The present invention is related to analyzing fluid flow in a pipe using an ultrasonic flowmeter having a plurality of transducers and a flow element having a completely smooth bore through which the fluid flows. (As used herein, references to the “present invention” or “invention” relate to exemplary embodiments and not necessarily to every embodiment encompassed by the appended claims.) More specifically, the present invention is related to analyzing fluid flow in a pipe using an ultrasonic flowmeter having a plurality of transducers and a flow element having a completely smooth bore through which the fluid flows where the flow element has cavities that receive transducers of the flowmeter, and a liner that covers openings of the cavities in the bore.
This section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present invention. The following discussion is intended to provide information to facilitate a better understanding of the present invention. Accordingly, it should be understood that statements in the following discussion are to be read in this light, and not as admissions of prior art.
Transit-time chordal ultrasonic meters determine volumetric flow by numerically integrating fluid velocities measured on two, four or more chordal paths. In larger meters the results of this numerical integration of measured velocities usually accord closely with the actual volumetric flow—meter factors that account for the difference between theoretical and actual flow rates typically will lie within a few tenths of a percent of 1.000.
In meters having smaller internal diameters with larger transducer cavities the agreement between the theoretical and actual is not as good when Reynolds Numbers are below about 500,000. Deviations approach 1%, and vary with the Reynolds Number.
Experimental data—specifically the response of the chordal velocities to changes in Reynolds Number—show that the cause of this non-linear response of meter factor to changing Reynolds Number has to do with the response of the flow field (the fluid velocity profile) to the geometry of the transducer cavities. That geometry is shown for a typical 4 path meter in
The degree to which this distortion of the flow field occurs depends on Reynolds Number, probably because the attachment (or separation) of the boundary layer in the vicinity of the cavities depends on the relative magnitudes of the local inertial and viscous forces. At any rate, the higher-than-expected chordal velocities require meter factors less than the theoretical (1.000) to correct them, the amount of the correction varying with Reynolds Number.
The nonlinear dependence of meter factor on Reynolds Number presents a calibration problem. If such a meter is applied to the accurate measurement of the flows of products have differing viscosities or if the application covers a wide range of flows, the range of Reynolds number to which that meter will be subjected will be broad and is likely to include the range in which the meter factor is sensitive to the value of the Reynolds Number. Accordingly, the meter must be calibrated in a facility that has the capability to vary Reynolds Number over a wide range so as to establish the Meter Factor-Reynolds Number relationship with precision. Such facilities are rare; only two are known to exist in the United States.
Furthermore, the algorithm for the meter itself must include a provision for a Reynolds Number correction, and must receive an input from which it can determine kinematic viscosity (the other components of Reynolds Number, internal diameter and fluid velocity, are already available in the meter). Fluid viscosity is not easy to measure and is usually inferred from other variables, such as fluid density or sound velocity and temperature. The accuracy with which these variables are measured and the accuracy of the empirical relationship between them and the fluid viscosity affects the accuracy of the Reynolds number determination, and therefore the accuracy of the adjustment to the “raw” meter factor.
The dependence of meter factor, in meters of 10 inch internal diameter and smaller, on Reynolds Number thus leads to increased expense (to perform the special calibrations needed to characterize the meter factor) as well as to reduced accuracy (because of the uncertainties associated with the correction of the meter factor with a Reynolds Number inferred from data in the field).
The present invention pertains to the analysis of flowing fluid through a pipe. The analysis is performed with an ultrasonic flowmeter having transducers that are disposed in cavities of a flow element. The fluid in the pipe flows through the flow element, during which time the flowmeter analyzes the flowing fluid.
In the accompanying drawings, the preferred embodiment of the invention and preferred methods of practicing the invention are illustrated in which:
Referring now to the drawings wherein like reference numerals refer to similar or identical parts throughout the several views, and more specifically to
The present invention pertains to an apparatus 10 for analyzing fluid flow in a pipe 12. The apparatus 10 comprises an ultrasonic flowmeter 14 having a plurality of transducer 16. The apparatus 10 comprises a flow element 18 having a bore 20 with an internal diameter and a surface 24 through which fluid flows, a plurality of cavities 22 each of which has an opening 26 in the surface 24. Each of the cavities 22 has one of the plurality of transducer 16 disposed in its. The apparatus 10 comprises a liner 28 that covers the openings 26 of the cavities 22 which prevents fluid flowing through the bore 20 from entering the cavities 22.
The apparatus 10 can include a keep full system 30 in fluid communication with the cavities 22 that fills the cavities 22 with fluid that also flows through the element 18. The keep full system 30 can include an intake scoop 32 disposed in the pipe 12 upstream from the element 18, and upstream tubing 34 in fluid communication with the intake scoop 32 and the cavities 22 through which flowing fluid in the pipe 12 flows through the cavities 22. The keep full system 30 can also include an outtake scoop 36 disposed in the pipe 12 downstream from the elements 18, and downstream tubing 38 in fluid communication with the outtake scoop 36 and the cavities 22 through which fluid flowing through the cavities 22 is discharged into the pipe 12. The element 18 can have a fluid path 40 extending through the cavities 22 and in fluid communication with the upstream tubing 34 and the downstream tubing 38 through which fluid flows through the cavities 22. There can be intermediate tubing 42 that connects channels 44 through the cavities 22. The flow path can have capped vents with double valve isolation 52.
The liner 28 can include a plurality of strips 46 attached to the element 18. The liner 28 can be acoustically invisible with respect to the transducer 16. The liner in one embodiment is made of steel. The thicknesses of the liner 28 can be between 0.001 inches and 0.010 inches. There can be a strainer 48 disposed upstream of the cavities 22. The strainer 48 can include at least two screens 50.
The present invention pertains to a method for analyzing fluid flow in a pipe 12. The method comprises the steps of flowing fluid through a flow element 18 having a completely smooth bore 20, and a plurality of cavities 22. There is the step of determining the fluid flow with transducer 16 of an ultrasonic flowmeter 14 disposed in the cavities 22.
The flowing step can include the step of flowing fluid though the smooth bore 20 having a liner 28 that covers the openings 26 of the cavities 22 which prevents fluid flowing through the bore 20 from entering the cavities 22. There can be the step of filing the cavities 22 with fluid that also flows through the element 18. The filing step can include the step of flowing fluid from the pipe 12 into an intake scoop 32 disposed in the pipe 12 upstream from the element 18, and through upstream tubing 34 in fluid communication with the intake scoop 32 and the cavities 22 through which flowing fluid in the pipe 12 flows through the cavities 22.
The filing step can include the step of flowing fluid from the cavities 22 through downstream tubing 38 in fluid communication with the cavities 22 and discharging the fluid from the cavities 22 into the pipe 12 through an outtake scoop 36 in communication with the downstream tubing 38. The filing step can also include the step of flowing fluid along a fluid path 40 extending through the cavities 22 and in fluid communication with the upstream tubing 34 and the downstream tubing 38 through which fluid flows through the cavities 22. There can be the step of flowing fluid in the pipe 12 through a strainer 48 disposed upstream of the cavities 22.
In the operation of the invention, the meter factors of conventional chordal transit-time ultrasonic flow meters can vary with Reynolds Number, thereby increasing the uncertainty of their calibrations as well as the complexity of the calibration process. This invention involves a configuration for a transit-time chordal ultrasonic meter that eliminates this dependence of meter factor on Reynolds Number and improves the maintainability of multi-chord ultrasonic flow meters.
Transit-time flow meters determine fluid velocity by clocking the times of pulses traveling diagonally upstream and downstream between pairs of transducer 16. In a conventional chordal flowmeter 14 the transducer 16 is located in cavities 22 which intersect the internal diameter of the flow element 18. The geometry of the intersection between the transducer cavity and the internal diameter of the flow element 18 is complex because the intersection generally occurs at a chord and not on the centerline. (
The configuration of the invention disclosed herein is shown in the photograph of
The cavities 22 behind the foil are filled with the process liquid using a “keep-full” system such as that shown in
In the flowmeter 14 configuration disclosed herein, the ultrasonic energy must travel, for each acoustic path, from a transmitting transducer:
(1) Through the essentially stagnant fluid in the cavity in front of the transmitting transducer,
(a) The liner 28 should be acoustically invisible. That is, it should respond to ultrasound as a compliant diaphragm, the energy transmission unaffected by the properties of the liner 28 material. To meet this requirement, the wavelength of the acoustic energy in the liner 28 should be much longer than the liner 28 thickness.
(b) The algorithm of chordal flow meters assumes that energy entering the fluid from a transmitting transducer reaches a receiving transducer via a straight line connecting the two. Differences in the acoustic properties of the fluid behind the liner 28 and the process fluid will cause refraction, and therefore deflection of the transmitted energy, reducing the amount of transmitted energy traveling the algorithm path. The differences in properties should be limited such that the fraction of the transmitted energy that reaches the receiving transducer is sufficient for reliable signal detection.
(c) One configuration of the disclosed invention employs a “keep-full” system that uses the velocity head of the process fluid to drive that fluid through the cavities 22 behind the liner 28 (The arrangement is shown in
Tests to confirm the efficacy of the disclosed invention employed the configuration shown in
λ=C/f. (C1)
To determine the maximum liner 28 thickness constraint, the minimum wave length is required, hence the lowest propagation velocity and the highest frequency. For the stainless steel liner, the lowest propagation velocity for the ultrasound is that of a shear stress wave at about 125,000 inches/sec (The propagation velocity for a longitudinal stress wave is about 1.8 times greater). The upper end of the frequency of ultrasound used for the measurement of fluid flow is about 2 MHz. Hence the minimum wave length of ultrasound in the stainless steel liner is λ=125,000/2,000,000=0.0625 inches ( 1/16 inch). Acoustic “transparency” requires that the liner be smaller than ¼ of this figure. Several liner 28 thicknesses were tested to determine how much they attenuated the transmitted wave. It was found that liners ranging in thickness from 0.001 inches to 0.010 inches did not significantly attenuate the ultrasound. On the other hand, a liner thickness of ⅛ inch (two wavelengths) was found to produce unacceptably high attenuation. For the flow tests of the invention a thickness of 0.005 inches was chosen—this thickness provided reasonable structural integrity as well as acceptably small attenuation.
The refraction of the acoustic wave at the boundary between cavity and process fluids is determined by the geometry of the intersection and the sound velocities of the cavity fluid and the process fluid. If a keep-full system, such as that of
The geometry of the refraction boundary is complex (Refer again to
Sinθ1/C1=Sin θ2/C2 (C2)
Here C1 and C2 are the sound propagation velocities in the incident medium (the cavity fluid) and the refraction medium (the process fluid) respectively. The difference between the incident angle and the refraction angle, δθC2, owing to a difference between the propagation velocities in the cavity and the process fluid, δθC2, is given by:
δθ2=tan θ1δC2/C1 (C3)
α=λ/d radians (C4)
Here λ is the wavelength of the ultrasound in the process fluid and
d is the diameter of the cavity
A narrow beam width is less tolerant of small changes in refraction angle because a small change in θ2 can direct most of the transmitted energy away from the receiving transducer. For a ½ inch cavity, a typical process fluid sound velocity of 50,000 inches/second and a 2 MHz frequency for the ultrasound, the beam width α is about 3°. A beam deflection of about ½ α will bring about a 30% (3 dB) reduction in the received signal. Using ½ α and the geometry of
What does this limitation mean in terms of meter performance?
It should be noted that a received signal attenuated by more than 3 dB will not necessarily cause the meter to malfunction; the meter accuracy may however be less than its design value for the period when the signal strength is beyond this bound.
For the proof-of-principle tests, the cavities 22 were filled with process fluid using a manual procedure of valves and tubing. The cavity fluid was therefore close to the process fluid both in chemical properties and temperature—probably within 100 or 200 inches/second. Throughout the tests, signal strength remained acceptable.
The liner 28 material should be tough, to resist abrasion, and corrosion resistant, to prevent changes in surface 24 roughness. It should be readily available in sheets having the thicknesses meeting the wave length specifications described above—about 0.005 inches for the stainless steel liner used in the testing. Candidate materials are: 300 series stainless steel, titanium, and Inconel. It should be noted that the dimensional specifications for chordal locations must take account of the liner's effect on the internal diameter of the meter. It should also be noted that no finish machining is required on the internal diameter or the transducer bores 20, since the flow field through the meter does not interact with these surfaces 24.
For production meters the liner 28 would be affixed by tabs to the front flange of the flow element 18 as shown in
The specifications for the design of the keep-full system are discussed above, specifically:
a. The flow rate through the keep-full system should refresh the fluid in the cavities 22 between the transducer housings and the liner 28 quickly enough to limit the difference between the sound velocity of the cavity fluid and the sound velocity of the flowing product under transient conditions. The difference in the cavity and product sound velocities should not be allowed to become large enough to prevent the transmitted ultrasonic beam from “illuminating” the receiving transducer (that is, the refraction of the beam at the cavity/product interfaces must be limited to an acceptable value). This requirement sets a minimum acceptable keep-full flow rate. The most limiting condition to which this requirement applies will normally occur at the minimum product flow rate and the maximum product viscosity both of which will act to reduce keep full flow (by the reducing the driving head and by increasing the resistance of the keep full loop, respectively).
b. The flow through the keep full system 30 is not measured by the chordal ultrasonic meter and hence constitutes an error in its flow measurement. Although the magnitude of the error may be reduced by an estimate of the keep full flow, the bypass flow should nevertheless be limited to ensure that the meter complies with its accuracy specification. This requirement sets a maximum keep full flow rate. The most limiting condition to which this requirement applies will normally occur at the maximum product flow rate and the minimum product viscosity both of which will act to increase keep full flow (by increasing the driving head and by reducing the resistance of the keep full loop, respectively).
Driving head H provided by scoop+discharge
H=(efficiency) {(local velocity head facing upstream)—(local velocity head facing downsteam)
H=η [(+½ V2/g)−(−½ V2/g)]ηV2/g
Here η is the efficiency of the scoop/discharge arrangement and is taken as 0.7, based on experience with Dahl tube flow meters.
V is the product velocity near the wall of the flowmeter 14, taken as ½ of the mean product velocity
g is the gravitational constant
The tubing is stainless steel, selected for its ready availability and corrosion resistance. For the 6 inch meter of the sample case, a ¼ inch tubing diameter (0.21 inch tube ID) was selected. For the lengths and configuration required in this meter size, the resistance of the tubing, in combination with the losses for entrance, exit, and bends led to flow rates meeting the criteria of a and b above, over a wide range of operating conditions.
It should be emphasized that the tubing size and other design specifics must be selected as appropriate for each application; larger meters will generally require larger tubing sizes.
The width of the inlet and discharge scoops is about 4 tube diameters; its height is about 1 tube diameter. These dimensions lead to a relatively small disturbance to the flow field, yet capture a large fraction of the local velocity head. The distance between the intake scoop 32 and the acoustic paths of the ultrasonic meter is such that the disturbance to the axial velocity profile created by the scoop will have disappeared by the time the profile is sensed by the ultrasonic pulses. The flow field distortion created by a small disturbance d protruding radially into the flow stream will generally disappear 10 to 20 d downstream. This requirement is met by the system shown in
Other data for the sample keep full system 30 of
Length of tubing, upstream of upstream cavity feeder: 2½ meter diameters (15 inches) maximum. This tubing is run external to the flow element 18 itself as shown in
Length of 0.21 inch feeder to four (4) upstream transducer cavities 22, 1 meter diameter (6 inches). The dimensions of the “saddle” that contains the four transducer 16 in Caldon's standard petroleum meter body are such that no reinforcement is required for this feeder.
Length of tubing, connecting upstream cavity feeder to feeder to four downstream transducer cavities 22, 3 meter diameters (18 inches). Because of the complex path, this connection is made external to the meter body itself.
Length of 0.21 inch feeder to four (4) downstream transducer cavities 22, 1 meter diameter (6 inches). As with the upstream header, no reinforcement is required.
Length of tubing connecting the discharge of the downstream feeder to the downstream facing discharge of the keep full system 30, 2½ meter diameters (15 inches) maximum. As with the incoming tubing, this tubing is run external to the flow element 18 itself, for the same reasons. Again, no reinforcement is required for the ¼ inch radial penetration to the discharge.
Number of sudden expansions in keep-full circuit: 9.
Number of sudden contractions in keep-full circuit: 9.
Number of 90° bends in keep-full circuit: 11.
The static pressure within the keep-full system designed as described above will, on average, be about equal the static pressure of the product in the flow element 18 and will never be more than ½ of a velocity head above the static pressure of the product. This pressure difference, 1 or 2 psi, is not capable of producing significant distortion of the liner 28 covering the transducer cavities 22.
It should be noted that the disclosed invention may find application where there is little or no dependence of meter factor on Reynolds Number—that is, in meters larger than 10 inches in internal diameter and at Reynolds Numbers above 500,000. Some process fluids, crude oils particularly, contain waxes and other contaminants that can find their way into the transducer cavities 22. These deposits can attenuate and distort the received signals. The use of a liner 28 and a “keep-full” system provides a means for preventing such deposits.
Certain modifications to the “keep-full” system of
Although the invention has been described in detail in the foregoing embodiments for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be described by the following claims.
This is a continuation of U.S. patent application Ser. No. 15/708,970 filed Sep. 19, 2017, which is a continuation of U.S. patent application Ser. No. 14/858,636 filed Sep. 18, 2015, now U.S. Pat. No. 9,772,207, issued Sep. 26, 2017, which is a continuation of U.S. patent application Ser. No. 13/718,825 filed on Dec. 18, 2012, now U.S. Pat. No. 9,140,593 issued Sep. 22, 2015, which is a continuation of U.S. patent application Ser. No. 12/736,373 filed on Oct. 1, 2010, now U.S. Pat. No. 8,438,935, issued May 14, 2013, which is a 371 of international application PCT/US2009/002094 filed Apr. 3, 2009, which claims the benefit of and priority to U.S. provisional application Ser. No. 61/125,015 filed Apr. 22, 2008, all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3906791 | Lynnworth | Sep 1975 | A |
4003252 | Dewath | Jan 1977 | A |
4004461 | Lynnworth | Jan 1977 | A |
4279167 | Erb et al. | Jul 1981 | A |
4425804 | Mount | Jan 1984 | A |
4542564 | Mount | Sep 1985 | A |
4628725 | Gouilloud et al. | Dec 1986 | A |
5437194 | Lynnworth | Aug 1995 | A |
5515733 | Lynnworth | May 1996 | A |
5546813 | Hastings et al. | Aug 1996 | A |
5728951 | Van Cleve et al. | Mar 1998 | A |
6345538 | Krahbichler et al. | Feb 2002 | B1 |
6647806 | Estrada et al. | Nov 2003 | B1 |
6681641 | Baumoel | Jan 2004 | B2 |
6748811 | Iwanaga et al. | Jun 2004 | B1 |
7093502 | Kupnik et al. | Aug 2006 | B2 |
7159472 | Hastings et al. | Jan 2007 | B1 |
7159473 | Bowers | Jan 2007 | B1 |
7634950 | Rhodes | Dec 2009 | B2 |
8438935 | Augenstein et al. | May 2013 | B2 |
9140593 | Augenstein et al. | Sep 2015 | B2 |
9772207 | Augenstein et al. | Sep 2017 | B2 |
20030047007 | Baumoel | Mar 2003 | A1 |
20170314979 | Ye et al. | Nov 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200182668 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61125015 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15708970 | Sep 2017 | US |
Child | 16708094 | US | |
Parent | 14858636 | Sep 2015 | US |
Child | 15708970 | US | |
Parent | 13718825 | Dec 2012 | US |
Child | 14858636 | US | |
Parent | 12736373 | US | |
Child | 13718825 | US |