This application claims priority of Taiwanese Application No. 103138058, filed on Nov. 3, 2014.
The disclosure relates to a snap-fit connector, more particularly to a snap-fit connector for interconnecting toy blocks.
Toy blocks can be separably interconnected through various manners. There is a conventional snap-fit connector including female and male components that are respectively connected to two toy blocks, and that can be interengaged separably for interconnecting the toy blocks. However, the toy blocks are respectively held and moved away from each other to directly separate the female and male components. The abovementioned operation may cause fracture of the conventional snap-fit connector.
Therefore, an object of the present disclosure is to provide a snap-fit connector that can overcome the aforesaid drawback associated with the prior art.
Accordingly, a snap-fit connector of the present disclosure includes a female component and a male component. The female component has a main body, a retaining hole and two through bores. The retaining hole is formed in an end surface of the main body, and has a non-circular first hole section that is proximate to the end surface, and a second hole section that is distal from the end surface. The second hole section has a size smaller than that of the first hole section. Each of the through bores is formed in a respective one of two lateral surfaces of the main body that are opposite to each other in a direction transverse to the extending direction of the retaining hole, and communicates spatially with the second hole section of the retaining hole. The male component engages separably the female component, and has a base that is retained complementarily in the first hole section of the retaining hole, and two spaced-apart hooks that extend from the base and that are inserted into the second hole section of the retaining hole via the first hole section. Each of the hooks has a resilient arm that is retained in the second hole section, and a protrusion that protrudes from the resilient arm and away from the other one of the hooks, and that is retained in a respective one of the through bores. The protrusion of each of the hooks has an abutment surface that faces toward the base and that abuts against a corresponding one of two bore-defining-surfaces of the main body that respectively define the through bores for preventing separation of the male component from the female component, an inclined guide surface that faces away from the base for being pushed by the main body when the base is inserted into the retaining hole in the female component, and a positioning recess that is formed in the guide surface and that is accessible via the respective one of the through bores.
Another object of the present disclosure is to provide a snap-fit connector module that can overcome the aforesaid drawback associated with the prior art.
Accordingly, a snap-fit connector module of the present disclosure includes a snap-fit connector and a pincer. The snap-fit connector includes a female component and a male component. The female component has a main body, a retaining hole and two through bores. The retaining hole is formed in an end surface of the main body, and has a non-circular first hole section that is proximate to the end surface, and a second hole section that is distal from the end surface. The second hole section has a size smaller than that of the first hole section. Each of the through bores is formed in a respective one of two lateral surfaces of the main body that are opposite to each other in a direction transverse to the extending direction of the retaining hole, and communicates spatially with the second hole section of the retaining hole. The male component engages separably the female component, and has a base that is retained complementarily in the first hole section of the retaining hole, and two spaced-apart hooks that extend from the base and that are inserted into the second hole section of the retaining hole via the first hole section. Each of the hooks has a resilient arm that is retained in the second hole section, and a protrusion that protrudes from the resilient arm and away from the other one of the hooks, and that is retained in a respective one of the through bores. The protrusion of each of the hooks has an abutment surface that faces toward the base and that abuts against a corresponding one of two bore-defining-surfaces of the main body that respectively define the through bores for preventing separation of the male component from the female component, an inclined guide surface that faces away from the base for being pushed by the main body when the base is inserted into the retaining hole in the female component, and a positioning recess that is formed in the guide surface and that is accessible via the respective one of the through bores. The pincer includes a first lever, a driven member connected movably to the first lever, and a second lever connected pivotally to the first lever and coupled to the driven member. The first lever and the driven member respectively have first and second bulges. The second lever is operable to pivot relative to the first lever to drive movement of the driven member relative to the first lever. To separate the female and male components, the first and second bulges of the pincer are first operated to be positioned respectively on the protrusions of the hooks by the positioning recesses, and then the second lever is pressed to drive movement of the second bulge toward the first bulge, so as to respectively push and remove the protrusions from the through bores.
Other features and advantages of the present disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present disclosure is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
As shown in
The snap-fit connector 2 includes a female component 21 and a male component 22.
The female component 21 has a main body 210, a retaining hole 211 and two through bores 214.
The retaining hole 211 is formed in an end surface 219 of the main body 210, and has a non-circular first hole section 212 that is proximate to the end surface 219, and a second hole section 213 that is distal from the end surface 219. The first hole section 212 is rectangular in this embodiment. The second hole section 213 has a size smaller than that of the first hole section 212.
Each of the through bores 214 is formed in a respective one of two lateral surfaces of the main body 210 that are opposite to each other in a direction transverse to the extending direction of the retaining hole 211, and communicates spatially with the second hole section 213 of the retaining hole 211.
The female component 21 further has two spaced-apart rebutting projections 215 projecting from a hole-defining-surface of the main body 210 that defines the retaining hole 211, and located between the through bores 214.
It is noted that in this embodiment, the female component 21 is connected integrally to a toy block 20 that has a through hole. However, the female component 21 may be connected integrally to any toy component such as a joint assembly, another female component or another male component.
The male component 22 engages separably the female component 21, and has a base 221 that is retained complementarily in the first hole section 212 of the retaining hole 211, and two spaced-apart hooks 222 that extend from the base 221 and that are inserted into the second hole section 213 of the retaining hole 211 via the first hole section 212.
The base 221 abuts against a shoulder surface 218 of the main body 210 of the female component 21 that is formed between the first and second hole sections 212, 213 for preventing the male component 22 from being further inserted into the female component 21.
Each of the hooks 222 has a resilient arm 2221 that is retained in the second hole section 213, and a protrusion 2222 that protrudes from the resilient arm 2221 and away from the other one of the hooks 222, and that is retained in a respective one of the through bores 214.
The protrusion 2222 of each of the hooks 222 has an abutment surface 223 that faces toward the base 221 and that abuts against a corresponding one of two bore-defining-surfaces 216 of the main body 210 of the female component 21 that respectively define the through bores 214 for preventing separation of the male component 22 from the female component 21, an inclined guide surface 224 that faces away from the base 221 for being pushed by the main body 210 when the base 221 is inserted into the retaining hole 211 in the female component 21, and a positioning recess 225 that is formed in the guide surface 224 and that is accessible via the respective one of the through bores 214 (see
It is noted that, like the female component 21, the base 221 of the male component 22 may be connected integrally to any toy component such as a joint assembly, another female component or another male component.
Referring to
Referring further to
The first lever 31 has a first head section 311, an elongate first holding section 312 that extends from the first head section 311, and a first budge 313 that protrudes from an end of the first head section 311 opposite to the first holding section 312. The first head section 311 is formed with an engaging space 315 and two spaced-apart first guide grooves 314 that communicate spatially with the engaging space 315.
The driven member 32 has a second head section 321 that is spaced apart from the first head section 311 and distal from the first holding section 312, an engaging section 322 that extends from the second head section 321 and that engages movably the engaging space 315 of the first lever 31, and a second bulge 324 that protrudes from the second head section 321 toward the first budge 313. The second head section 321 and the engaging section 322 cooperatively define a limiting space 323 for receiving a portion of the female component 21.
The second lever 33 has a first end section 330 that is connected pivotally to the first head section 311 of the first lever 31 through a pivot bolt assembly 35, and that is formed with two spaced apart second guide grooves 331 extending in a direction oblique to that of the first guide grooves 314, and a second end section 332 that is opposite to the first end section 330 and that is proximate to the first holding section 312.
The sliding bolt assembly 34 extends through the first guide grooves 314, the second guide grooves 331 and the engaging section 322 of the driven member 32, and is movable along the first and second guide grooves 314, 331, such that pivot movement of the second lever 33 relative to the first lever 31 drives movement of the driven member 32 relative to the first lever 31 along the first guide grooves 314.
Referring to
The first and second bulges 313, 324 of the pincer 3 are first operated to be respectively inserted into the through bores 214, and to be positioned respectively on the protrusions 2222 of the hooks 222 by the positioning recesses 225. Then, the second lever 33 is pressed to pivot relative to the first lever 31 to drive movement of the second bulge 324 toward the first bulge 314, so as to respectively push and remove the protrusions 2222 from the through bores 214. As a result, the abutment surfaces 223 of the hooks 222 of the male component 22 are respectively separated from the bore-defining-surfaces 216 of the female component 21 to permit separation of the male component 22 from the female component 21.
Referring to
The pincer 3 can be operated in an alternative manner to separate the female and male components 21, 22. That is, the third and fourth bulges 315, 333 are first operated to be respectively inserted into the through bores 214, and to be positioned respectively on the protrusions 2222 of the hooks 222 by the positioning recesses 225. Then, the first and second levers 31, 33 are pivoted toward each other to move the third and fourth bulges 315, 333 toward each other, so as to respectively push and remove the protrusions 2222 from the through bores 214. Similarly, the abutment surfaces 223 of the hooks 222 of the male component 22 are respectively separated from the bore-defining-surfaces 216 of the female component 21 to permit separation of the male component 22 from the female component 21.
Referring to
The toy block 4 has integrally-interconnected first and second sections 40, 41. The first section 40 is formed with a through hole 42 for being mounted with another toy block (not shown). The second section 41 is configured to be the same as the female component 21, and has main body 410, a retaining hole 43, two through bores 433 and two spaced-apart rebutting projections 434.
The joint assembly 5 interconnects the male component 22 and the block 4, and includes a stud 50, an inner casing 53 and an outer casing 54.
The stud 50 includes a rod segment 51 and a ball segment 52. The rod segment 51 extends along a first axis (L1), and has opposite first and second ends 511, 512 that are disposed along the first axis (L1). The second end 512 of the rod segment 51 is connected co-movably to one of the male component 22 and the block 4. In this embodiment, the second end 512 of the rod segment 51 is connected co-movably to the base 221 of the male component 22.
The ball segment 52 of the stud 50 is connected co-movably to the first end 511 of the rod segment 51, and has a plurality of spaced-apart first positioning structures 521 that are arranged about the first axis (L1). In this embodiment, each of the first positioning structures 521 is configured as a groove.
The inner casing 53 is mounted around the stud 50 and rotatable relative to the stud 50 about the first axis (L1), and has a second axis (L2), a casing body 530, two axle portions 531, two second positioning structures 534 and four third positioning structures 535. In this embodiment, the inner casing 53 consists of two casing halves.
The second axis (L2) is perpendicular to the first axis (L1).
The casing body 530 has a main portion that is formed with a through groove 533 extending about the second axis (L2), and two resilient plates 536 that are connected to the main portion and disposed in the through groove 533. In a variation of the embodiment, the casing body 530 may have only one resilient plate 536 connected to the main portion and disposed in the through groove 533.
The axle portions 531 are disposed respectively on two opposite sides of the casing body 530 along the second axis (L2), and extend along the second axis (L2).
The second positioning structures 534 are provided respectively on inner surfaces of the resilient plates 536. Each of the second positioning structures 534 engages removably one of the first positioning structures 521 for positioning the inner casing 53 relative to the stud 50. In this embodiment, each of the second positioning structures 534 is configured as an engaging block.
The third positioning structures 535 are spaced apart from each other and arranged about the second axis (L2). Two of the third positioning structures 535 are provided on an outer surface of one of the resilient plates 536. The other two of the third positioning structures 535 are provided on an outer surface of the other one of the resilient plates 536. In this embodiment, each of the third positioning structures 535 is configured as an engaging block.
The outer casing 54 is mounted around the inner casing 53, and is connected co-movably to the other one of the male component 22 and the block 4. In this embodiment, the outer casing 54 is connected co-movably to one side of the first section 40 of the block 4 opposite to the second section 41, and is connected rotatably to the inner casing 53 via the axle portions 531 such that the outer casing 54 is rotatable relative to the inner casing 53 about the second axis (L2).
The outer casing 54 has a casing body 540 and a plurality of fourth positioning structures 542. The casing body 540 is formed with an arc-shaped through groove 541 centered at the second axis (L2) and extending by 120 degrees. The through groove 541 permits the stud 50 to extend therethrough and to move therewithin, so as to limit the rotation of the outer casing 54 relative to the inner casing 53. It is noted that the through groove 541 may extend by a different angle so as to adjust the limitation of the rotation of the outer casing 54 relative to the inner casing 53.
The fourth positioning structures 542 are provided on an inner surface of the casing body 540, and are arranged about the second axis (L2). Each of the third positioning structures 535 engages removably one of the fourth positioning structures 542 so that the outer casing 54 is positioned relative to the inner casing 53. In this embodiment, each of the fourth positioning structures 542 is configured as a groove.
In this embodiment, the outer casing 54 is co-rotatable with the inner casing 53 relative to the stud 50 about the first axis (L1), and is rotatable relative to the inner casing 53 about the second axis (L2), such that the toy block 4 has two rotational degrees of freedom relative to the male component 22 via the joint assembly 5. Moreover, the toy block 4 can be retained at a specific angle relative to the male component 22 through the engagement between the first and second positioning structures 521, 534 and between the third and fourth positioning structures 535, 542.
Referring further to
Referring to
Three of the second positioning structures 534 are provided on the inner surface of one of the resilient plates 536. The other three of the second positioning structures 534 are provided on the inner surface of the other one of the resilient plates 536. Three of the third positioning structures 535 are provided on the outer surface of one of the resilient plates 536. The other three of the third positioning structures 535 are provided on the outer surface of the other one of the resilient plates 536. It is noted that the numbers of the second and third positioning structures 534, 535 and the number of the through holes 42 of the toy block 4 can be varied in a variation of this embodiment.
Referring to
Referring to
Referring to
Referring to
Referring to
The advantages of this disclosure are as follows:
1. During operation of the separation between the female and male components 21, 22, the first and second bulges 313, 324 of the pincer 3 can be positioned respectively on the protrusions 2222 of the hooks 222 by the positioning recesses 225 to facilitate operation of the pincer 3.
2. During operation of the separation between the female and male components 21, 22, the female component 21 can be retained in the limiting space 323 to be positioned relative to the driven member 32 to aid the alignment among the positioning recesses 225 and the first and second bulges 313, 324.
3. The pincer 3 can operated in the alternative manner to separate the female and male components 21, 22 when the female component 21 cannot be retained in the limiting space 323 due to geometry.
4. Each of the female and male components 21, 22 can be connected integrally to any type of toy block to meet various demands.
5. The outer casing 54 of the joint assembly 5 is co-rotatable with the inner casing 53 relative to the stud 50 about the first axis (L1), and is rotatable relative to the inner casing 53 about the second axis (L2), such that the outer casing 54 has two rotational degrees of freedom relative to the stud 50. Moreover, the abovementioned two rotational movements have the same pivot point, so that the joint assembly 5 is suitable for constructing a human-like skeleton.
6. The outer casing 54 can be retained at a specific angle relative to the stud 50 through the engagement between the first and second positioning structures 521, 534 and between the third and fourth positioning structures 535, 542.
7. By virtue of the variety of this disclosure, a toy assembly consisting of the embodiments of this disclosure can be constructed to simulate more kinds of objects.
8. The female and male components 21, 22 of the snap-fit connector 2 are configured to be interengaged firmly, and would not be separated easily due to accidental impact.
While the present disclosure has been described in connection with what are considered the exemplary embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
103138058 | Nov 2014 | TW | national |