Embodiments herein relate to apparatuses and methods for dispensing a fluid from a container having a dip tube and spout member.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure. Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in the present disclosure and are not admitted to be prior art by inclusion in this section.
A multitude of applications exist for a container that dispenses a fluid in a smooth and controlled stream. For example, it is often advantageous to pour bleach into a detergent reservoir of a conventional laundry machine without the bleach splashing or creating a mess. A user desiring to manually pour bleach from a container into the reservoir must do so carefully, in a manner that allows air to enter the container to compensate for the vacuum created as the bleach is poured out. If the user pours the bleach too quickly, thereby blocking the container opening, air entering the container as discrete bubbles causes periodic interruptions followed by sudden increases in flow as each bubble passes through the container opening. This creates an undesirable “glugging” effect that may result in missed application, spillage, wasted product, and/or inconvenience to the user. In other solutions, a separate funnel is used to catch uneven fluid flowing out of a container. However, employing a separate and typically small device to aid pouring requires the user to locate and store the device, as well as clean the device before and after use. Accordingly, it would be advantageous to provide an apparatus that conveniently and effectively delivers a steady and controlled stream of fluid without the use of a separate funnelling device.
Embodiments provide an apparatus for dispensing a fluid, the apparatus including a container capable of retaining the fluid and having a top, bottom, front surface, and rear surface; a dip tube integrally formed with the rear surface of the container, the dip tube having a first end extending toward the top and a second end extending toward the bottom; and a spout member mounted to the top of the container, the spout member including a pour spout adjacent the front surface for dispensing the retained fluid and an air vent adjacent the rear surface with a supply line in connection with the first end of the dip tube for directing air into the container.
Another embodiment provides a process for assembling a container for the even dispensing of fluid. In various embodiments, the process may include, not necessarily in the order recited: (1) selecting a container capable of retaining the fluid, the container having a top, bottom, front surface, rear surface, and dip tube, the dip tube extending downwardly adjacent to the rear surface of the container and having a first end opening into the container adjacent the top and a second end opening into the container adjacent the bottom; and (2) mounting a spout member to the container, the spout member having a pour spout adjacent the front surface and an air vent adjacent the rear surface with a supply line in connection with the first end of the dip tube, such that fluid dispensing from the container through the pour spout is replaced by air entering the container through the air vent to prevent accumulation of negative air pressure.
Another embodiment provides a process for pouring from a container filled with fluid and having a pour spout on a front portion, an air vent at a rear portion, and a bottom. In various embodiment, the process includes tilting the container to pour fluid from the container and directing air into the air vent and downwardly into the bottom of the container though a tube extending from the air vent to the bottom of the container.
Subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, proximal/distal, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
Reference is made to the drawings wherein like numerals refer to like parts throughout. For ease of description, the components of embodiments of the present disclosure are described in the normal (upright) operating position, and terms such as upper, lower, horizontal, etc., are used with reference to this position. It will be understood, however, that the components of embodiments of the present disclosure may be manufactured, stored, transported, used, and sold in an orientation other than the position described.
Figures illustrating the components of embodiments of the present disclosure show some conventional mechanical elements that may be known and that may be recognized by one skilled in the art. The detailed descriptions of such elements are not necessary to an understanding of the disclosure, and accordingly are herein presented only to the degree necessary to facilitate an understanding of the novel features of the present disclosure.
As used herein and in the appended claims, the term “comprising” is inclusive or open-ended and does not exclude additional unrecited elements, compositional components, or method steps. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the content clearly dictates otherwise. Similarly, the use of substantially any plural terms herein may be translated by those having skill in the art from the plural to the singular as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
In those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “an apparatus having at least one of A, B, and C” would include, but not be limited to, apparatuses that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which embodiments of the present invention pertain. Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.
The containers as described herein may be constructed from one or more polymers, such as polypropylene or high density polyethylene, and manufactured by any suitable method known in the art for shaping plastics. Examples include, but are not limited to, injection molding, blow molding, thermoforming, extrusion, casting, and compression/transfer molding.
The term “fluid” as used herein refers to any type of fluid or liquid generally found in the home or office, including but not limited to cleaning fluids, such as bleach, laundry detergent, and dishwashing detergent, as well as cooking oil, vinegars, drinking fluids, water, motor oil, wiper fluid, fertilizers, or hazardous material. Really, any fluid whose pouring may otherwise involve splashing or spilling, and where that splashing or spilling would be troublesome because of the value of the fluid being poured, if the fluid came into contact with the user or with adjacent surfaces, if the container from which fluid was to be poured had to reach down into a confined space, if for some reason the fluid had to be poured quickly, or if for whatever reason it was perceived by the user that a smooth pour was somehow beneficial. Cleaning fluids that might be beneficially dispensed from such a container might be composed of one or more cleaning agents (e.g., surfactants, detergents), alkalis, oxidizers, petrochemicals/oleochemicals, emulsifiers, thickeners, enzymes, antimicrobials, fragrances, dyes, preservatives, fillers, and/or stabilizers. Some such materials may be non-hypochlorite such that they may be used for brightening articles during a washing cycle. One such cleaning solution is Clorox 2® bleach. In addition, cleaning fluids may take on any semi-solid form such as but not limited to liquids or gels.
As illustrated in
In various embodiments, a dip tube 130 may be integrally formed with rear surface 120 or extend downwardly adjacent rear surface 120. As best shown in
In various embodiments, a spout member 140 may be mounted to top 114 of container 110, for instance, by a threaded closure, bayonet-type closure, snap fitting, or via any other suitable coupling construction. As shown in
Referring to
As shown in
In various embodiments, apparatus 100 may include a closure member 148 for preventing accidental spills during transport and/or storage. The embodiment illustrated in the figures depicts closure member 148 as a flip cap pivotally coupled to spout member 140. Although the illustrated closure member 148 is a flip cap, one of ordinary skill in the art will appreciate that closure member 148 may take on other configurations, such as but not limited to, a snap cap or twist-off cap, etc. In yet other embodiments, closure member 148 may be removably coupled to one or more of spout member 140 and container 110 and configured for measuring out a desired amount of fluid. In such embodiments, closure member 148 may include one or more fill lines or other indicia (not shown) to facilitate accurate measuring of the fluid.
In various embodiments, an annular member 150 may define supply line 146 and facilitate mounting spout member 140 to container 110. As shown in
During operation and pouring, container 110 retaining a fluid is partially inverted in the direction of front surface 118 and pour spout 142. Retained fluid flows through container 110, along the inner front surface 118, and exits through pour spout 142. As fluid exits container 110 through pour spout 142, air simultaneously flows into air vent 144, through supply tube 146 and dip tube 130, and enters container 110 through second end 134 of dip tube 130. Because fluid is gathered toward the top-front portion of container 110 adjacent pour spout 142 during operation and pouring, the rear-bottom portion of container 110 is fluid-free or substantially fluid-free, thereby allowing air to enter container 110 through second end 134. The simultaneous ingress of air with the simultaneous egress of fluid ensures minimal to no accumulation of negative air pressure in container 110, resulting in a smooth and controlled pour.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3307752 | Anderson | Mar 1967 | A |
4838464 | Briggs | Jun 1989 | A |
5303851 | Libit et al. | Apr 1994 | A |
5638994 | Libit et al. | Jun 1997 | A |
6155462 | Brechelsen et al. | Dec 2000 | A |
6213358 | Libit et al. | Apr 2001 | B1 |
7478739 | Foster | Jan 2009 | B2 |
8038040 | Dennis | Oct 2011 | B2 |
D651907 | Dennis et al. | Jan 2012 | S |
20040238066 | Chrisco et al. | Dec 2004 | A1 |
20050133546 | Carvalho | Jun 2005 | A1 |
20060081662 | Miura | Apr 2006 | A1 |
20080210658 | Jo | Sep 2008 | A1 |
20090120969 | Hughes et al. | May 2009 | A1 |
20090314811 | Dennis | Dec 2009 | A1 |
20100096414 | Dennis | Apr 2010 | A1 |
20110024453 | Fleisher | Feb 2011 | A1 |
20110036927 | Hensen | Feb 2011 | A1 |
20110108447 | Hoefing | May 2011 | A1 |
20110284541 | Webster et al. | Nov 2011 | A1 |
20120032004 | Dejong et al. | Feb 2012 | A1 |
20120234871 | Good | Sep 2012 | A1 |
20140144948 | Brausen | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2002179042 | Jun 2002 | JP |
2002337905 | Nov 2002 | JP |
2010083530 | Apr 2010 | JP |
200200519 | Jan 2002 | WO |
2006095649 | Sep 2006 | WO |
2008024774 | Feb 2008 | WO |
2012035445 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150210447 A1 | Jul 2015 | US |