This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/861,720, filed on Aug. 2, 2013, entitled “Smooth Radius Nozzle for use with a Plasma Cutting device” by Merrill et al., the entirety of which is incorporated herein by reference.
The present invention is in the technical field of plasma cutting devices. More particularly, the present invention is in the technical field of nozzles for use in plasma cutting torches.
Prior art plasma cutting devices, which include plasma torches, have been well-known for many years and are used in cutting and piercing metal work pieces. Plasma cutting devices use an anode and cathode to generate an electrical arc that ionizes a working plasma gas, usually air or oxygen. Several factors are taken into account in determining the quality of a plasma torch's ability to cut a particular metal work piece. Some of these factors include the perpendicularity or cut angle of the plasma jet over the length of the work piece; the condition of the edges of the work niece, rounded edges versus sharp edges; the amount of “dross” or spatter that is created by the cut; and the depth at which the plasma jet can maintain these characteristics. The amount of momentum that a plasma jet is able to develop is determined by the mass flow of the plasma and shielding gases, which is determined by the plasma torch's nozzle configuration. Without sufficient momentum, a plasma jet can lose the ability to penetrate a work piece without leaving dross behind or produce a perpendicular cut with sharp edges.
The nozzle configuration of the plasma torch of
To illustrate this more clearly, a partial cut-away cross sectional 2-D view of nozzle 1 is provided in
These sharp angular inner and outer corners or edges seen in the prior art nozzle configurations cause undesirable turbulence and recirculation zones during the operation of the plasma torch 10. These turbulence and recirculation zones can adversely affect the plasma jet's ability to penetrate a work piece or the plasma jet's ability to produce cuts of adequate quality. In an attempt by some prior art nozzle designs to solve the problem of turbulence and recirculation, a two piece nozzle that has a secondary flow path that removes the plasma gas that would normally contribute to recirculation and or turbulence is used. In the case of the two-piece nozzle seen in FIG. 7 of U.S. Pat. No. 7,605,340, the secondary flow path 372 is placed at the equivalent location of sharp angular inner corner ΦAB in
Accordingly, there is a need in the art for a nozzle configuration that can address the undesirable turbulence and recirculation zones without the added complexities of design and manufacture from the use of a two piece design or a secondary flow path. The present invention is designed to address this need.
A nozzle for use with a plasma arc torch is provided. The nozzle has a nozzle body having a length that extends from a proximal end to a distal end, a central bore disposed within the nozzle body along a central axis having a feed orifice at the proximal end of the nozzle body, and a discharge orifice at the distal end of the nozzle body. The central bore has a series of internal sections that transition with one or more radial intersections between the feed orifice and the discharge orifice. The series of internal sections have a first section beginning at the feed orifice, transitioning to a converging section transitioning at a throat to a diverging section ending at the discharge orifice. The length of the converging section is longer than a length of the diverging section. A Venturi effect is created by the converging and diverging sections of the nozzle.
Figures are not drawn to scale.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, embodiments of the invention shown. The present invention is a plasma torch nozzle having a configuration adapted to address the undesirable turbulence and recirculation zones.
Generally speaking, as illustrated in
The central bore 30 comprises a counter bore section Lc and a series of internal sections L1, L2, L3 that transition with one or more radial intersections between the plasma gas feed orifice 32 and the plasma gas discharge orifice 39 along its length L. The radial intersections generally exhibit geometric continuity between the faces of the internal sections L1, L2, L3 This geometric continuity provides for smooth transitions. The series of successive internal sections comprise a first section L1 beginning at or around the feed orifice 32, transitioning to a converging section L2 wherein the cross-sectional area decreases, transitioning to a diverging section L3 wherein the cross-sectional area increases ending at the plasma gas discharge orifice 39.
The first section L1 is generally shaped as a cylindrical bore adapted to receive an axial electrode (not shown). The converging section L2 and the diverging section L3 may be configured in a variety of bore configurations, geometrically speaking, such that each section forms one or more “solids of revolution.” The “solids of revolution” seen in the prior art are generally defined by combinations of cones and cylinders that have angular intersections. Unlike the prior art configurations, the “solids of revolution” provided for herein can be defined by curves (i.e., continuous smooth functions) other than those that strictly form cylinders or cones, including shapes resulting from curves represented by algebraic functions (e.g., quadratic, rational, root), transcendental functions (exponential, hyperbolic, logarithmic, power, trigonometric), and the like.
Three different embodiments are shown in
Turning now to the distinctions between the embodiments shown in
In a second embodiment shown in
In a third embodiment shown in
In each of these embodiments, except where noted otherwise, the walls forming the sections of the central bore 30 and the transitions between the sections are specifically configured to substantially incorporate smooth transitions and avoid sharp corners or edges. This can be accomplished by including radius edges or by connecting the sections with a radius/arc or similar smooth transition or curve. In computer-aided design, this can be accomplished using the “tangent” or “tangent arc” function to connect a line to an arc, circle, parabola, and other similar intersections. Such a feature is available in CAD programs such as SolidWorks, Applicant or ProEngineer. In this manner, at the intersections, the curves share a common tangent relationship or direction at the join point. Because much of the turbulence occurs after the initiation point, a focus is to at least have the radial or smooth edges for the sections and curves located distal to the initiation point generated at a gap between the nozzle body and an electrode disposed within the central bore of the nozzle body.
In addition to the specifically illustrated shapes of the sections in
Moreover, another advantage of the configuration herein is the combined shape of the converging and diverging sections L2 and L3 being generally similar to that of a de Laval style rocket nozzle where the intersection of the converging section L2 and the diverging section L3 comprises a throat where the cross-sectional area is at a minimum and produces a laminar flow stream when optimally sized and a turbulent or choked flow stream when improperly sized. In a typical de Laval style rocket nozzle the length of the diverging section is longer than the converging section of the nozzle. In contrast, the length of converging section L2 is longer than the length of the diverging section L3 in a nozzle made in accordance with the present invention. The specifically configured converging and diverging sections herein increase the velocity of the plasma jet produced by the nozzle through the use of a Venturi effect, similar to the de Laval nozzle, but without the use of a diverging outlet section that is significantly longer than the converging inlet section. In this manner, the configuration herein improves upon the de Laval style plasma torch nozzles of the prior art.
The following examples illustrate specific embodiments and example dimensions of the invention.
Referring to the embodiment of the present invention illustrated in
Referring now to the embodiment of the present invention illustrated in
Testing has revealed that the exit velocity of nozzle 20 manufactured in accordance with the present invention is preferably kept at or below supersonic to prevent separation of plasma jet, rather Mach number less than or equal to 1. Maintaining an exit velocity between 200 m/s and 343 m/s when compressed air is used as the plasma gas has yielded favorable results, in particular 278 m/s, for nozzle 20 with a throat 34 diameter between 0.001905 m (0.075 in) and 0.00254 m (0.100 in). The pressure and mass flow rate of the plasma gas are accounted for when sizing nozzle 20 in accordance with the invention. Testing has determined that a feed orifice 32 to discharge orifice 39 pressure ratio between 1.40 and 1.15 produces beneficial results. Additional testing with compressed air as the plasma gas has determined that the ratio of exit velocity to throat 34 diameter should be between 1.0287e-5 seconds to 5.998e-6 seconds.
The pressure drop produced by a nozzle 20 manufactured in accordance with the present invention has been found to be within a range of 62.05 kpa (9 psi) and 137.89 kpa (20 psi) depending on the mass flow rate and the geometry of the diverging and converging sections. In one embodiment, the pressure drop was round to be substantially 103.42 kpa (15 psi). The pressure drop in a nozzle 20 designed in accordance with the present invention will be lower than a prior art design that does not nave smoother radial transitions. Additionally, prior art nozzles that have a secondary flow path to reduce turbulence and recirculation zones will inherently have a reduced mass flow rate at the nozzle orifice that translates to a lower exit velocity when compared to a nozzle with a single now path with similar geometries, like the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4300723 | Prasthofer | Nov 1981 | A |
5573682 | Beason, Jr. | Nov 1996 | A |
5591356 | Sakuragi | Jan 1997 | A |
5736708 | Delzenne | Apr 1998 | A |
5747767 | Severance | May 1998 | A |
5977510 | Lindsay | Nov 1999 | A |
6020572 | Marner | Feb 2000 | A |
6268583 | Yamaguchi | Jul 2001 | B1 |
7605340 | Duan | Oct 2009 | B2 |
7608797 | Belashchenko | Oct 2009 | B2 |
7829816 | Duan | Nov 2010 | B2 |
8338740 | Liebold | Dec 2012 | B2 |
20060289398 | Cook | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20160037618 A1 | Feb 2016 | US |