The present disclosure relates to the field of sports equipment and more specifically, to a removable hook for use in snowboarding applications.
Snowboarding is a relatively young sport that is growing in popularity across the world. As more people continue to learn to snowboard, snowboarding technology, which has barely changed since its conception, is due for an upgrade. Typical snowboard equipment may consist of a snowboard, usually made from fiberglass and wood, a pair of bindings attached to the snowboard, and boots for the user's feet. Snowboard bindings, secured to the snowboard, allow a user to fasten his or her boots to the snowboard.
Various implementations of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various implementations of the invention.
Traditional snowboarding gear may include a snowboard, a pair of snowboard bindings (e.g., “bindings”) attached to the snowboard, and snowboard boots (e.g., “boots”). In one embodiment, snowboard bindings are secured to the snowboard via screws or some other fastener. Snowboard bindings may include various straps to secure a snowboarder's boot. Alternatively, some snowboard bindings include a mechanical lock, which may be used to secure a specially-made snowboarding boot to the binding). Snowboard bindings are notoriously difficult to get in and out of, often resulting in a snowboarder spending a minute or two sitting on a bench or the ground every time he or she wishes to secure his or her feet (e.g., “strap in”).
Because both feet are held in a set position by the bindings, snowboarders must unstrap and re-strap one or both feet from their snowboard bindings to perform tasks such as: traverse the mountain by “pedaling” their back foot, ride a short distance over flat ground, get on and off chairlifts, etc. The constant effort of securing and un-securing one or both feet from bindings can be cumbersome, tiresome, and even dangerous. Furthermore, having both feet secured in these types of bindings may limit the variety of tricks that a snowboarder may perform.
In one embodiment, a stomp pad may be placed on the snowboard near one of the bindings (usually on the inside of the back foot) to aid in providing traction for a snowboarder's foot while not secured in a binding. Stomp pads may be made of rubber, metal, or some other material, and may be attached to the top of a snowboard, usually via a strong adhesive. Stomp pads may help a snowboarder maneuver around the snow while strapped into only one binding by providing a non-slip area, on which a snowboarder may rest his or her unsecured foot. Stomp pads may be limited, however, in that they rely solely on downward friction to secure a snowboarder's foot, which may be unreliable. Many snowboarders fall, even while using a stomp pad, because their foot slips from the stomp pad. Furthermore, a stomp pad may not allow a snowboarder to perform more complicated one-footed tricks, which may rely on a snowboarder's foot being secured, but easily unsecured, and vice versa, from the snowboard.
Embodiments of the present disclosure address the above challenges by providing a snowboard hook (also referred to herein as a “snowboard binding hook” for convenience). A snowboard hook may allow a snowboarder to easily and quickly secure and unsecure one or both feet from snowboard bindings, while maintaining a high level of security since the snowboard hook extends over the top of a snowboarder's boot.
In one embodiment, a snowboard hook may include a flat bottom component, to be secured to a top surface of a snowboard, and a curved top component, wherein a bottom edge of the curved top component is orthogonally coupled to a first edge of the flat bottom component. The curved top component may include: a vertical portion, including the bottom edge of the curved top component; and a horizontal portion. The horizontal portion may extend in a curved manner from the vertical portion to an approximately horizontal position near a top edge of the curved top component. Various other embodiments of the snowboard hook (e.g., attached directly to bindings, included as part of bindings, etc.) are also presented herein.
The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of the claimed disclosure. However, various aspects of the disclosed embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices and methods are omitted so as not to obscure the description of the present disclosure with unnecessary detail. Furthermore, while the present embodiments described herein reference a snowboard hook of a particular shape and having particular dimensions for convenience, the embodiments described herein relate to any shape and size snowboard hook.
A bottom edge 105 of the top component 104 may be orthogonally coupled to (e.g., joined with, fastened to, etc.) a first edge (or top surface) 107 of the flat bottom component. It should be noted that the bottom component 102 and the top component 104 may be manufactured as one component. The differentiation between bottom component 102 and top component 104 as referenced herein may be solely for convenience in describing various areas of the snowboard hook. Alternatively, the bottom component 102 and the top component 104 may be separately manufactured and later combined.
In one embodiment, the top component 104 includes a vertical portion 109 and a horizontal portion 111. It should be noted that the vertical portion 109 and the horizontal portion 111 may be manufactured as one component. The differentiation between vertical portion 109 and the horizontal portion 111 as referenced herein may be solely for convenience in describing various areas of the snowboard hook. Alternatively, the vertical portion 109 and the horizontal portion 111 may be separately manufactured and later combined. In one embodiment, vertical portion 109 and the horizontal portion 111 may be separate components, joined via a locking or non-locking hinge. Advantageously, having a hinge between vertical portion 109 and the horizontal portion 111 may allow horizontal portion 111 to be stored in a vertical position and used in a horizontal position when desired.
In one embodiment, the horizontal portion 111 protrudes (e.g., extends) in a curved manner from the vertical portion 109 to an approximately horizontal position near a top edge 106 of the curved top component 104. In one embodiment, top edge 106 is opposite bottom edge 105, as shown. Top edge 106 may be shorter than bottom edge 105, such that top component 104 tapers in width from bottom edge 105 to top edge 106.
As described herein, top component 104 may be design with dimensions such that a snowboarder's boot may be held in place against vertical portion 109 and under horizontal portion 111. The specific curvature radius of the top component 104 may be any dimension, to accommodate boots of various sizes. In one example, the curvature radius may be in the range of five to ten inches. In another embodiment, any other curvature radius may be used. In yet another embodiment, top component 104 may have a non-uniform curve (e.g., one not described by a single curvature radius). Snowboard hook 100a may include various other components and features, as described with respect to
In one embodiment, snowboard hook 100b includes flat bottom component 102 and curved top component 104. Snowboard hook 100b may include holes (e.g., voids) of various oblong sizes 103a, 103b. Advantageously, having oblong voids 103a, 103b may allow for fine-tuned positional adjustment of snowboard hook 100b on a snowboard. In one embodiment, top component 104 may include one or more weight-saving voids (e.g., 108a, 108b). Advantageously, weight-saving voids may allow for lighter weight of snowboard hook 100b while preserving structural integrity. In one embodiment, snowboard hook 100b may include one or more support components 110a, 110b coupled between the flat bottom component 102 and the curved top component 104. Advantageously, support components 110a, 110b may provide additional structural support to top component 104.
In one embodiment, bottom component 102 may include a second edge 112, opposite the first edge (e.g., 105 of
In one embodiment, curved component 304 may include a horizontal portion. In one embodiment, the vertical portion and the horizontal portion are coupled via a hinge. In another embodiment, the vertical portion and the horizontal portion are merely two areas of a single component. The horizontal portion may protrude (extend) in a curved manner from the vertical portion to an approximately horizontal position near a top edge. The curved component 304 may include one or more weight-saving voids 312. In one embodiment, the curved component 304 may include a top edge, opposite a bottom edge near the securing components (310), where the top edge is shorter than the bottom edge.
The various components of the snowboard hook may comprise various construction materials. For example, the snowboard hook components may be constructed from of any rigid or semi rigid plastic material, injection mold plastic, 3-D printed plastic, wood, fiberglass, metal, cardboard, foam, etc. Various coatings and/or coverings such as felt, adhesive rubber, rubberized paint, plastic, glass, foam, etc., may be applied to a base construction material. Furthermore, any fastener and adhesive type may be used in place of the fasteners described herein for convenience.
It should be noted that although the present disclosure makes reference to a “snowboard” and a “snowboard bindings,” “bindings,” “snowboard boots,” “boots,” etc., such references are merely to aid in the understanding of the present disclosure and are not a part of, nor required to be present for complete operation of the embodiments described herein.
In the description herein, numerous specific details are set forth, such as examples of specific hardware structures, specific architectural and micro architectural details, specific components, specific measurements/heights, etc. in order to provide a thorough understanding of the present disclosure. It will be apparent, however, that these specific details need not be employed to practice the present disclosure. In other instances, well known components or methods, such as specific and alternative construction materials, dimensions, shapes, sizes, functions and other specific details of the snowboard binding hook described herein have not been described in detail in order to avoid unnecessarily obscuring the present disclosure.
Use of the phrases ‘to,’ ‘capable of/to,’ and or ‘operable to,’ in one implementation, refers to some apparatus, system, component, component, and/or element designed in such a way to enable use of the apparatus, system, component, component, and/or element in a specified manner. Note as above that use of ‘to,’ ‘capable to,’ or ‘operable to,’ in one implementation, refers to the latent state of an apparatus where the apparatus is not operating but is designed in such a manner to enable use of an apparatus in a specified manner.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” on “in some embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiment.
In the foregoing specification, a detailed description has been given with reference to specific exemplary implementations. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense. Furthermore, the foregoing use of implementation and other exemplarily language does not necessarily refer to the same implementation or the same example, but may refer to different and distinct implementations, as well as potentially the same implementation.
The words “example” or “exemplary” are used herein to mean serving as an example, instance or illustration. Any aspect or design described herein as “example’ or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an embodiment” or “one embodiment” or “an embodiment” or “one embodiment” throughout is not intended to mean the same embodiment or embodiment unless described as such. Also, the terms “first,” “second,” “third,” “fourth,” etc. as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.
Number | Name | Date | Kind |
---|---|---|---|
5356159 | Butterfield | Oct 1994 | A |
6290260 | Brill | Sep 2001 | B1 |
7219930 | Kiernan | May 2007 | B2 |
20040032122 | Giannulli | Feb 2004 | A1 |
20100283226 | Metchik | Nov 2010 | A1 |
20150290525 | Hofmann | Oct 2015 | A1 |
20160030830 | Rice | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190262693 A1 | Aug 2019 | US |