This invention relates to the provision of hinged sideblades on snowplows, and to the manner in which sideblades are mounted and actuated for pivoting. Often, it is desired that the sideblades can be rotated through 180 degrees, from full forward to full back, and to any angle therebetween. It is also desired that the left and right sideblades can be rotated independently.
Traditionally, such sideblades have been actuated by conventional linear hydraulic rams and associated levers. However, it is difficult to provide a full 180 degrees of arcuate travel by means of linear rams and levers. Some designers have resorted to double ram/lever arrangements, which are expensive and intricate.
Instead of an arrangement of rams and levers, in the designs as depicted herein a rotary actuator is employed for the purpose of rotating the sideblade. A rotary actuator is a standard proprietary item; in the typical hydraulic version, a rotary actuator contains a hydraulic rain, which drives a piston having helical splines. A complementarily-grooved rotor sleeve fits within the piston, whereby the sleeve rotates when the ram is pressurised. The machine component to be rotated is bolted to the rotor sleeve.
Rotary actuators are sold for use in hydraulic equipment. Typically, the rotary actuator includes a housing or casing that is bolted to the fixed frame of the equipment. The component to be rotated rotates with the rotor sleeve about an axis defined by bearings housed inside the actuator unit, the axis of the bearings being (usually) the same as the operational axis of the ram.
A rotary actuator—as that expression is used herein—should be contrasted with a motor. A motor is capable of spinning continuously at so many revolutions per minute, whereas a rotary actuator is capable only of a limited arcuate movement about its rotary axis. The rotor sleeve of a rotary actuator (to which the component to be rotated is attached) cannot move beyond that arc, i.e cannot spin continuously.
A conventional rotary actuator has its own bearings, inside the housing of the actuator. In the conventional applications of the rotary actuator, it has been traditional to use the bearings already provided in the rotary actuator as the only bearings needed to support the rotary component. This is fine, if the loading on the rotating component is more or less a pure torque, without heavy journal loading. Thus, the use of rotary actuators, though not confined to pure-torque, or almost pure-torque, applications (in which the journal or radial loading is small), have been used therein. On the other hand, the bearings inside the actuator housing are (or could be) robust enough, and design applications in which the bearings are called upon to support substantial journal loading are not unknown.
Typically, in a snowplow sideblade application, the sideblade rotates about a vertical axis. The expression “vertical axis” should be understood as including cases where the rotary axis is actually at a measurable angle relative to the vertical, but where the rotary axis has a predominating vertical component.
The sideblade, like any snowplow blade, is inevitably subjected to occasional very large abusive impacts. These can occur when the sideblade strikes a kerb, or a manhole-cover, etc. These impacts do indeed transmit heavy journal loading into the (vertical) sideblade bearings.
It is recognised that such violent abusive loads occur often enough that, if a hydraulic rotary actuator were subjected to the brunt of the violence, the length of the service life of the rotary actuator might not be satisfactory. It was an aim, in the designs as depicted herein, to isolate and protect the rotary actuator from the violent impacts that are inflicted upon the sideblade.
By way of further explanation, examples will now be described with reference to the accompanying drawings, in which:
a is a close-up of a portion of
The apparatuses shown in the accompanying drawings and described herein are examples. The scope of the patent protection sought is defined by the accompanying claims, and not necessarily by specific features of the examples.
As shown in
Sometimes, it is desired to increase the effective width of a snowplow, especially rightwards, and a right sideblade 27 is shown extending from the mainblade 29, in order to increase the width or reach of the snowplow, in that direction.
Sometimes, also, it can be a problem that some snow might spill off to the left of the mainblade 29. To inhibit this, in
Other orientations of the left and right sideblades can be required in other circumstances, and the sideblades 27,30 are rotatable each through 180°, as indicated by the arcuate arrows, relative to the mainblade 29. The orientations of the left and right sideblades are controllable by the driver, using appropriate hydraulic flow control valves (not shown). The valves control flow to the ports of right and left rotary actuators, which are described below.
As shown in
The right sideblade 27 can be considered to be at least partially protected by its hinged, sprung, underblade, against violent impacts due to road-objects striking that underblade. However, the left sideblade 30 is not protected, or not so well-protected, by its hinged, sprung, underblade 30U, because an impact would strike end-on against the leading edge of that left underblade. It is impacts like that that can cause the bearings in a rotary actuator to deteriorate, if those impacts were felt by the actuator.
The violent impact is felt mainly by the bottom regions of the sideblade hinge structure. In the designs depicted herein, the vertical axis 32 about which the sideblade pivots is defined by two spaced bearings, i.e an upper hinge bearing 43 and a lower hinge bearing 45. The lower hinge bearing 45 is the subject of
The lower hinge bearing 45 includes a main hinge leaf 45M, attached to the main blade 29B, and a side hinge leaf 45S, attached to the left side blade 30B. A hinge-pin 49 connects the two hinge leaves.
The main leaf 45M of the lower hinge 45 includes a main bracket 50. The main bracket 50 is welded to an endplate 52 of the mainblade 29. The bracket 50 is also welded to a bolster 54, which runs the width of the mainblade (and on which are mounted the bearings that define the pivot axis 29A). The main bracket 50 carries upper and lower cylindrical tubes 56,57, into which have been pressed cylindrical bearing-rings 58,59. The bearing-rings are a running fit over the hinge-pin 49.
The side leaf 45S of the lower hinge includes a side bracket 60. The side bracket 60 is welded to the blade 30B of the left sideblade 30. The side bracket 60 is also welded to a reinforcing strut 63 of the blade 30B. The side bracket 60 carries upper and lower cylindrical tubes 64,65, into which have been pressed cylindrical bearing-rings 67,68. Again, these bearing-rings are a running fit over the hinge-pin 49. The bearing rings 58,59,67,68 are of suitable bearing material, preferably a metal such as a bronze-based bearing metal, although a plastic material such as (filled) PTFE may be considered.
Collars 70 are clamped to the hinge-pin 49, and serve to locate the hinge-pin 49 in a vertical sense in the lower hinge 45.
The function of the main bracket 50 is to ensure that the bearing-rings 58,59 are functionally unitary with the main blade 29B. The designer should see to it that the cylindrical tubes 56,57 are supported solidly and rigidly with respect to the blade 29B, and should provide such brackets, struts, reinforcements, etc, as are required to ensure that this is so. The extent to which the tubes and the blade should be solid and rigid with respect to each other is such that the tubes and blade remain mutually solid and rigid, even when subjected to the largest abusive forces that the snowplow as a whole is designed to encounter. The same applies to the solidity and rigidity with which the cylindrical tubes 64,65 are supported with respect to the side blade 29B.
The main bracket 50 carries two spaced tubes 56,57, and the side bracket 60 carries two spaced tubes 64,65. These four tubes are arranged geometrically so as to intercalate, one above another, as shown. This arrangement gives the best support for the pin 49, and for the lower hinge 45 as a whole. The bending stresses on the pin would be higher if only one tube per leaf were provided, or if one leaf had two tubes and the other leaf had only one. The higher the bending stresses on the hinge-pin, the thicker the hinge-pin would have to be, and the more robust the supporting tubes and brackets would have to be. More than two cylindrical tubes per leaf of the hinge would be incrementally better still, from the stress standpoint, but the increment would be small.
The upper hinge bearing 43 comprises the bearings inside the rotary actuator 47. The presence of the lower hinge 45 is a preferred feature of the designs as depicted herein, in that the presence of the highly-robust lower hinge 45 means that the bearings inside the rotary actuator 47 are protected from the violent impacts and abusive loads that the snowplow will inevitably encounter.
It is also preferred that the rotary actuator 47 be provided as the upper hinge, not the lower hinge. If the rotary actuator were to form the lower hinge, the bearings in the rotary actuator would not be isolated and protected nearly so effectively from the violent impacts against the bottom regions of the sideblade.
The housing of the rotary actuator is bolted to the endplate 52 of the mainblade 29, using the prepared bolt-holes 72 as shown in
In
The structure and operation of the rotary actuator 47 will now be described with reference to
The actuator includes a hydraulic piston 85, which reciprocates in a cylinder 87. On the left of
The internal female splines 94 on the skirt 92 engage the male splines 103 on the rotor sleeve 78. The internal and external splines 94,96 are of opposite hand, whereby the sleeve 78 rotates through an overall angle of arc that is determined by the sum of the respective helical lead angles of the two splines. The rotor sleeve 78 cannot move axially with respect to the housing 100, being confined between thrust bearings 105,106. The rotor sleeve 78 is guided for rotation in the housing 100 in journal bearings 108,109. Thus, the structure of the hydraulic rotary actuator 47 is such that the sleeve 78 rotates in a single-plane circle when relatively pressurised hydraulic fluid is applied to one of the ports 89,90.
As shown in
The extent of the arcuate travel of the rotor sleeve 78 is determined by the geometry of the actuator. In the particular example, the axial length of travel of the piston 85, and the lead angles of the two helical splines, is such that the rotor sleeve is designed to undergo a maximum arcuate travel of 180°, as the piston is driven from top to bottom of its available travel within the cylinder 87.
It will be understood that the bearings 105,106,108,109 in the rotary actuator are not intended or designed to cope with violent abusive loadings. The bearings can be plain, as shown, and of nylon, bronze, etc, as required. The bearings 105,106,108,109 are designed to cope with the axial and radial loads that are applied to the bearings as a result of the torque that is generated in the sleeve due to the applied hydraulic pressure. Of course, the prudent designer of the actuator provides a margin of tolerance, by which the bearing capacity is sufficient to provide a long service life, but it is recognised that the kind and size of the bearings normally encountered in a hydraulic rotary actuator, by themselves, fall well short of the robustness needed to support a hinging sideblade of a snowplow.
The radially-projected bearing area of the journal bearings 108,109 in the rotary actuator (i.e in the upper hinge 43) may be compared with the radially-projected bearing area of the bearing rings 67,68 in the lower hinge 45. It is apparent, from the difference in size, that the load capacity of the lower hinge is an order of magnitude greater than the load capacity of the bearings 108,109 in the actuator. It might be possible for a rotary actuator to be designed in which the load capacity of the journal bearings was the equal of the load capacity of the lower hinge 45; however, it can easily be seen how such an increased load capacity would entail some very radical changes to the structure (and to the cost) of the rotary actuator. Providing a lower hinge 45 of hugely increased load capacity, as compared with the actuator, means that the standard conventional rotary actuators can be used in the snowplow blade application as described herein, without modification and without damage.
Because of the new arrangement as described herein, only the lower hinge 45 suffers the effects of the impacts on the snowplow sideblade. The relatively puny bearings 108,109 in the rotary actuator 47 are substantially protected from impacts by the provision of the relatively huge bearings in the lower hinge 45. It is a simple matter to design the bearings of the lower hinge to be robust enough to take the heavy impacts. Thus it is recognised that, in the snowplow application, it would be much less preferred to provide just the rotary actuator as the sole hinge bearing, with no supplementary hinge bearing.
It will be recognised from the drawings that providing the hinge bearings with the high degree of robustness as described is achieved without resorting to hydraulic rams and linkages. The rotary actuator has a neat, compact form, and is much less likely to be damaged, in the abusive snowplow environment, than an equivalent rams-and-linkage type of rotation-producing mechanism. Also, the rotary actuator bearing fixed to the mainblade, the hydraulic hose and lines to the rotary actuator do not move, relative to the mainblade, during operation—which means that flexible hoses—which are expensive and vulnerable to damage—can be reduced or even eliminated.
The proprietary rotary actuator, though an expensive item in itself, actually can work out cheaper, in overall money terms, than the equivalent linear ram(s) and associated linkage. Also, the rotary actuator is small and neat—being hugely different, in that respect, from the ram-and-linkage equivalent.
An shown, preferably the snowplow includes both left and right sideblades, of which both can pivot through 180°. However, the rotary actuator can be used in the manner described herein in a snowplow that has only one sideblade.
The particular rotary actuators shown in
It s recognised that the following dangerous condition might arise. If the mainblade 29 is pivoted clockwise relative to the frame, and the sideblade 27 is pivoted clockwise relative to the mainblade 29, possibly the sideblade 27 might strike the wheel or tire of the vehicle. That is to say: if the two pivoting movements were allowed to go, together, to their full clockwise limits, the right sideblade would strike the right wheel. (The same condition might arise in respect of the left side wheel, but that is less likely, in practice.)
In
To alleviate this possible danger, a wheel-protection link 120 has been incorporated into the design. The function of the wheel-protection link 120 is to block any further movement of the sideblade 27 towards the wheel 121. Similarly, the left side wheel-protection link 134 protects the left wheel from being contacted by the left side-blade 30.
The wheel-protection link 120 incorporates a sliding lost-motion connection 122, in which a rod 123 slides in a sleeve 125 of the link. The end 129 of the rod forms an abutment, and the deep end 130 of the sleeve forms a stop. If the abutment 129 were to strike the stop 130, further movement of the sideblade 27 in the clockwise direction would then be blocked.
In
It will be understood that further (clockwise movement of the mainblade 29, from the condition shown in
The mainblade 29 pivots relative to the vehicle on its main pivot, at 136, located on the frame 132, which is solidly attached to the vehicle. The wheel-protection link 120 is pivoted, at link-frame pivot 138, to the frame. The link-frame pivot 138 is located a distance D to the rear of the mainblade-frame pivot 136. The other end of the wheel-protection link is pivoted, at 140, to an arm 141, which is solid with the side-blade 27.
The effect of this configuration is that, as the main-blade 29 angles clockwise, the wheel-protection link 120, as a whole, follows that clockwise movement. As a result of the spacing D of the two pivots 136,138, the link-sideblade pivot 140 moves to the right, relative to the mainblade, as the main-blade rotates clockwise about the mainblade-frame pivot 136.
As described, the angle of the side-blade 27 relative to the main-blade 29 is controlled by the hydraulic rotary actuator 47. Incorporated into the hydraulic circuit associated with the actuator 47 is a pressure-sensing cross-over valve. This (conventional) valve has the ability to allow fluid to pass from the upper chamber 145 of the actuator 47 into the lower chamber 147, or vice versa, when the pressure between the two chambers exceeds a pre-determined maximum. If the side-blade 27 should start to approach too closely to the wheel 121, and the lost-motion connection 122 bottoms out, the force transmitted through the wheel-protection link 120 to the side-blade 27 does give rise to such a pressure differential between the two chambers. Therefore, the side-blade 27 can and does rotate away from the wheel 121.
The pressure-sensing crossover-valve is provided in any case, in the system, to allow the sideblade 27 to break back from the mainblade 29 without incurring damage—if the sideblade 27 should strike a kerb, for example.
It might, of course, be possible to trust the driver of the vehicle to control the angles of the mainblade 29 and of the sideblade 27 so carefully and competently that the sideblade 27 never would touch the wheel 121. On the other hand, without the wheel-protection link 120, it would always be possible for the driver to touch the side-blade against the wheel accidentally, perhaps due to the driver momentarily not paying attention, or lacking the proper skill, etc. The presence of the wheel-protection links 120,134 makes it impossible for the driver to move the blades to a position where touching the wheel might arise.
The wheel-protection link 120, when bottomed out, forms a solid rod, between the link-frame pivot 138 and the link-sideblade pivot 140, when the blades 29,27 are in, or are approaching, the danger position. In order to allow free rotation of the side-blade 27 at other orientations of the blades, when the danger of touching the wheels is not present, the wheel-protection link 120 has to be capable of being elongated. The lost-motion connection 122 provides this facility. The link 120 can be elongated by the rod 123 sliding out of the sleeve 125. In the
If the designer designs the wheel-protection link to be suitable for a particular size and configuration of snowplow, it is likely that the wheel-protection link will protect the wheels of every type of vehicle upon which that size and type of snowplow can be used. However, the wheel-protection link could be made adjustable, in the hands of the operator, to meet special situations. Thus, in the adjustable version, the peg 147 could be made to be adjustable as to its position along the length of the rod 123.
The wheel-protection link, as shown, might, in some cases, be difficult to accommodate in what is a premium space, between the mainblade and the vehicle; and of course there is the expense of the link itself. Alternatively, blocking the sideblade from approaching too closely to the tire can be done by other means. For example, sensors may be included, which signal the extensions of the mainblade rams 26, and the positions of the rotary actuators 47. From these signals, a simple sum of the angles indicates the approach of the danger condition. This indication car be used to trigger a hydraulic blocking valve, which prevents further movement of the rotary actuator in the direction of increasing danger.
The designer must of course see to it that the point at which the sideblade is blocked from moving closer towards the wheel is appropriate to the situation. This may be done geometrically, by laying out in a drawing, or by calculating, the positions of the pivots and the distances between them, such that the movements thereof block the sideblade appropriately.
Preferably, the geometrical layout should include the feature that the link-frame pivot 138 lies closer to the vehicle than does the mainblade pivot 136, and that the link-sideblade pivot 140 lies closer to the vehicle than does the sideblade pivot axis 32.
Number | Name | Date | Kind |
---|---|---|---|
4145825 | Bertolino | Mar 1979 | A |
4356645 | Hine et al. | Nov 1982 | A |
4384620 | Uchida et al. | May 1983 | A |
4479312 | Turgeon | Oct 1984 | A |
4926948 | Davidson et al. | May 1990 | A |
4962600 | Zellaha et al. | Oct 1990 | A |
5285588 | Niemela et al. | Feb 1994 | A |
5487428 | Yamamoto et al. | Jan 1996 | A |
5638618 | Niemela et al. | Jun 1997 | A |
5655318 | Daniels | Aug 1997 | A |
5724755 | Weagley | Mar 1998 | A |
5758728 | Regule | Jun 1998 | A |
5809672 | Jones | Sep 1998 | A |
5819444 | Desmarais | Oct 1998 | A |
5848654 | Belcher, Jr. | Dec 1998 | A |
6112145 | Zachman | Aug 2000 | A |
6112438 | Weagley | Sep 2000 | A |
6273198 | Bauer et al. | Aug 2001 | B1 |
6470604 | Foster et al. | Oct 2002 | B1 |
6523620 | Burson | Feb 2003 | B1 |
6581307 | Jones et al. | Jun 2003 | B1 |
6751894 | Verseef | Jun 2004 | B2 |
6877258 | Frey | Apr 2005 | B2 |
7100311 | Verseef | Sep 2006 | B2 |
7107710 | Savard | Sep 2006 | B2 |
7121355 | Lumpkins et al. | Oct 2006 | B2 |
7493710 | Frey et al. | Feb 2009 | B2 |
20050246926 | Verseef | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080222927 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11686645 | Mar 2007 | US |
Child | 11892688 | US |