The present invention relates to the field of snow removal apparatuses. More specifically, it relates to an apparatus for removing snow from a sloped surface such as, for example, a roof of a building.
Removing snow from a roof of a building such as, a house, a cottage, a shed or the like can be a tedious and dangerous task. Hence, over the years, several apparatuses have been developed to help perform this task.
Indeed, apparatuses having several different configurations are known in the art. Among these, snow removal apparatuses of the cut and slide type, which are designed to allow users to easily remove snow from a sloped surface such as, for example and without being limitative, the roof of a building, using gravity force, are known in the art. Such apparatuses commonly allow a user to remove snow from the roof of a building, with the user standing on the ground and pushing a section of the apparatus through the accumulated snow on the roof of the building.
Known apparatuses of the cut and slide type however tend to suffer from several drawbacks. For example and without being limitative, known apparatuses of the cut and slide type tend to have a design which can lead to low durability, for example when used to remove hard packed or icy snow (i.e. the apparatuses tend to have a low life expectancy and/or tend to stop working accurately prematurely). Moreover, known apparatuses are commonly designed to be used in a single configuration, thereby resulting in a substantially low versatility of the apparatus. In other words, known apparatuses do not offer different operative configurations, specifically adapted to allow the user to operate the apparatus in different configurations depending, for example and without being limitative, on the snow condition, the configuration of the sloped surface or the like.
In view of the above, there is a need for an improved snow removal apparatus for cutting and removing snow from a sloped surface which, by virtue of its design and components, would be able to overcome or at least minimize some of the above-discussed prior art concerns.
In accordance with a first general aspect, there is provided a snow removal apparatus for cutting and removing snow from a sloped surface. The apparatus comprises: a frame having a lower section and an upper section spaced apart from one another, the lower section and the upper section being connected by side sections; an elongated handle removably engageable to the frame; and a slide having a proximal end operatively connected to the lower section of the frame and a distal end, the slide extending away from the frame in a slide extending direction. The apparatus is selectively configurable in a push configuration, where the handle is engaged to the lower section of the frame and extends in a direction substantially similar to the slide extending direction and a pull configuration, where the handle is engaged to the upper section of the frame and extends in a direction substantially opposite to the slide extending direction.
In an embodiment, the apparatus further comprises a connector connecting the elongated handle to the frame. The connector extends along a longitudinal axis thereof and includes a frame-engaging section having a substantially flat section superposable to the corresponding one of the upper section and the lower section of the frame and securable thereto.
In an embodiment, each one of the lower section and the upper section of the frame comprises handle securement apertures defined therein. The handle securement apertures are configured to receive fasteners to selectively secure the connector to the corresponding one of the lower section and the upper section of the frame.
In an embodiment, the substantially flat section is angled relative to the longitudinal axis of the connector.
In an embodiment, the substantially flat section is angled of between about 7° and about 14° relative to the longitudinal axis of the connector.
In an embodiment, the elongated handle includes an angled section having a first substantially straight section and a second substantially straight section extending at an angle relative to one another.
In an embodiment, the angled section defines an angle of between about 7° and about 14° between the first substantially straight section and the second substantially straight section.
In an embodiment, the snow removal apparatus further comprises a slide connecting member having a first end and a second end. The first end of the slide connecting member is connectable to the slide, at the distal end thereof, and the second end of the slide connecting member is connectable to a section of the elongated handle, when the apparatus is configured in the push configuration.
In an embodiment, the frame has a snow engaging edge facing in a direction opposite to the slide extending direction, the snow engaging edge having a tapered configuration to define a tapered cutting edge.
In an embodiment, the snow removal apparatus further comprises extension members projecting downwardly from the lower section of the frame, at opposed ends thereof.
In accordance with another general aspect, there is provided a snow removal apparatus for cutting and removing strips of snow from a sloped surface. The apparatus comprises a snow removal assembly including a frame having a lower section and an upper section, the lower section and the upper section of the frame being substantially parallel to one another, with the upper section extending above the lower section; a slide operatively engaged to the lower section of the frame and extending away therefrom; and an elongated handle selectively securable to one of the lower section and the upper section of the frame. The handle is secured to the lower section of the frame to configure the apparatus in a push configuration and is secured to the upper section of the frame to configure the apparatus in a pull configuration.
In an embodiment, the slide extends in a slide extending direction and the elongated handle extends in a direction substantially similar to the slide extending direction when the apparatus is configured in the push configuration and in a direction substantially opposite to the slide extending direction when the apparatus is configured in the pull configuration.
In an embodiment, the apparatus further comprises a connector connecting the elongated handle to the frame. The connector extends along a longitudinal axis thereof and includes a frame-engaging section having a substantially flat section superposable to the corresponding one of the upper section and the lower section of the frame and securable thereto.
In an embodiment, each one of the lower section and the upper section of the frame comprises handle securement apertures defined therein. The handle securement apertures are configured to receive fasteners to selectively secure the handle connector to the corresponding one of the lower section and the upper section of the frame.
In an embodiment, the substantially flat section is angled relative to the longitudinal axis of the connector.
In an embodiment, the substantially flat section is angled of between about 7° and about 14° relative to the longitudinal axis of the connector.
In an embodiment, the elongated handle includes an angled section having a first substantially straight section and a second substantially straight section extending at an angle relative to one another.
In an embodiment, the angled section defines an angle of between about 7° and about 14° between the first substantially straight section and the second substantially straight section.
In an embodiment, the slide has a distal end. The apparatus further comprises a slide connecting member having a first end and a second end. The first end of the slide connecting member is connectable to the slide, at the distal end thereof, and the second end of the slide connecting member is connectable to a section of the elongated handle, when the apparatus is configured in the push configuration.
In an embodiment, the frame has a snow engaging edge facing in a direction opposite to the slide extending direction, the snow engaging edge having a tapered configuration to define a tapered cutting edge.
In an embodiment, the snow removal apparatus further comprises extension members projecting downwardly from the lower section of the frame, at opposed ends thereof.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In the following description, the same numerical references refer to similar elements. The embodiments, geometrical configurations, materials mentioned and/or dimensions shown in the figures or described in the present description are embodiments only, given solely for exemplification purposes.
Moreover, although the embodiments of the snow removal apparatus and corresponding parts thereof consist of certain geometrical configurations as explained and illustrated herein, not all of these components and geometries are essential and thus should not be taken in their restrictive sense. It is to be understood, as also apparent to a person skilled in the art, that other suitable components and cooperation thereinbetween, as well as other suitable geometrical configurations, may be used for the snow removal apparatus, as will be briefly explained herein and as can be easily inferred herefrom by a person skilled in the art. Moreover, it will be appreciated that positional descriptions such as “above”, “below”, “left”, “right” and the like should, unless otherwise indicated, be taken in the context of the figures and should not be considered limiting.
In general terms, the following description relates to a snow removal apparatus for removing snow from sloped (or inclined) surfaces extending at a distance from the ground, such as, for example, roofs of buildings. The snow removal apparatus 10 described in more details below has a cut and slide configuration and is designed to cut strips (or chunks) of snow accumulated on the sloped surfaces, for subsequent sliding thereof towards the ground. The snow removal apparatus 10 uses a slide 40 connected to a rigid frame 20 (both of which will be described in more details below), to perform the cutting of the strips of snow and the succeeding sliding of the strips of snow towards the ground, by gravity.
Referring to
The apparatus also includes a handle 30 having a proximal end 30a and a distal end 30b and the slide 40 having a proximal end 40a and a distal end 40b. The handle 30 and the slide 40 are connected to the snow removal assembly 15 at their respective proximal end 30a, 40a and extend away therefrom. The slide 40 extends away from the snow removal assembly (i.e. extends away from the rigid frame 20 of the snow removal assembly 15), in a slide extending direction S. Each one of the handle 30 and the slide 40 will be described in more details below.
The rigid frame 20 is made of sturdy and rigid material such as, without being limitative, metal (e.g. aluminum, steel, etc.), hard plastic, carbon fiber or the like. In the embodiment shown, the rigid frame 20 of the snow removal assembly 15 has a substantially rectangular shape. As better shown in
In the embodiment of
In an embodiment, the rigid frame 20 has at least one tapered cutting edge 22 for cutting snow, thus increasing the efficiency of the apparatus 10 in hard packed or icy snow. The tapered cutting edge 22 of the frame 20 corresponds to a snow engaging edge 20a of the frame 20. The snow engaging edge 20a of the frame 20 is the edge facing a direction opposite to the slide extending direction S (i.e., the tapered cutting edge 22 is the edge of the frame 20 located at a side of the frame 20 facing away from the slide 40). In other words, the tapered cutting edge 22 is the edge which is driven through the accumulated snow and cuts through the snow, when the apparatus 10 is used for removing snow from a snow-laden sloped surface. In the course of the present description, the term “tapered cutting edge” is used to refer to an edge having a tapered configuration (i.e. an edge gradually lessening in thickness to define a sharp fringe and operating as a blade for cutting through the snow).
In an embodiment, each one of the substantially horizontal lower section 24 and upper section 26 and the substantially vertical connecting sections 23, 25 include a tapered edge 22. One skilled in the art will however understand that, in alternative embodiments, only one or a subset of the substantially horizontal lower section 24 and upper section 26 and the substantially vertical connecting sections 23, 25 could include a tapered cutting edge 22. In another alternative embodiment, no tapered cutting edge 22 could be provided.
Still referring to
The slide 40 is made of flexible slick material, such as, for example and without being limitative high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), or the like, which allow easy adaptation to different sloped surfaces and good sliding of the snow thereon. In view of the above, the slide 40 thereby guides the strips of cut snow down the sloped surface and towards the ground. More precisely, in operation, the frame 20 of the snow removing assembly 15 is used to loosen light snow, or to cut off hardened snow, with the snow being subsequently removed from the sloped surface by gravity, through sliding on the slide 40 and off the sloped surface. Hence, the apparatus 10 thereby provides substantially easy and efficient snow removal from sloped surfaces extending at a distance from the ground, such as roofs of buildings.
In the embodiment shown in
In the embodiment shown, the handle 30 includes an angled section 33 (or bent section) defining an angle relative to the longitudinal axis L1 of the handle 30, such that, in use, the snow engaging edge 20a of the frame 20 has a forward angle (i.e. a plane, along which the snow engaging edge 20a extends, is angled relative to the longitudinal axis L1 of the handle 30, with the section of the snow engaging edge 20a extending along the upper section 26 extending forwardly of the section of the snow engaging edge 20a of the of the lower section 24) and therefore engages the snow more aggressively. In other words, in an embodiment, the handle 30 includes an angled section 33 including a first substantially straight section 33a and a second substantially straight section 33b, extending at an angle relative to one another, with an additional substantially straight section 35a of the handle 33 being connected to one of the substantially straight sections 33a, 33b of the angled section 33 and forming an extension thereof. The additional substantially straight section 35a and the corresponding one of the substantially straight sections 33a, 33b of the angled section 33 connected thereto, extends substantially parallel to the longitudinal axis L1 handle handle 30.
In an embodiment, the angled section 33 defines an angle of between about 7° and about 14° between the first substantially straight section 33a and the second substantially straight section 33b. More precisely, in an alternative embodiment, the angled section defines an angle of between about 7° and about 10° between the first substantially straight section 33a and the second substantially straight section 33b. More precisely, in the embodiment shown, the angled section defines an angle of about 8° between the first substantially straight section 33a and the second substantially straight section 33b.
In an embodiment, the angled section 33 is positioned proximate to the frame 20, in order to provide a better effectiveness thereof. In an embodiment, the angled section 33 extends from the proximal end 30a of the handle and has a length ranging between about 12 inches and 24 inches (i.e. the combination of the first substantially straight section 33a and the second substantially straight section 33b ranges between about 12 inches and 24 inches). More precisely, in the embodiment shown, the angled section extends from the proximal end 30a of the handle and has a length of about 12 inches.
One skilled in the art will understand that, in an alternative embodiment (not shown), the handle 30 could be substantially straight (i.e. the handle 30 could be free of the above-described angled section 33 and therefore extend substantially parallel to the Longitudinal axis L1 thereof along its entire length).
Still referring to
In an embodiment, in the push configuration, the distal end 40b of the slide 40 is connected to the handle 30 by a slide connecting member 60 (see
In the pull configuration (
In an embodiment, to allow the conversion between the push configuration and the pull configuration, the frame 20 of the snow removal assembly 15 of the apparatus 10 includes handle-engaging apertures 38 defined in each one of the lower section 24 and the upper section 26 of the frame 20. The dual sets of handle-engaging apertures 38 allow the configuration of the apparatus 10 to be easily modified by the user by simply detaching the handle 30 from one section of the frame 20 and attaching the handle 30 to the other section of the frame 20 such that the apparatus can be selectively configured in the push configuration (with the handle 30 connected to the lower section 24 of the frame 20 and extending in a direction similar to the slide 40) or the push configuration (with the handle 30 connected to the lower section 24 of the frame 20 and extending in a direction similar to the slide 40).
In view of the above, the snow removal apparatus 10 advantageously increases the versatility of the apparatus 10 and the ease with which a user can operate the apparatus 10 to carry out snow removal. Whether by performing a pulling motion from the apex of a roof top, or a pushing motion from the ground, a user can easily manipulate the snow removal apparatus 10 to move it upward along the surface of a rooftop, with optimized handle positioning in each configuration. The apparatus 10 thereby minimizes the energy required to effectively remove snow from rooftops, allowing users of broad range of ages and body types to successfully engage in rooftop snow removal.
Now referring to
In an embodiment, the connector 50 is made of sturdy and rigid material such as, without being limitative, metal (e.g. aluminum, steel, etc.), hard plastic, carbon fiber or the like. In an embodiment, the connector 50 is a solid component (i.e. a component having the interior completely filled up, free from cavities and without hollow sections) to the exception of apertures for insertion of fasteners, as will be described in more details below. The connector 50 being made of solid material strengthens the apparatus 10 and favors a high rigidity of the frame 20, to provide high durability of the apparatus 10. The connector 50 extends along a longitudinal axis L2.
In an embodiment, the handle-engaging section 52 of the connector 50 is removably engageable to the proximal end 30a of the handle 30. For example, in an embodiment, engagement is performed through insertion of the handle-engaging section 52 in a cavity 31 of the handle 30 and using fasteners 32 for securement therebetween. In the embodiment shown, the fasteners 32 are screws extending through apertures defined in the handle 30 and engageable into threaded cavities 34 defined in the handle-engaging section 52 of the connector 50. One skilled in the art will however understand that, in alternative embodiments (not shown), the handle-engaging section 52 of the connector 50 and/or the handle 30 could present different configurations and the handle-engaging section 52 of the connector 50 could be secured to the handle 30 using other alternative means or methods. For example and without being limitative, in an embodiment (not shown), the handle-engaging section 52 of the connector 50 could be superposed to the handle 30 rather than being inserted in a cavity thereof, different fasteners such as, nuts and bolts, rivets or the like could be used, the handle-engaging section 52 of the connector 50 could be secured to the handle 30 through brazing, soldering, or the like, etc. In another alternative embodiment (not shown), the connector 50 could be integral to the handle 30.
In the embodiment shown, the frame-engaging section 54 of the connector 50 includes a substantially flat section 56 superposable to a section of the frame 20. In the embodiment shown, the substantially flat section is substantially parallel to the longitudinal axis L2 of the connector 50. The frame-engaging section 54 engages the frame 20 substantially perpendicularly and allows a strong securement between the connector 50 and the frame 20, thereby preventing long term loosening between the handle 30 and the frame 20. In an embodiment, the frame-engaging section 54 of the connector 50 includes apertures 57 opened in the substantially flat section 56 and extending substantially perpendicular therewith, allowing fasteners 58 such as, for example and without being limitative, screws, nuts and bolts, or the like, to be used to removably secure the frame-engaging section 54 of the connector 50 to the corresponding section of frame 20. For example and without being limitative, in the embodiment shown, the apertures are threaded and securement is performed through insertion of screws 58 in the corresponding apertures 38 defined in the corresponding section of the frame 20 and screwed in the threaded cavities 57 of the connector 50.
In view of the above, in an embodiment, the handle 30 is connected to the lower section 24 of the frame 20 through the connector 50 being secured to the lower section 24 of the frame 20, as described above, to configure the apparatus in the push configuration. Similarly, the handle 30 can be connected to the upper section 26 of the frame 20 through the connector 50 being secured to the upper section 26 of the frame 20, as described above, to configure the apparatus 10 in the pull configuration, in this later case, the connector 50 can therefore be engaged to the upper section 26 of the frame 20 (see
Referring to
In the embodiment shown in
In the embodiment shown, the connector 150 is configured to be mounted to the frame 20, with the substantially flat section 156 facing downwardly. Hence, in such an embodiment, the substantially flat surface 156 has an inner end 156a and an outer end 156b, with the inner end 156a being recessed in the connector 150 of a distance greater than the outer end 156b. One skilled in the art will understand that, in an alternative embodiment (not shown), only the inner end 156a of the substantially flat surface 156 could be recessed in the connector 150 to provide the angle of the substantially flat section 156.
In an embodiment, the substantially flat section 156 is angled of between about 7° and about 14° with respect to the longitudinal axis L2 of the connector 150. More precisely, in an alternative embodiment, the substantially flat section 156 is angled of between about 7° and about 10° with respect to the longitudinal axis L2 of the connector 150. Even more precisely, in the embodiment shown, the substantially flat section 156 is angled of about 8° with respect to the longitudinal axis L2 of the connector 150.
One skilled in the art will also understand that, in an alternative embodiment (not shown) the substantially flat surface 156 could be angled of a smaller angle, with the handle 30 including an angled section 33 also having a smaller angle, such that the resulting angle provided by the combination of the angled substantially flat surface 156 of the connector 150 and the angled section 33 of the handle 30 is substantially similar to the above mentioned angular ranges of the substantially flat surface 156 of the connector 150 or the angled section 33 of the handle 30. In another alternative embodiment, the lower section 24 and/or the upper section 26 of the frame 20 could have an angle relative to the longitudinal angle L2 of the connector 150, in order to provide the desired forward angle of the snow engaging edge 20a of the frame 20. In another alternative embodiment (not shown), the connector 150 could have a first substantially straight section (not shown) and a second substantially straight section (not shown) angled relative to one another, rather than an angled substantially flat surface 156 to provide the desired angle to the snow engaging edge 20a of the frame 20.
One skilled in the art will understand that, in alternative embodiments (not shown), the frame-engaging section 54, 154 of the connector 50, 150 and/or the corresponding section of the frame 20 could present different configurations and the frame-engaging section 54, 154 of the connector 50, 150 could be removably secured to the corresponding section of the frame 20 using other alternative means or methods. For example and without being limitative, in an embodiment (not shown), the frame-engaging section 54, 154 of the connector 50, 150 or the corresponding section of the frame 20 could include unthreaded cavities for insertion of bolts therein and in the corresponding handle-engaging apertures 38 defined in the frame 20 and secured using bolts, or different male/female assembly for locking/unlocking the components could be used.
Moreover, in other alternative embodiments (not shown), the connector 50, 150 can be shaped differently to offer a different configuration of the substantially flat section 56, 156. For example, and without being limitative, a slot can be defined into the body of the connector 50, 150 for at least partially receiving therein the corresponding section of the frame 20. In view of the above, it will be understood that the slot could be substantially parallel to the longitudinal axis L2 of the connector 50, 150 or be angled relative to the longitudinal axis L2 of the connector 50, 150.
One skilled in the art will also understand that, in alternative embodiments (not shown) handle connecting assemblies different than the handle-engaging apertures 38 defined in the frame 20 of the snow removal assembly 15 could be provided.
Now referring to
One skilled in the art will understand that, in alternative embodiments (not shown), other motion facilitating members designed to allow the apparatus to move onto the sloped surface without damaging the surface it is moved over, can be used. For example, in an embodiment (not shown), wheels (not shown) could be mounted to the extension members 29 of the embodiment shown in
Several alternative embodiments and examples have been described and illustrated herein. The embodiments of the invention described above are intended to be exemplary only. A person of ordinary skill in the art would appreciate the features of the individual embodiments, and the possible combinations and variations of the components. A person of ordinary skill in the art would further appreciate that any of the embodiments could be provided in any combination with the other embodiments disclosed herein. It is understood that the invention may be embodied in other specific forms without departing from the central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein. Accordingly, while the specific embodiments have been illustrated and described, numerous modifications come to mind. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application benefit of U.S. provisional application Ser. No. 62/514,372 filed on Jun. 2, 2017, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3998486 | Mittelstadt | Dec 1976 | A |
4089127 | Maijala | May 1978 | A |
5083388 | Cooley | Jan 1992 | A |
5570524 | Groat | Nov 1996 | A |
5791707 | Szakurski | Aug 1998 | A |
5943796 | Hedstrom | Aug 1999 | A |
5971653 | Harpell | Oct 1999 | A |
6092315 | Katauskas | Jul 2000 | A |
6158791 | Drew | Dec 2000 | A |
6189942 | Peterson et al. | Feb 2001 | B1 |
6202329 | Supplee | Mar 2001 | B1 |
6578890 | Gilmore | Jun 2003 | B1 |
9145112 | Ihde | Sep 2015 | B1 |
9828775 | Senchuk | Nov 2017 | B2 |
9963882 | Daneau | May 2018 | B2 |
20040055184 | Peterson et al. | Mar 2004 | A1 |
20170089073 | Daneau | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
203514662 | Apr 2014 | CN |
09004160 | Jan 1997 | JP |
Entry |
---|
The Minnsnowta Roof Razor [online], RoofRake.com, 2017 [retrieved on Apr. 4, 2017], retreived from the Internet: <URL: http://www.roofrake.com/productpages/roofrazor.asp.>, 6 pages. |
Avalanche Roof Snow Removal System, Avalanche 1000 Premieum Package [online], Avalanche! Products by Rhino Manufacturing, 2014 [retrieved on Apr. 4, 2017], retrieved from the Internet: <URL: htte://www.avalanche-snow.ca/premium-roof-snow-removal-package.html>, 2 pages. |
Roof Snow Removal [online], The Window Cleaning Store, 2017 [retrieved on Apr. 4, 2017], retreived from the Internet <URL: https//www.thewindowcleaningstore.com/collections/snow-removal>, 1 page. |
Number | Date | Country | |
---|---|---|---|
20180347198 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62514372 | Jun 2017 | US |