The present invention relates generally to micro-electromechanical devices and, more particularly, to micro-electromechanical thermal actuators such as the type used in ink jet devices and other liquid drop emitters.
Micro-electro mechanical systems (MEMS) are a relatively recent development. Such MEMS are being used as alternatives to conventional electro-mechanical devices as actuators, valves, and positioners. Micro-electromechanical devices are potentially low cost, due to use of microelectronic fabrication techniques. Novel applications are also being discovered due to the small size scale of MEMS devices. Many potential applications of MEMS technology utilize thermal actuation to provide the motion needed in such devices. For example, many actuators, valves and positioners use thermal actuators for movement. In some applications the movement required is pulsed. For example, rapid displacement from a first position to a second, followed by restoration of the actuator to the first position, might be used to generate pressure pulses in a fluid or to advance a mechanism one unit of distance or rotation per actuation pulse. Drop-on-demand liquid drop emitters use discrete pressure pulses to eject discrete amounts of liquid from a nozzle.
Drop-on-demand (DOD) liquid emission devices have been known as ink printing devices in ink jet printing systems for many years. Early devices were based on piezoelectric actuators such as are disclosed by Kyser et al., in U.S. Pat. No. 3,946,398 and Stemme in U.S. Pat. No. 3,747,120. A currently popular form of ink jet printing, thermal ink jet (or “bubble jet”), uses electroresistive heaters to generate vapor bubbles which cause drop emission, as is discussed by Hara et al., in U.S. Pat. No. 4,296,421.
Electroresistive heater actuators have manufacturing cost advantages over piezoelectric actuators because they can be fabricated using well developed microelectronic processes. On the other hand, the thermal ink jet drop ejection mechanism requires the ink to have a vaporizable component, and locally raises ink temperatures well above the boiling point of this component. This temperature exposure places severe limits on the formulation of inks and other liquids that may be reliably emitted by thermal ink jet devices. Piezoelectrically actuated devices do not impose such severe limitations on the liquids that can be jetted because the liquid is mechanically pressurized.
The availability, cost, and technical performance improvements that have been realized by ink jet device suppliers have also engendered interest in the devices for other applications requiring micro-metering of liquids. These new applications include dispensing specialized chemicals for micro-analytic chemistry as disclosed by Pease et al., in U.S. Pat. No. 5,599,695; dispensing coating materials for electronic device manufacturing as disclosed by Naka et al., in U.S. Pat. No. 5,902,648; and for dispensing microdrops for medical inhalation therapy as disclosed by Psaros et al., in U.S. Pat. No. 5,771,882. Devices and methods capable of emitting, on demand, micron-sized drops of a broad range of liquids are needed for highest quality image printing, but also for emerging applications where liquid dispensing requires mono-dispersion of ultra small drops, accurate placement and timing, and minute increments.
A low cost approach to micro drop emission and micro fluid valving is needed which can be used with a broad range of liquid formulations. Apparatus are needed which combine the advantages of microelectronic fabrication used for thermal ink jet with the liquid composition latitude available to piezo-electro-mechanical devices.
A DOD ink jet device which uses a thermo-mechanical actuator was disclosed by Matoba, et al in U.S. Pat. No. 5,684,519. The actuator is configured as a thin beam constructed of a single electroresistive material located in an ink chamber opposite an ink ejection nozzle. The beam buckles due to compressive thermo-mechanical forces when current is passed through the beam. The beam is pre-bent into a shape bowing towards the nozzle during fabrication so that the thermo-mechanical buckling always occurs in the direction of the pre-bending.
R. Tuli in U.S. Pat. No. 6,079,813 discloses an inkjet printhead device which uses a stressed thin film applied over a base substrate. Cavities are etched underneath the film creating a membrane film which has the tendency to bulge outward over cavity areas under the effect of internal compressed forces. The membrane film, and the bottom of the cavity, have electrodes deposited. An electric signal corresponding with input data is applied to two electrodes creating an electric field between electrodes. As a result, the membrane film is attracted and repelled against the fixed cavity bottom, following the electric signal and providing a variation of an adjacent ink chamber's volume ejecting an ink drop. In its displacement, the membrane film snaps, after passing the zone where the force created by the electric field adds to the internal compressed forces of the film, accelerating its displacement from one stable position into another.
A bistable, bilayer membrane actuator is used to open and close microvalves in a pumping device disclosed by Quenzer, et al. in U.S. Pat. No. 6,168,395. The membrane resides in a buckled configuration induced by compressive strains in the two different materials that compose the bilayer. Electrostatic forces are used to attract the membrane causing it to snap from a buckled-out to a buckled-in position, thereby opening and closing a valve. However, the electrostatic forces that can be reliably generated are weak and membrane sticking problems can limit the long term usefulness.
Park, et al., in U.S. Pat. No. 5,905,241 disclose a bilayer thin film microbeam actuator which snaps between stable states of buckle-out and buckle-in in response to mechanical load forces. The switch is used, for example, to trigger an airbag in response to over-threshold acceleration forces in a vehicle crash. The bilayer microbeam resides in a buckled position due to compressive strains introduced in the two materials of the beam during fabrication. In operation, an excessive acceleration of the mounting structure of the beam causes it to snap through to the opposite buckle state, opening or closing an electric switch.
Disclosures of a thermo-mechanical DOD ink jet configuration have been made by K. Silverbrook in U.S. Pat. Nos. 6,067,797; 6,087,638; 6,239,821 and 6,243,113. Methods of manufacturing thermo-mechanical inkjet devices using microelectronic processes have been disclosed by K. Silverbrook in U.S. Pat. Nos. 6,180,427; 6,254,793 and 6,274,056. The thermal actuators disclosed are of a bilayer cantilever type in which a thermal moment is generated between layers having substantially different coefficients of thermal expansion. Upon heating the cantilevered microbeam bends away from the layer having the higher coefficient of thermal expansion, deflecting the free end and causing liquid drop emission.
Thermo-mechanically actuated drop emitters are promising as low cost devices which can be mass produced using microelectronic materials and equipment and which allow operation with liquids that would be unreliable in a thermal ink jet device. Large and reliable force actuations can be realized by thermally cycling bilayer configurations. However, operation of thermal actuator style drop emitters, at high drop repetition frequencies, requires careful attention to the energy needed to cause drop ejection in order to avoid excessive heat build-up. The drop generation event relies on creating a large pressure impulse in the liquid at the nozzle. Configurations and designs that maximize the force impulse may therefore operate more efficiently and may be useable with fluids having higher viscosities and densities.
Binary fluid microvalve applications benefit from rapid transitions from open to closed states, thereby minimizing the time spent at intermediate pressures. A thermo-mechanical actuator with improved force strength and transition movement speed will allow more accurate and predictable microvalving and fluid metering.
Binary microswitch applications also benefit from rapid transitions from open to closed states, thereby minimizing the time spent at indeterminate electrical states. A thermo-mechanical actuator with improved force strength and transition movement speed will allow more accurate and predictable microswitching and electrical circuit control.
A useful design for thermo-mechanical actuators is a beam, or a plate, anchored at opposing edges to the device structure and capable of bowing outward at its center, providing mechanical actuation which is perpendicular to the nominal rest plane of the beam or plate. Such a configuration for the moveable member of a thermal actuator will be termed a deformable element herein and may have a variety of planar shapes and amount of perimeter anchoring. The deformation of the deformable element is caused by initially setting up thermal expansion effects within the plane of the deformable element. Both bulk expansion and contraction of the deformable element material, as well as gradients within the thickness of the deformable element, are useful in the design of thermo-mechanical actuators. Such expansion gradients may be caused by temperature gradients or by actual materials changes, layers, thru the deformable element. These bulk and gradient thermo-mechanical effects may be used together to design an actuator that operates by snap-through buckling maximizing the net magnitude and speed of mechanical actuation, thereby improving the performance of liquid drop emitters, fluid microvalves, and electrical microswitches.
Snap-through thermal actuators, which can be operated at acceptable peak temperatures while delivering large force magnitudes and accelerations, are needed in order to build systems that operate with a variety of fluids at high frequency and can be fabricated using MEMS fabrication methods.
It is therefore an object of the present invention to provide a snap-through thermal actuator which provides large force magnitudes and accelerations and which does not require excessive peak temperatures.
It is also an object of the present invention to provide a liquid drop emitter which is actuated by a snap-through thermal actuator.
It is also an object of the present invention to provide a fluid microvalve which is actuated by a snap-through thermal actuator.
It is also an object of the present invention to provide an electrical microswitch which is actuated by a snap-through thermal actuator.
The foregoing and numerous other features, objects and advantages of the present invention will become readily apparent upon a review of the detailed description, claims and drawings set forth herein. These features, objects and advantages are accomplished by constructing a snap-through thermal actuator for a micro-electromechanical device comprising a base element formed with a depression having opposing anchor edges which define a central plane. A deformable element, attached to the base element by a semi-rigid connection at the opposing anchor edges, is constructed as a planar lamination including a first layer of a first material having a low coefficient of thermal expansion and a second layer of a second material having a high coefficient of thermal expansion. The deformable element is formed to have a residual shape bowing outward from the central plane in a first direction away from the second layer. The snap-through thermal actuator further comprises apparatus adapted to apply a heat pulse to the deformable element which causes a sudden rise in the temperature of the deformable element. The deformable element initially bows farther outward in the first direction, then reverses and snaps through the central plane to bow outward in a second direction toward the second layer, and then relaxes to the residual shape as the temperature decreases.
The present invention is particularly useful as a thermal actuator for liquid drop emitters used as printheads for DOD ink jet printing. In this preferred embodiment the snap-through thermal actuator resides in a liquid-filled chamber that includes a nozzle for ejecting liquid. Application of a heat pulse to the deformable element of the snap-through thermal actuator initially causes additional bowing in the direction of a residual bowing followed by a snap-through buckling in the opposite direction forcing liquid from the nozzle.
The present invention is useful as a thermal actuator for fluid microvalves used as in fluid metering devices or systems needing rapid pressure switching. In this preferred embodiment a snap-through thermal actuator resides in a fluid-filled chamber that includes a fluid flow port. The snap-through actuator acts to close or open the fluid flow port for normally open valve or normally closed valve embodiments of the present inventions. Application of a heat pulse to the deformable element of the snap-through thermal actuator initially causes additional bowing in the direction of a residual bowing followed by a snap-through buckling in the opposite direction causing the opening or closing of the fluid flow port.
The present invention is also useful as a thermal actuator for electrical microswitches used to control electrical circuits requiring rapid switching with a minimum of time spent at indeterminate electrical states. In this preferred embodiment a snap-through thermal actuator activates a control electrode that makes or breaks contact with switch electrodes to open or close an external circuit. Application of a heat pulse to the deformable element of the snap-through thermal actuator initially causes additional bowing in the direction of a residual bowing followed by a snap-through buckling in the opposite direction causing the rapid opening or closing of the microswitch.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
As described in detail herein below, the present invention provides apparatus for a snap-through thermal actuator, a drop-on-demand liquid emission device, and normally closed and normally open microvalves. The most familiar of such devices are used as printheads in ink jet printing systems. Many other applications are emerging which make use of devices similar to ink jet printheads, however which emit liquids other than inks that need to be finely metered and deposited with high spatial precision. The terms inkjet and liquid drop emitter will be used herein interchangeably. The inventions described below provide drop emitters based on thermo-mechanical actuators having improved drop ejection performance for a wide range of fluid properties. The inventions further provide microvalves with improved closing and opening force and speed.
The inventors of the present inventions have discovered that a clamped, deformable element type micro thermal actuator may be designed to exhibit snap-through buckling generated by internal thermo-mechanical forces. Previously known snap-through actuators of the clamped boundary type have needed the application of external transverse forces to cause the snap-through buckling phenomenon to occur. Snap-through bucking is distinguished over normal buckling in that the deformable plate or beam suddenly transitions from a buckled-out state to a buckled-in state, or vice versa. In making this transition, the element is forced through a constricted central plane releasing substantial stored energy of compression. Further, in practicing the present inventions, the snap-through buckling behavior utilized involves a deformable element that has a residual bowing in one direction from a central plane. Upon heating the deformable element first bows farther in the same direction as the residual bowing before reaching a temperature and internal stress conditions that triggers snap-through buckling to the opposite side of the central plane.
The geometry of the snap-through thermal actuator 15 illustrated in
b illustrates the initial behavior of the beam when heated. The beam expands with temperature and, because of the residual shape bowed toward first layer 22 (downward in the FIG. 1), the beam buckles downward. As will be explained below, while initially buckling downward, an internal thermal moment is also acting due to the thermal expansion mismatch between first layer 22 and second layer 24. This thermal moment has force components which twist the anchored ends of the bean upward, towards the layer of larger thermal expansion coefficient. If the anchoring connection is semi-rigid rather than rigid, the thermal moment can reverse the buckling and cause the beam to make a snap-through transition as illustrated in
The beam shape in
The beam will return to the residual shape illustrated as
A more detailed understanding of the physics underlying the snap-through behavior of a deformable element may be approached by analysis of the partial differential equations which govern a beam supported at two anchor points. The co-ordinates and geometrical parameters to be followed herein are illustrated in FIG. 2. The illustrated deformable element, a microbeam, is comprised of first layer 22 having a thickness of h1 and second layer 24 having a thickness of h2. The length of the microbeam between opposing anchor edges 14 is L. The x-axis in
The standard equation for small oscillations of a vibrating beam is
along with which various standard boundary conditions are used. Here, x is the spatial coordinate along the length of the beam, t is time, u(x,t) is the displacement of the beam, ρ is the density of the beam, h is its thickness, E is its Young's modulus, σ is its Poisson ratio. The co-ordinate system has been chosen with the origin in x at the center of the beam and zero deflection, u(x,t)=0 to be the position of a perfectly flat beam, i.e. at the central plane. The deflection at the microbeam center illustrated in
For a multilayer beam the physical constants are all effective parameters, computed as weighted averages of the physical constants of the various layers, j:
αj is the coefficient of thermal expansion of the jth layer and α is the effective coefficient of thermal expansion for the multilayer beam.
Standard Equation 1 is amended to account for several additional physical effects including the compression or expansion of the beam due to heating, residual strains and boundary conditions that account for the moments applied to the beam ends by the attachment connections.
The primary effect of heating the constrained microbeam is a compressive stress. The heated microbeam, were it not constrained, would expand. In constraining the beam against expansion, the attachment connections compress the microbeam between the opposing anchor edges 14. For an undeformed shape of the microbeam, this thermally induced stress may be represented by adding a term of the form:
to Equation 1. In Equation 8 above, α is the mean coefficient of thermal expansion given in Equation 5, and T is the temperature. Such a term would represent a uniformly compressed beam. The compressive stress forces acting on the beam are schematically indicated as Fc in FIG. 2.
However, the microbeam is not compressed uniformly. It is deformed, bowed outward, and the deformation will mitigate the compression. The local expansion of the microbeam is:
The right hand term in Equation 9 is the first term in a Taylor expansion of the full expression on the left side of the equation. The right hand side term will be used herein as an approximation of the local expansion, justified by the very small magnitude of the deformations which are involved. Using the Taylor approximation in Equation 9, the net thermally induced local strain is:
The tensile stresses acting to expand the beam are schematically indicated as the force FT in FIG. 2. The vertical component of the resulting stress is then:
When microbeams are made, the manufacturing process may result in some intrinsic strain in the beam which adds an additional term to the above expression. To further analyze snap-through thermal actuator behavior, the concept of a rest shape, v(x), is introduced to describe a residual bowed shape at t=0 that the beam must have to practice the present inventions. A residual bowed shape may arise from mismatched internal stresses among layers of a beam constructed of multiple layers. Alternatively, a residual bowed shape may be formed by molding the beam over a depression or raised portion of a substrate and have no residual internal strains. Or, a combination of intentional residual strain and substrate molding techniques may be used to achieve a non-zero rest shape, v(x).
The quantity (u-v) is substituted in Equations 1-11 to express the change in shape of the microbeam as a function of time and spatial co-ordinate along the length of the beam. Therefore, the full mathematical model for small oscillations of the beam, including residual strain and a rest shape v(x), is:
Residual fabrication induced strain in the microbeam, if any, is accounted for by the additional term s in Equation 12. The boundary conditions which complete the model are as follows:
Residual stresses may produce moments at the anchor connections and are accounted for by the term r in boundary condition Equation 16. The constant k in Equation 16 is the coefficient of proportionality for the counter moment that the anchoring attachment structure exerts in resisting the thermal moment, −cT(t), and the residual strain moment, r.
The standard analysis of a beam clamped at two ends usually specifies the anchoring connection of the beam to the support to be either rigid or hinged. A rigid or clamped connection holds the beam from moving laterally, along the x-direction in
Alternatively, a hinged or pinned support constrains the beam from moving laterally but allows it to rotate vertically. Mathematically, a hinged connection is characterized by requiring that the second derivative of the beam deflection be zero at the connection point for all times. This condition is equivalent to setting the proportionality constant k in Equation 16 equal to zero, that is, k→0.
The standard physical connections, rigid or hinged, must be generalized in order to understand the snap-through actuation of the present inventions, as is illustrated in FIG. 1. In order for the internal thermo-mechanical mechanisms to pull the deformed element from a pre-biased downward buckling (see
In a semi-rigid connection the anchoring edge material, a material in the joint, a portion of the deformable element, or a combination of such factors, resistingly yields to torque applied at the connection. The semi-rigid connection behaves as if it is a hinge with a stiff spring added to oppose the rotation of the movable part of the hinge. A connection or joint will behave as a semi-rigid connection if the joint resistance to an applied torque has a stiffness that is substantially higher than the stiffness of the beam being connected. If the joint resistance is infinite the connection is rigid, constraining the slope of the beam to be always zero. If the joint resistance is zero then the connection is hinged and the beam may be freely rotated by an applied torque.
For the purpose of the present inventions, the connection of deformable element 20 to opposing anchor edges 14 is preferably semi-rigid with a joint resistance in a stiffness range that sufficiently constrains the deformable element at its connection points against rotation so that, when initially heated, the deformable element bows farther outward in the direction of a residual shape bow. However the joint stiffness must be low enough that the connection allows an internal thermo-mechanical moment to rotate the beam in an opposite direction as the temperature increases to a substantially elevated value, resulting in the snap-through actuation illustrated in FIG. 1.
The present inventions require that an internal thermo-mechanical force be generated which acts against the pre-biased direction of the expansion buckling that occurs as the temperature of the deformed element increases. The required force is accomplished by designing an inhomogeneous structure, typically a planar laminate, comprised of materials having different thermo-mechanical properties, and especially substantially different coefficients of thermal expansion. For the bilayer element illustrated in
The thermal moment acts to bend the structure into an equilibrium shape in which the layer with the larger coefficient of thermal expansion is on the outside of the bend. Therefore, if second layer 24 has a coefficient of thermal expansion significantly larger than that of first layer 22, the thermal moment will act to bend the deformable element 20 upward in
The thermal moment coefficient c of a two-dimensional laminate structure may be found from the materials properties and thickness values of the layers which comprise the laminate:
where yc is given in above Equation 7.
For the purposes of the present invention, the beam will take on various shapes as it is made to cycle through a time-dependent temperature cycle, T(t), designed to cause snap-through motion as illustrated in FIG. 1. To further the analysis, let u(x,0)=f(x) at a thermal equilibrium. That is, let f(x) be the equilibrium, non-time-varying shape of the beam at a given temperature, T. f(x) must be computed as a solution to the equations developed heretofore. It is neither f(x)≡0 nor, necessarily, f(x)≡v(x). If there is no residual fabrication stress, then s=0, r=0, and, in this situation f(x)=v(x) at T=0.
The mathematical analysis is most straightforward for the case where a residual bowing shape is achieved in the microbeam by forming it without residual fabrication stresses. For example, the microbeam may be molded over a depression or a raised area using stress-free fabrication methods. In this case, s is set equal to zero in Equation 12, s=0; and r is set equal to zero in Equation 16, r=0. For this case of no residual strain, Equation 12 is recast in terms of equilibrium shape f(x) at a fixed temperature T, yielding the following differential equation and set of boundary conditions:
Boundary condition Equation 20 accounts for the non-rigid connection structures and for the thermally induced torque which acts at the anchor point, according to the present inventions. The constant k expresses the stiffness of the non-rigid connection. A semi-rigid connection becomes a rigid connection as k→∞ and a hinged connection as k→0. The semi-rigid connection generates a counter moment, TA, to the thermal moment. TTM, which is proportional to the slope of the beam at the connection point. In
The constant k is dependent on the materials properties and design parameters of the opposing anchor edges, the materials properties and geometrical parameters of the deformable element, and any other materials, such as adhesives, that are present at the semi-rigid connection. For some simple designs using materials having accurately known materials parameters, it may be possible to calculate k by solving a complicated boundary-value problem for the full elasticity equations. However, for the purpose of the present inventions the design of the deformable element anchor connection is determined experimentally and the parameter k is treated as a fitting parameter in analyzing the resulting motion of the supported deformable element.
The parameters of the semi-rigid connection may be determined by systematically varying relevant geometrical parameters or material's properties and observing the effectiveness of snap-through actuation. The stiffness of the semi-rigid connection is preferably sufficient to constrain the deformable element so that there is substantial initial buckling in the direction of the residual bowed shape, i.e. downward in
A mean-field approximation may be employed to the non-linear terms in Equation 18 in order to obtain analytic results. Alternatively, numerical computational methods may be used to solve Equation 18 without making this approximation. This latter approach will be taken hereinbelow to generate a time-variable simulation of snap-through and standard buckling of a microbeam deformable element. For the mean-field analytic approximation the following parameter μ is defined:
When the meanfield approximation of Equation 21 is used with the partial differential Equation 18, and an equilibrium (quiescent) solution is considered, the following simplified expression is obtained:
Two different residual shapes are compared:
v(x)=0 and v(x)=δ cos(πx/L) (23)
For v(x)=0 there is no residual bowing of the deformable element. Alternatively, the cosine shape given in Equation 23 bows outward at the center, x=0 and is zero, i.e. fixed, at either end x=±L/2. For the microbeam deformable element illustrated in
Equation 22 is solved for the two residual shapes of Equation 23 while also satisfying the boundary conditions given in Equations 19 and 20. For the non-zero cosine function shape, the following function for f(x) is an equilibrium (quiescent) solution to the mean-field approximation, Equation 21:
An expression for the amplitude A can be obtained from the semi-rigid connection boundary condition, Equation 20 to be:
A second expression for the amplitude A can be obtained by carrying out the meanfield approximation integral, Equation 21, to compute μ, and then equating μ to the value of μ expressed as a function of β given in Equation 25. This procedure results in a quadratic expression for A in terms of β:
At a given temperature, quadratic Equation 27 yields two expressions for A in terms of β. By substituting the expression for A found in Equation 26 into each of these expressions, two equations for β are obtained.
In
For the computations leading to the plots of
Curve 210 in
For the cosine residual shape case, curves 212 and 214 show the solutions to the two solution branches arising from the quadratic Equation 27. The microbeam deformable element will follow the lower curve with increasing temperature, beginning with a deflection of −1 μm and then monotonically buckling farther outward in negative direction with increasing temperature. For this case of a rigid connection, k→∞, the thermal moment term has no effect. This can also be seen from the expression for the amplitude A given in Equation 26. It can be seen that as k→∞ the thermal moment term −cT has no effect on the value of the amplitude A.
From this analysis it can be understood that the microbeam deflectable element 20 will not spontaneously transition from buckled-down to buckle-up, snapping through the central plane, for a rigid connection at the opposing anchor edges. An external force must be applied to the microbeam to push it from following curve 212 in
For the case wherein there is an initial residual shape of bowing away from the direction of the thermal moment action, i.e. f(0)=−1 μm at T=0 (the ambient operating temperature is normalized to zero for the calculation), the deformation is seen to cross over from buckled-down to buckled-up, at ˜100° C. above ambient in the computed example of FIG. 4. While the curves of FIG. 4 are equilibrium cases, i.e. quiescent calculations, they illustrate the critical role of a non-rigid connection, k<∞, in allowing the internally generated thermal moment to force the microbeam deformable element from a buckled-down to a buckled-up state. This transition is necessary for the snap-through actuation which is the basis for the improved performance of the actuators of present inventions over simple buckling in a pre-biased direction. Improved performance results from the release of stored elastic energy as the deformable element makes the snap-through transition.
The results of solving Equations 18-20, plotted in
In order to calculate the time dependent motions of the thermo-mechanical devices of the present inventions, the full nonlinear initial boundary value problem, Equations 12-16, are solved numerically. For this numerical calculation the method of lines may be used to discretize the partial differential equation spatially. The resulting large set of ordinary differential equations may then be solved by a specialized software tool such as the solver DIVPAG from the International Mathematical Subroutine Library (IMSL).
Curve 226 in
A considerable amount of energy is stored in the compression of the deformable element, energy that is released as kinetic energy when the microbeam deformable element snaps through and emerges on the opposite side of the central plane. Comparing curves 224 and 226 in
The snap-through thermal actuator of the present inventions is useful for many applications wherein forceful, impulsive mechanical actuation is needed or beneficial. Apparatus for liquid drop emission, metering and fluid valving are especially appropriate systems whose performance can be improved by use of snap-through thermal actuators according to the present inventions. Reproducible drop formation, using a minimum of energy per drop is enhanced if the pressure impulse, force over time, is intense. Liquids with large viscosities may be accommodated if large pressure impulses can be generated.
Binary fluid valving performance is also enhanced by the same characteristics. Binary microvalves are needed to gate liquid and gas flows for a variety of emerging fluid-handling micro systems. A snap-through thermal actuated valve according to the present inventions can perform the on/off switching function quickly and forcefully, minimizing the period and amount of indeterminate fluid flow, i.e. improving the accuracy and incremental fineness of the control of the fluid involved.
Binary electrical microswitching performance may be enhanced by the characteristics of the snap-through thermal actuators of the present inventions as well. A snap-through thermal actuated microswitch according to the present inventions can perform the on/off switching function quickly and forcefully, minimizing the period of indeterminate electrical states in a switched circuit. Microswitches according to the present inventions can improve the incremental fineness of the control of electrical levels or of measured time periods.
Turning now to
The present invention causes the emission of drops having substantially the same volume and velocity, that is, having volume and velocity within +/−20% of a nominal value. Some drop emitters may emit a main drop and very small trailing drops, termed satellite drops. The present invention assumes that such satellite drops are considered part of the main drop emitted in serving the overall application purpose, e.g., for printing an image pixel or for micro dispensing an increment of fluid.
Each drop emitter unit 110 has associated electrical heater electrode contacts 42, 44 which are formed with, or are electrically connected to, an electrically resistive heater which is formed in a second layer of the deformable element 20 of a snap-through thermal actuator and participates in the thermo-mechanical effects as will be described. The electrical resistor in this embodiment is coincident with the second layer 24 of the deformable element 20 and is not visible separately in the plan views of FIG. 7. Element 80 of the printhead 100 is a mounting structure which provides a mounting surface for microelectronic substrate 10 and other means for interconnecting the liquid supply, electrical signals, and mechanical interface features.
a illustrates a plan view of a single drop emitter unit 110 and a second plan view
The snap-through thermal actuator 15, shown in phantom in
The deformable element 20 of the actuator has the shape of a long, thin and wide beam. This shape is merely illustrative of deformable elements for snap-through thermal actuators which can be used. Many other shapes are applicable. For some embodiments of the present invention the deformable element is a plate which is attached to the base element continuously around its perimeter.
In
b illustrates schematically the attachment of electrical pulse source 200 to the electrically resistive heater (coincident with second layer 24 of deformable element 20) at heater electrodes 42 and 44. Voltage differences are applied to voltage terminals 42 and 44 to cause resistance heating via the resistor. This is generally indicated by an arrow showing a current I. In the plan views of
Deformable element 20 is constructed of at least two layers. Second layer 24 is constructed of a second material having a large coefficient of thermal expansion to cause an upward thermal moment and subsequent snap-through buckling when it is thermally elongated with respect to other layers in the deformable element. First layer 22 is constructed of a material having a substantially smaller coefficient of thermal expansion than the material used to construct second layer 24. The thickness, Young's moduli, and coefficients of thermal expansion of at least first layer 22 and second layer 24 are selected to result in a thermal moment of substantial magnitude over a temperature range that is practical for the device materials and any working fluids involved.
Other layers may be included in the construction of deformable element 20. Additional material layers, or sub-layers of first layer 22 and second layer 24, may be used for thermo-mechanical performance, electrical resistivity, dielectric insulation, chemical protection and passivation, adhesive strength, fabrication cost, light absorption or reflection and so on. A resultant thermo-mechanical behavior of the deformable element that is required, however constructed, is that a significant thermal moment be generated in the operating temperature range to be used in the application of the snap-through thermal actuator.
A heat pulse is applied to second layer 24, causing it to rise in temperature and elongate. Initially the elongation causes the deformable element to buckle farther in the direction of the residual shape bowing (downward in FIG. 9). First layer 22 also rises in temperature and elongates due to some thermal expansion but also in response to the stress applied by second layer 24. Substantial elastic energy is stored in the elongated layers of the deformable element. At a sufficiently high temperature, the thermal moment causes the deformable element 20 to reverse in a rapid snap-through transition resulting in a deformation, a buckling upward in a direction opposite to the residual shape bowing. The rapid snap-through transition produces a pressure impulse in the liquid at the nozzle 30, causing a drop 50 to be ejected.
When used as actuators in drop emitters the buckling response of the deformable element 20 must be rapid enough to sufficiently pressurize the liquid at the nozzle. Typically, electrically resistive heating apparatus is adapted to apply heat pulses and an electrical pulse duration of less than 10 μsecs. is used and, preferably, a duration less than 2 μsecs.
In
Deposition of intermetallic titanium aluminide may be carried out, for example, by RF or pulsed DC magnetron sputtering. A resistor is coincidentally formed in second layer 24. The current path is indicated by an arrow and letter “I”. Addressing heater electrodes 42 and 44 are illustrated as being formed in the second layer 24 material. Heater electrodes 42, 44 may make contact with circuitry previously formed in substrate 10 passing through vias in first layer 22 (not shown in
Alternate embodiments of the present inventions utilize an additional electrical resistor element to apply heat pulses to the deformable element. In this case such an element may be constructed as one of more additional laminations positioned between first layer 22 and second layer 24 or above second layer 24. Application of the heating pulse directly to the thermally expanding layer, second layer 24, is beneficial in promoting the maximum thermal moment by maximizing the thermal expansion differential between second layer 24 and first layer 22. However, because additional laminations comprising the electrical resistor heater element will contribute to the overall thermo-mechanical behavior of the deformable element, the most favorable positioning of these laminations, above or below second layer 24, will depend on the mechanical properties of the additional layers.
Additional passivation materials may be applied at this stage over second layer 24 for chemical and electrical protection. Additional chemical passivation may be beneficial to expand range of fluids which may be brought into contact with the snap-through thermal actuator.
In
In
It is beneficial to apply heat energy directly to the second layer 24 via good thermal contact means in order to maximize the temperature differential created with respect to first layer 22. There may need to be an electrically insulating layer between an electrically resistive material used to generate heat energy and the second material, especially if the second material is metallic or semi-conducting. Good thermal contact is desirable between an apparatus adapted to supply heat and the deformable element 20 so that rapid heating can be accomplished.
For efficient operation of snap-through thermal actuators according to the present invention, the heat applied to deformable element 20 is preferably introduced in a time of a few microseconds to maximize the thermal spatial gradients. The terms “directly to” and “good thermal contact”, as applied to an apparatus adapted to supply heat to the second layer 24, are to be understood in the context of this preferred timing. Such apparatus are adapted to have sufficiently intimate thermal contact and power capabilities so as to supply the required heat energy within a time period that is on the order a few microseconds or less. Heat may be applied more slowly, however, desirable actuator performance characteristics such as maximum deflection, deflection force, and deflection repetition rate may be diminished.
Heat may be introduced to the second layer 24 by apparatus other than by electrical resistors. Pulses of light energy could be absorbed by the first and second layers of the deformable element or by an additional layer added specifically to function as an efficient absorber of a particular spectrum of light energy. The use of light energy pulses to apply heating pulses is illustrated in
An important requirement for successful snap-through behavior activated by an internal thermal moment is the semi-rigid connection of deformable element 20 to opposing anchor edges 14.
a illustrates an alternate location for removing a relief portion 17 of the base element material near opposing anchor edges 14. Relief portions 17 of material are removed just behind opposing anchor edges 14 rendering the opposing anchor edges somewhat flexible, thereby contributing flexibility to the attachment of the deformable element 20 and enabling the formation of a semi-rigid connection according to the present inventions. The stiffness of the semi-rigid connection may be explored experimentally by creating a series of devices having relief portions of substrate material removed to varying depths at different spacings behind the opposing anchor edges. Snap-through transition behavior may then be observed versus different relief portion 17 parameters to identify an optimal design for a specific device application.
b illustrates the addition of an anchor edge layer 19 of material beneath deformable element 20. An anchor edge configuration similar to that formed by etching away a relief portion of the substrate material is formed. The use of an anchor edge material may be an advantageous alternative by allowing the incorporation of more flexible materials or better control of the final dimensions of the opposing anchor edge region during fabrication. The role of anchor edge layer 19 in the design is to provide some flexibility to the attachment of the deformable element to the opposing anchor edges, creating semi-rigid connections. The stiffness of the semi-rigid connection may be explored experimentally by creating a series of devices using anchor edge materials having different mechanical properties, thickness and extension beneath opposing anchor edges 14. Snap-through transition behavior may then be observed versus these parameter variations to identify an optimal design for a specific device application.
c illustrates the addition of a perimeter stiffness layer 11 of material added to the perimeter edge of the deformable element. This effectively re-locates the opposing anchor edges 14 to a position above the deformable element as illustrated. An anchor edge configuration similar to that formed by the introduction of anchor edge layer 19 discussed above is formed. The use of a perimeter stiffness layer in the position illustrated above second layer 24 may be an advantageous alternative by allowing the incorporation of flexible materials at a later stage of the fabrication process, for example after necessary high temperature depositions during fabrication. The role of perimeter stiffness layer 11 in the design is to provide some flexibility to the attachment of the deformable element to the opposing anchor edges 14, creating semi-rigid connections. The stiffness of the semi-rigid connection may be explored experimentally by creating a series of devices using perimeter stiffness layer 11 materials having different mechanical properties, thickness and extension outward of the base element 10 beneath the deformable element 20. Snap-through transition behavior may then be observed versus these parameter variations to identify an optimal design for a specific device application.
d illustrates a variation of the semi-rigid connection design illustrated in
Snap-through thermal actuators according to the present inventions are useful in the construction of fluid microvalves. A normally closed fluid microvalve configuration is illustrated in
A normally closed microvalve may be configured as shown in
A normally open microvalve may be configured as shown in
The previously discussed illustrations of snap-through thermal actuators, liquid drop emitters and microvalves have shown deformable elements in the shape of thin rectangular microbeams attached at opposite ends to opposing anchor edges in a semi-rigid connection. The long edges of the deformable elements were not attached and were free to move resulting in a two-dimensional buckling deformation. Alternatively, a deformable element may be configured as a plate which is attached, using a semi-rigid connection, around a fully closed perimeter.
a illustrates a liquid drop emitter having a square fluid upper chamber 28 with a central nozzle 30. Shown in phantom in
A light-activated device according to the present inventions may be advantageous in that complete electrical and mechanical isolation may be maintained while opening the microvalve. A light-activated configuration for a liquid drop emitter, microvalve, or other snap-through thermal actuator may be designed in similar fashion according to the present inventions.
Snap-through thermal actuators according to the present inventions are also useful in the construction of microswitches for controlling electrical circuits. A plan view of a microswitch unit 150 according to the present inventions is illustrated in FIG. 23.
In the plan view illustration of
A normally closed microswitch may be configured as illustrated in FIG. 24. The side views of
A normally open microswitch may be configured as shown in FIG. 25. The side views of
For the microswitch configurations illustrated in
a illustrates in plan view the alternative microswitch unit 150 configuration having second switch electrode and control electrode 154 in permanent electrical contact.
The previously discussed illustrations of snap-through thermal actuator microvalves have shown deformable elements in the shape of thin rectangular microbeams attached at opposite ends to opposing anchor edges. The long edges of the deformable elements were not attached and were free to move resulting in a two-dimensional buckling deformation. Alternatively, a deformable element for a microswitch may be configured as a plate which is attached, using a semi-rigid connection, around a fully closed perimeter as was illustrated in
A light-activated device according to the present inventions may be advantageous in that complete electrical and mechanical isolation may be maintained while opening the microswitch. A light-activated configuration for a normally open microswitch may be designed in similar fashion according to the present inventions.
While much of the foregoing description was directed to the configuration and operation of a single snap-through thermal actuator, liquid drop emitter, microvalve, or microswitch, it should be understood that the present invention is applicable to forming arrays and assemblies of such single device units. Also it should be understood that snap-through thermal actuator devices according to the present invention may be fabricated concurrently with other electronic components and circuits, or formed on the same substrate before or after the fabrication of electronic components and circuits.
Further, while the foregoing detailed description primarily discussed snap-through thermal actuators heated by electrically resistive apparatus, or pulsed light energy, other means of generating heat pulses, such as inductive heating, may be adapted to apply heat pulses to the deformable elements according to the present invention.
From the foregoing, it will be seen that this invention is one well adapted to obtain all of the ends and objects. The foregoing description of preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modification and variations are possible and will be recognized by one skilled in the art in light of the above teachings. Such additional embodiments fall within the spirit and scope of the appended claims.
Parts List
Number | Name | Date | Kind |
---|---|---|---|
3747120 | Stemme | Jul 1973 | A |
3946398 | Kyser et al. | Mar 1976 | A |
4296421 | Hara et al. | Oct 1981 | A |
5599695 | Pease et al. | Feb 1997 | A |
5684519 | Matoba et al. | Nov 1997 | A |
5771882 | Psaros et al. | Jun 1998 | A |
5785295 | Tsai | Jul 1998 | A |
5812163 | Wong | Sep 1998 | A |
5902648 | Naka et al. | May 1999 | A |
5905241 | Park et al. | May 1999 | A |
6067797 | Silverbrook | May 2000 | A |
6079813 | Tuli | Jun 2000 | A |
6087638 | Silverbrook | Jul 2000 | A |
6168395 | Quenzer et al. | Jan 2001 | B1 |
6180427 | Silverbrook | Jan 2001 | B1 |
6234609 | Silverbrook | May 2001 | B1 |
6239821 | Silverbrook | May 2001 | B1 |
6243113 | Silverbrook | Jun 2001 | B1 |
6254793 | Silverbrook | Jul 2001 | B1 |
6274056 | Silverbrook | Aug 2001 | B1 |
6481821 | Yun et al. | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
10041518 | Feb 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20030214556 A1 | Nov 2003 | US |