The invention generally relates to a snowboard training support apparatus.
The sport of snowboarding is one of the most popular winter sports. Many enjoy the winter activity, however, there is a large learning curve to the sport. If you go to a ski resort, it is very common to see beginner snowboarders sitting all over the ski slope, or repeatedly standing and falling over and over. This propensity to fall is common in beginners as they attempt to learn how to lean the board far enough to be able to engage the board's edges and carve into the snow while maintaining balance. Since it is very common to fall when learning proper technique, beginners often attempt to avoid learning these techniques. As a result, it is also common to see beginners going straight down the mountain without carving. However, trying to remain on the flat portion of your board usually results in picking up speed rapidly and then catching an edge of the board, which only leads to larger falls and an even slower learning progression. As a result, many beginners have a disappointing first day snowboarding, and many even quit after this experience. Traditionally, the only option available to beginner snowboarders is to take numerous lessons, which can be very expensive.
The overall customer needs for the beginner snowboarder are to learn to snowboard incrementally, safely, and inexpensively. Specifically, in order to learn incrementally, the beginner needs to be able to learn in stages of progressing difficulty. In order to learn safely, the beginner needs to fall less often. The present invention seeks to solve these issues.
Unfortunately, due to habitualization, this problem has largely been ignored. There have been a few inventions such as U.S. patent application Ser. No. 09/917,387 and U.S. patent application Ser. No. 09/251,389, which were created in order to attempt to mitigate similar issues. However, both of these inventions create constraints unnatural to snowboarding and do not prevent the rider from falling when they lean too far uphill. In addition, patents WO1991011230 and KR101632608B1 describe devices that are specific to skiing and would not be applicable to a snowboard since they would affect the ability of the rider to carve and lean the board. The snowboarding platform is unique in that the rider needs to lean uphill and dig the board's edge into the snow in order to turn.
The present invention seeks to improve upon and introduce an innovative approach to solving the issues of teaching beginners how to snowboard. Through observations, it was noticed that several people attempted to help beginners learn to snowboard by providing them physical support as they learned how to balance. Unfortunately, since the person providing support is typically on either a snowboard or skis, these attempts were largely unsuccessful.
The current invention is designed to provide a physical support to beginner snowboarders in order to aid in the development of proper technique and incremental learning
The support apparatus attaches to the snowboard in order to aid the rider without any needed input from the rider, so that the rider can focus on learning, and can learn with the least unconventional constraints possible. In addition, the support apparatus device is attached to the board without the need of any modification to the rider's equipment. The support apparatus features sliding members that extend from the base of the support apparatus, which is attached to the snowboard. The sliding member is set at an angle to allow the board to lean before the sliding member comes in contact with the snow. This allows the user to lean to a certain degree before the sliding member contacts the snow and provides a force to help the rider balance.
This angle can be adjusted in order to allow the rider to lean the board farther before receiving support from the support apparatus. In this way the rider can incrementally increase the angle, allowing him or her to become more accustomed with leaning the board and carving, while still having an added support if he or she loses his or her balance.
Once the rider is comfortable with leaning the board, balancing, and carving, and no longer feels the need for the added support and the support apparatus, the support apparatus can be easily detached and the snowboard will return to its original configuration. These and other objects, features and advantages of the invention will become more apparent in view of the within detailed descriptions of the invention, the claims, and in light of the following drawings wherein reference numerals may be reused where appropriate to indicate a correspondence between the referenced items. It should be understood that the sizes and shapes of the different components in the figures may not be in exact proportion and are shown here just for visual clarity and for purposes of explanation. It is also to be understood that the specific embodiments of the present invention that have been described herein are merely illustrative of certain applications of the principles of the present invention. It should further be understood that the geometry, compositions, values, and dimensions of the components described herein can be modified within the scope of the invention and are not generally intended to be exclusive.
It is an object of the invention to create an apparatus, which attaches to the board 1 so as to be able to provide support to the rider 9 without any other input. For example, no other human is needed to operate the device for the user, and the user does not need to do anything while riding to utilize the device. In this way the user is able to focus solely on the task of learning, and the device will act on its own.
It is a further object of the invention that the device creates a physical support, which can be incrementally adjusted to allow the board 1 and rider 9 to lean to an increased angle before the sliding member 4 comes in contact with the ground 10. When the sliding member 4 comes in contact with the ground 10, the device provides support to the rider 9. This is due to the fact that the sliding member 4 creates a force, which acts to resist further motion of the board 1 in an angular direction, thereby keeping the board 1 from leaning any further. This force acts against the rider 9 and provides them an added support and level of stability.
As can be seen in
As can be seen in
In one embodiment of the invention, the rider 9 will first remove the bindings from their snowboard 1. They will then align the support apparatus 2 with the holes in the binding insert disc and use fasteners 8 to attach the support apparatus 2 to the board 1 under a respective binding 5. The support apparatus 2 features hole patterns to allow it to interface with all major binding insert disc patterns, allowing the support apparatus 2 to be used universally on all snowboards. The design can be adjusted in length to account for various snowboard widths, and also in width to adjust for various binding and snowboard widths. After this the rider 9 will select their corresponding skill level by moving the arm 3 and sliding member 4 to the desired angle Θ relative to the snowboard 1. This method of adjustment can be seen in
One embodiment of the design, which can be seen in
In addition, there are several alternate configurations for the design, several of which will be mentioned here. First, the support apparatus 2 can be attached to the snowboard 1 in several manners other than being fastened to the snowboard 1 with the corresponding binding insert disc holes, such as being mounted to the snowboard 1 with hardware, being mounted to the bindings 5, being integrated into the bindings 5, being mounted to the snowboard 1 with suction, being clamped to the snowboard 1, and various other methods. The object of this invention is to attach to the snowboard 1 or the bindings 5 (e.g., the front binding or back binding), in a manner that allows the support apparatus 2 to provide support to the rider. In addition, the support apparatus itself can either be designed in a manner which allows all board and bindings to fit on the support apparatus 2, or the invention can be designed to be able to adjust to fit all bindings and boards universally, or it can be designed for one specific size snowboard or binding. Another aspect of the design that can be altered is the adjustment between the various skill levels. The main object of the invention is to allow the rider 9 to adjust the angle Θ of the arm 3 and sliding member 4 relative to the top surface 16 of the snowboard 1. In addition, springs or dampeners can be used to aid in dampening the impact of the rider 9 leaning against the sliding member 4 suddenly and to provide a variable level of support, which increases its supportive force as the rider 9 leans. In addition, there are various methods besides those mentioned here for adjusting the heights of the supports and locking them into position. The materials and manufacturing methods for this support apparatus 2 device can be adjusted in order to provide the ideal level of stiffness, strength, and mass. The support apparatus 2 can also be designed to set the arm 3 and sliding member 4 at a fixed angle Θ relative to the top surface 16 of the snowboard 1, which cannot be adjusted.
Finally the design can be adjusted to either constitute two separate support apparatuses attached to the snowboard 1 or (front or back) binding 5, which each have one sliding member 4 extending from each side of the snowboard 1, or one larger support apparatus, which can be attached to either the snowboard 1, or (front or back) binding 5, which features one sliding member 4 extending off of each side of the snowboard 1, in between the (front and back) bindings 5. The idea for this sort of support apparatus may apply to areas outside of snowboarding and can be used in a similar manner for learning other board sports or other applications. As previously stated, it is to be understood that the specific embodiments of the present invention that have been described herein are merely illustrative of certain applications of the principles of the present invention. It should further be understood that the geometry, compositions, values, and dimensions of the components described herein can be modified within the scope of the invention and are not generally intended to be exclusive.
This application claims priority of U.S. Provisional Application 62/468,902, which was filed on Mar. 8, 2017, and hereby incorporates the subject matter of the provisional application in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3542389 | Stiller | Nov 1970 | A |
4911461 | Humphrey | Mar 1990 | A |
4986561 | Humphrey | Jan 1991 | A |
5312258 | Giorgio | May 1994 | A |
5370415 | Humphrey | Dec 1994 | A |
6007101 | Pritchard | Dec 1999 | A |
6264215 | Carlson | Jul 2001 | B1 |
6308978 | Kelman | Oct 2001 | B1 |
6592150 | Kernan | Jul 2003 | B2 |
6626443 | Lafond | Sep 2003 | B2 |
6634657 | Graham | Oct 2003 | B2 |
6695323 | Backlund | Feb 2004 | B2 |
6767313 | Sayce | Jul 2004 | B2 |
7137925 | Rozycki | Nov 2006 | B2 |
7281729 | Wilson | Oct 2007 | B1 |
8096563 | Buchwald | Jan 2012 | B2 |
8157285 | Wasserman | Apr 2012 | B2 |
8286989 | Wasserman | Oct 2012 | B2 |
8529268 | Coleman | Sep 2013 | B2 |
9232829 | Breach | Jan 2016 | B2 |
9545561 | Edmonston | Jan 2017 | B2 |
10238942 | Dalton | Mar 2019 | B2 |
10315097 | Wood, V | Jun 2019 | B2 |
10549175 | Arcouette | Feb 2020 | B2 |
10625139 | Tickner | Apr 2020 | B2 |
10695653 | Flowers | Jun 2020 | B2 |
10754682 | Bradford, III | Aug 2020 | B2 |
20060071449 | Backlund | Apr 2006 | A1 |
20070075524 | Kelly | Apr 2007 | A1 |
20070254781 | MacCarron | Nov 2007 | A1 |
20160089591 | Williamson | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180256956 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62468902 | Mar 2017 | US |