Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging

Information

  • Research Project
  • 8200321
  • ApplicationId
    8200321
  • Core Project Number
    R43GM099349
  • Full Project Number
    1R43GM099349-01
  • Serial Number
    99349
  • FOA Number
    PA-08-114
  • Sub Project Id
  • Project Start Date
    9/15/2011 - 12 years ago
  • Project End Date
    8/31/2013 - 10 years ago
  • Program Officer Name
    GINDHART, JOSEPH G
  • Budget Start Date
    9/15/2011 - 12 years ago
  • Budget End Date
    8/31/2012 - 11 years ago
  • Fiscal Year
    2011
  • Support Year
    1
  • Suffix
  • Award Notice Date
    8/29/2011 - 12 years ago

Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging

DESCRIPTION (provided by applicant): Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging Indirect Imaging is proposing, through the SBIR funding mechanism, to develop an innovative imaging device that will allow economical snapshot hyperspectral imaging for real time microscopy and other biomedical applications, and is compatible with most research grade light microscopes. Recent advances in fluorescent probes, detector technology and micro-fabrication now make it possible to build an Image Mapping Spectrometer (IMS) - a device for rapid, real time quantitative spectral imaging. The IMS is a widefield method for acquiring full spectral information simultaneously from every pixel. It has superior signal-to-noise ratio compared to scanning hyperspectral systems and can be used with optical sectioning methods such as Nipkow disk. The IMS works by spatially redirecting image zones to obtain space between lines and using a multi-prism element to acquire simultaneously spectral and spatial information about the object. The final spectral cube is reconstructed by remapping the pixel locations from the CCD 2D image sensor to respective voxels (x, y,;). This is a Phase I proposal, in which we will focus on (1) developing a larger format IMS system capable of collection a (x, y,;) datacube of size 500 x 500 x 48 with an initial wavelength range of 450 to 700 nm and testing the Image Mapping Spectrometer against currently available spectral imaging systems in several live cell imaging applications. In parallel the project will pursue (2) developing the means to manufacture an Image Mapper at minimal costs - the fabrication process is currently expensive and time consuming taking 100+ hours/per part depending on the size and complexity. We will pursue a new diamond ruling fabrication approach that has a potential to dramatically shorten the fabrication time. In addition we will implement (3) automatic calibration procedures and software for real-time data analysis and visualization leading to optimized performance, improved resolution and frame-rate spectral unmixing capability. For the first time this will provide researchers with immediate, live feedback in real-time living cell hyperspectral imaging. In summary, the IMS has the potential to significantly advance a wide range of applications in the area of cellular imaging by reducing the phototoxicity and photobleaching and allowing hyperspectral analysis at high frame rates. To further its impact, in the future, we plan to combine the IMS with optical sectioning by using structured illumination, Nipkow disk confocal, and/or spatial deconvolution. These 4-dimensional imaging systems (X, Y, Z,;) would further improve the signal-to-noise ratio of the collected images and improve their speed. PUBLIC HEALTH RELEVANCE: The project targets the development of a modern spectrometer called high sampling Image Mapping Spectrometer enabling high resolution spectral imaging in real time. In consequence researchers will be able to rapidly advance the investigation of live cells with multiple fluorescent contrasts. The instrument's principle allows obtaining spectral information for entire image without scanning and thus improve signal to noise ratio and limit photo-bleaching effects. It also allows more efficient investigation of transient biological events. Technologies applied in the project and their low cost may potentially allow access of larger group of scientists to spectral imaging instrumentation.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R43
  • Administering IC
    GM
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    348487
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:348487\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    REBELLION PHOTONICS, INC.
  • Organization Department
  • Organization DUNS
    832445196
  • Organization City
    Houston
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    770215928
  • Organization District
    UNITED STATES