This invention relates generally to a snowboard mounting system, and more specifically to a snowboard mounting system for coupling at least one snowboard binding to a snowboard in a free-spinning state.
In snowboarding, the rider stands on a snowboard board with their left or right foot forward and both feet directed toward the same side of the board. The rider generally wears snowboarding footwear that may be strapped into snowboard bindings already attached to the snowboard. Alternatively, the snowboarding footwear may include a rod or other type of attachment device that locks to the snowboard by a stepping action of the rider. In either event, the rider's feet are generally non-releasable and thus are fixed to the board translationally and rotationally.
Several different types of binding systems are known in the art, as represented by the binding systems shown in U.S. Pat. Nos. 5,354,088; 5,236,216; 5,190,311; 5,044,654; 4,964,649; 4,871,337. Two types of bindings are most commonly used in snowboarding: the high-back and the plate. The high-back binding is characterized by a vertical plastic back piece which is used to apply pressure to the heel-side of the board. The plate, or step-in, binding is used with a hard shell boot much like a ski binding, but it is non-releasable.
Most people who use snowboards recreationally prefer to have the front foot positioned at an angle (e.g., approximately 45 degrees or more) with respect to a longitudinal axis of the snowboard. When crossing various types of terrain, the rider typically releases the rear boot and uses it to push along while keeping the front foot connected to the snowboard. The types of terrain where this release and pushing maneuver is required may include, but is not limited to, saddles, generally flat terrain, vehicle tracks, and lift lines. These differing terrain conditions require different maneuvering speeds and generally as the speed decreases the more difficult it becomes for the rider to control the snowboard. For the lift lines in particular, the front foot remains fixed to the board at an awkward angle and results an uncomfortable torsional stress on the rider. Once on the chair lift, the inconvenient angle of the rider's foot often causes the snowboard to interfere with adjacent passengers. To avoid this, the rider may have to uncomfortably twist to compensate for the angle of the snowboard.
Preferred and alternative examples of the present invention are described in detail below with reference to the following drawings:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details or with various combinations of these details. In other instances, well-known systems and methods associated with, but not necessarily limited to, snowboards, snowboard bindings, mounting systems for attaching a snowboard binding to a snowboard and methods for operating the same may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention.
One aspect of the present invention is generally directed to a mounting system for attaching a snowboard binding to a snowboard, and more specifically for permitting the binding to be selectively rotatable relative to the snowboard. In one example, the snowboard mounting system includes a first engagement member fixed to a snowboard. The first engagement member includes a receiving portion. A second engagement member is attachable to a snowboard binding and includes an insertable portion that is selectively and releasably engageable by the receiving portion of the first engagement member. During use, an engaged position for the system includes the second engagement member coupled to the first engagement member and a disengaged position includes the second engagement member being at least rotatable with respect to the first engagement member.
In another example, a snowboard mounting system includes a first engagement member fixed to a snowboard and the first engagement member includes a channel with a receiving portion. A second engagement member is attachable to a snowboard binding and includes a body with a toe portion and a heal portion that are each releasably engageable with the channel of the first engagement member. A riding position of the snowboard includes the second engagement member vertically fixed and rotationally free with respect to the first engagement member.
In yet another example, a snowboard mounting system includes a first engagement plate attachable to a snowboard. The first engagement plate includes a lip portion arranged with a body portion to form a channel and the lip portion includes a slot open to the channel. The system further includes a snowboard binding configured to receive a footwear item. In addition, the system includes a second engagement plate attachable to the snowboard binding. The second engagement plate includes first and second protruding portions. The first protruding portion is configured to be received in the slot of the first engagement plate and the second protruding portion is configured with a thickness to be received in the channel beneath the lip portion of the first engagement plate. The first and second protruding portions are securable within the channel after the first protruding portion is rotated out of alignment with the slot.
The mounting system 106 includes a binding member 108 and a board member 110. The binding member 108 may be attached or otherwise coupled to the binding 102 with fasteners or some other equivalent mechanical means. For example, the binding member 108 may be riveted to the binding 102 using rivets 112 through openings 114 and 116, respectively. Likewise, the board member 110 may be attached or otherwise coupled to the snowboard 104 via similar mechanical means. For purposes of clarity, the fasteners for coupling the board member 110 to the snowboard 104 are not shown in the illustrated embodiment; however such fasteners would be placed in openings 118 and 120, respectively. In one embodiment, the snowboard 104 may include a recessed portion 122 configured to receive the board member 110.
The binding member 108 includes a body 124 coupled to a front engagement member 126 and a rear engagement member 128. As shown in
The body 124 of the binding member 108 includes an outer perimeter 142 sized to be received into the inner perimeter 136 of the board member 110. The front engagement member 126 may take a variety of shapes and includes a thickness configured to be received within the channel width 144 (
In operation, a rider attaches their foot to the binding 102 (
During operation, the rider steps onto the board member 204 and their foot is permitted to swivel or rotate relative to the snowboard while the detent pin 212 is urged against a surface 220 of the binding member 202. When the rider desires to move into a riding position, the rider orients their foot such that the detent pin 212 is received in the opening of the board member 202. To move back into a free rotational position or a release position, the rider generates tension on the cable 218, and this in turn pulls the detent pin 212 away from engagement with the board member 202.
The board member 304 includes a body 312 coupled to or integrally formed with a rod 314 positioned near a fore portion of the body 312. The board member 314 further includes a locking assembly 316 that takes the form of a C-shaped channel 318 with a spring-loaded plate assembly 320 located within the channel 318.
In operation, the rider places the front engagement member 308 under the rod 314 and uses leverage to urge the rear engagement member 310 into the locking assembly 316. The shape of the rear engagement member 310, the head portion in particular, urges the first and second members 322, 324 apart against the biasing force supplied by the spring members 328, 330. The first and second members 322, 324 are then urged onto the neck portion of the rear engagement member 310 to secure the binding member 302 to the board member 304.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.