measuring the smoke diffusion. However, electronic filtering results in a relatively high electronic complexity, and in order for the filter to be highly efficient, a relatively large amount of energy for a fire detector must be used. In addition, the monitoring of the surface of such a detector to detect the presence of high levels of dust and dirt or to detect being painted over is not possible without additional methods.
Therefore the present invention proposes a smoke detector having an image sensor and a light source that avoids these disadvantages. Based on the development of semiconductors, CMOS image sensors that output digital image information that may be processed by an image processor are available. Both the image sensor and the processor are available in miniaturized form, so that such an arrangement may be disposed in a detector housing without difficulty. Such an image sensor may be used with wide ranges of exposure times, so that it is able to work under widly varying brightness conditions. Certain types of image sensors are known that have in addition to this an extremely high dynamic range of more than 120 dB of the brightness information, and are therefore even able to function in environments that have a high level of contrast.
The main advantages of the invention are therefore
The flowchart in
Depending on fire detection step 409, a message 410 is optionally output. In addition, an update of reference data 401 is performed following fire detection step 409. If, for example, the environment is changed by an object permanently introduced into the focal range, then this object must be taken into account in further observation in order to continue to ensure the basic function of the smoke detector—to detect the presence of smoke.
In
In the event of interference, or if objects that the smoke detector itself senses as being disruptive to its functions are introduced, for example, a large object that causes the smoke detector to be covered so that the focal range can no longer be detected, an error message is generated. This can be communicated directly to a signaling means that is of an optical or acoustic type, or to a control center, so that the appropriate actions can be taken.
Number | Date | Country | Kind |
---|---|---|---|
102 46 056.6 | Oct 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/03062 | 9/15/2003 | WO | 4/20/2006 |