snRNA gene-like transcriptional units and uses thereof

Information

  • Patent Grant
  • 8481708
  • Patent Number
    8,481,708
  • Date Filed
    Tuesday, September 19, 2006
    18 years ago
  • Date Issued
    Tuesday, July 9, 2013
    11 years ago
Abstract
By a computer search for upstream promoter elements (DSE, PSE) typical of small nuclear RNA (snRNA) genes, we have identified a number of previously unrecognized, putative transcription units whose predicted products are novel noncoding RNAs with homology to protein-coding genes. By elucidating the function of one of them, we provide evidence for the existence of a sense/antisense-based gene regulation network where part of the Pol III transcriptome could control its Pol II counterpart.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a 371 of PCT/112006/000664, filed Sep. 19, 2006, which claims the benefit of Italian patent application RM2005A000475, filed Sep. 19, 2005, the contents of each of which are incorporated herein by reference.


The instant invention concerns sequences transcribed by the RNA polymerase III type III and their use for medicine, agronomy and biotechnology.


The author has identified an unknown transcription of encoding and unpolyadenylated genome elements that are synthesized by means of RNA Pol III type III promoters or of very similar elements. Other than their identification and molecular characterization, said new transcription units were functionally analyzed and their regulative features were identified. Each transcription unit is functionally related to a specific RNA Pol II transcripts giving rise to specific sense/antisense sequence molecules.


BACKGROUND ART

Recent advances in mammalian genome studies are bringing to light the occurrence of a widespread transcription of non-coding (nc) regions devoted to the regulation of the protein coding genome expression [1-4]. The mechanisms of action of these transcripts are various and of different nature, although all of them are devoted to the regulation of fundamental genetic pathways involved in the determination of the cell phenotype. The concomitant evolution of non-coding regulatory transcripts and proteins that target different RNA:RNA or RNA:DNA complexes emphasizes the importance to study the regulatory processes mediated by nucleic acids interactions. It's now clear that either in procaryotes as well as in eukaryotes different ncRNAs can act in cis and be contemporaneously regulated in trans by other non-coding transcripts. The simultaneous occurrence of cis and trans regulatory elements bring to light the complexity of this network where the coexistence of different non-coding RNAs plays a key role in the control of other targets gene expression [5]. In this context a prominent role is played by the enlarging family of microRNAs (miRNAs) that act at post transcriptional level by inhibiting the translation of protein coding genes [6]. The known miRNAs, as protein-coding mRNAs, are synthesized as polyadenylated precursor molecules by the RNA Polymerase II transcription machinery [7]. Considering that the vast majority of the tools used in molecular biology are based on transcript collections obtained by oligo-dT RT-PCR (thus encompassing only polyadenylated RNA Polymerase II products) a wide contribution of non-polyadenylated transcripts to the human transcriptome has been shown [8]. However, the role of such transcripts in Pol II transcriptome expression regulation remains largely unexplored.


Among the non-coding elements one of the most investigated has been the Alu class of repetitive sequences that represents about one tenth of the whole human genome. Although it is not yet possible to discern a peculiar Alu's role these short transcripts has been shown to be involved in several biological processes such as RNA editing (where Alus are preferential sites for A to I RNA editing thus having profound implications either in gene expression regulation as well as in the mammalian genome evolution) [9], alternative splicing (internal exons that contain an Alu sequence are almost always alternatively spliced) [10], chromosomal recombination (the recombination between Alu elements is at the base of many genomic deletions associated with many human genetic disorders) [11], gene expression regulation (functioning as naturally occurring antisense RNAs) [12], cell stress response (such as heat shock response and/or translation inhibition) [13] and as putative miRNAs targets [14]. However, although the physiological role of Alus and all the other 7SL-derived transcripts needs to be further studied in detail, the fact that their transcription is RNA Polymerase (Pol) III-dependent bring to light a previously unexpected role in gene expression regulation of this enzyme that would need to be investigated in detail.


In this work we focus on a specific class of non-coding RNAs starting from a theoretical hypothesis on their putative function. In fact, starting from the observation that RNA Polymerase (Pol) III is specialized in transcription of non coding ncRNA genes, we postulated the presence in the genome of a large number of Pol III (or Pol III-like) transcription units each specifically regulating one (or more) specific Pol II genes, thus constituting functional “co-gene”/gene pairs.


DESCRIPTION OF THE INVENTION

Therefore it is an object of the invention a nucleic acid molecule comprising a nucleotide sequence that is characterized by:


being transcribed by an RNA polymerase III,


it does not undergone any polyadenylated tail addition (as for Pol II transcribed genes) and


it is able to modulate the expression of one or more specific RNA polymerase II-transcribed target genes.


Preferably said nucleotide sequence comprises a sequence of at least 50 nucleotides that is at least 70% identical to a fragment of one of the strands of the specific RNA polymerase II-transcribed target genes.


More preferably said sequence of at least 50 nucleotides is in a sense or an antisense configuration with respect to the fragment of one of the strands of the specific RNA polymerase II-transcribed target genes.


In a particular aspect the nucleic acid of the invention is comprised in one of the sequences from SEQ ID No. 51 to SEQ ID No. 84, preferably the sequence of at least 50 nucleotides that is at least 70% identical to a fragment of one of the strands of the specific RNA polymerase II-transcribed target gene is comprised in one the underlined fragments of the sequences from SEQ ID No. 51 to SEQ ID No. 84.


It is another object of the invention an expression vector comprising the nucleic acid according to the invention.


It is another object of the invention an array for the detection of specific nucleic acid sequences containing a repertoire of nucleic acids according to the invention.


It is another object of the invention the use of the nucleic acid according to the invention to modulate the expression of RNA polymerase II transcribed genes.


It is another object of the invention the use of the nucleic acid according to the invention to identify a target sequence for treatment and/or prevention of a molecular pathology, preferably an age related pathology, including Alzheimer disease; alternatively the pathology is caused by an alteration of cell proliferation, preferably the pathology is a tumor associated pathology.


It is another object of the invention a nucleic acid comprising at least one sequence being able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described, preferably the sequence being able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described is a promoter sequence.


In a particular aspect the sequence being able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described is comprised in one of the sequences from SEQ ID No. 51 to SEQ ID No. 84. Preferably the sequence being able to modulate the RNA polymerase III mediated expression of the nucleic acid according to claims 1 to 5 is comprised in the bold regions of sequences from SEQ ID No. 51 to SEQ ID No. 84.


It is another object of the invention the use of the nucleic acid comprising the sequence being able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described to modulate the expression of one or more specific RNA polymerase II-transcribed target genes.


It is another object of the invention the use of the nucleic acid comprising the sequence able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described to identify a target sequence for treatment and/or prevention of a molecular pathology, preferably the pathology is an age related pathology, including Alzheimer disease. Alternatively the pathology is caused by an alteration of cell proliferation, preferably the pathology is a tumor associated pathology.


It is another object of the invention a vector comprising the nucleic acid comprising the sequence able to modulate the RNA polymerase III mediated expression of the nucleic acid as above described to get expression or silencing of a RNA polymerase II transcribed specific nucleotide sequence.


The invention shall be described in the following non limitative examples, by referring to figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1) A: Human CENP-F gene structure as resulting from GI:89161185 (region 212843155-212904537). B: The position of the 21A antisense homologous regions are reported together with their percentage of identity. C: Sequence alignment of 21A/CENP-F homologous regions. The upper sequence is CENPF (SEQ ID NO. 87). The lower sequence is fragment of 21A (SEQ ID NO. 88).



FIG. 2) A: Northern Blot analysis of Human Skin Fibroblasts and HeLa cells. Results show two bands: the first (detected at about 300 nt) being the 21A endogenous product and the second (of a very high molecular mass) representing CenPF mRNA. B: 21A-specific RT-PCR amplification. As expected for non-polyadenylated transcripts an efficient amplification product was obtained only in the random hexamers-primed reactions. C: Promoter activity transfection assay. A specific luciferase silencing hairpin (SEQ ID No. 86) is transcribed by six novel PSE/DSE-dependent promoter elements (11A, 14A, 21A, 29A, 38A, 51A). pGL3+pRL: negative control; pSHAG-U6: canonical Pol III promoter; No Promoter: hairpin without PSE/DSE-dependent promoter thus resulting transcriptionally inactive. A schematic view of the silencing constructs including the hairpin nucleotide sequence is enclosed. D, E: Promoter activity transfection assay in presence/absence of 20 μM ML-60218 cell-permeable Pol III inhibitor or 10 pg/ml α-amanitin Pol II specific inhibitor. Results are reported as luciferase emission of treated versus untreated samples.



FIG. 3) A-D: Constructs structures. p21A: whole transcription unit; p21A-1: promoter region. p21A-2: transcription region; pMock; empty vector, p: PSE Element. d: DSE Element. t: TATA box. E-H: CENP-F protein expression level after 0, 24, 48 and 72 hours of constructs transfection. s: anti-CENP-F Antibody. 1: anti-Tubulin Antibody (Indicating that equal amounts of proteins were loaded). Striped columns: Quantitative determination of CENP-F expression modulation as determined by Western blot analysis. Full columns: Quantitative determination of CENP-F mRNA expression modulation as determined Real Time RT-PCR analysis. I-N: 21A RNA level in transfected samples indicating that the exogenous 21A expression inversely correlates with CENP-F protein expression. O: Dissociation curve of 21A amplification products. A: 21A-transfected HeLa cells. B: Untransfected HeLa cells showing the very low basal 21A transcription level.



FIG. 4) A: Proliferation inhibition of HeLa cells after 48 hours of 21A constructs transfection. Results emphasize the specificity of the Alu Jb-containing regions as proliferation inhibitors. B: Proliferation increase of HeLa cells after 48 hours of pAnti-21A and si21A transfection. siEx-FABP: unrelated chicken-specific siRNA (negative control). C, D: Anti-21A construct structure: the transcript region is inverted and the construct maintains 21A promoter as well as its termination site. si21A:siRNA 21A-specific. CENP-F protein expression level after 0, 24 and 48 hours of constructs transfection. s: anti-CENP-F Antibody. 1: anti-Tubulin Antibody (Indicating that equal amounts of proteins were loaded). Striped columns: Quantitative determination of CENP-F expression increase as determined by Western blot analysis. Full columns: Quantitative determination of CENP-F mRNA expression modulation as determined Real Time RT-PCR analysis.



FIG. 5) Mouse NIH-3T3 cells proliferation rate after transfection of 21A constructs. No proliferation decrease was observed.



FIG. 6) Real-Time RT PCR analysis of 21A endogenous RNA in different cell types. Striped columns: 21A RNA; Full columns: 5s rRNA. The dissociation curve of 21A amplification product in PBL is reported.



FIG. 7) Graphic representation of the total number of DSE consensus sequences in all the putative promoter sequences (Y axis) versus the distancies from their neighbouring PSE elements (as grouped in 50 bp long sequence classes) (X axis). As expected a high frequency of DSE consensus is associated to the distance of about 200 base pairs from the PSE. As evidenced by the trend line (polynomial) the DSE frequencies significantly decrease at about 800 base pairs upstream the PSE; this roughly suggests a PSE/DSE functional relationship in these putative promoters.



FIG. 8) Four transcripts (11A, 20A, 21A, 29A) showed a δG value significantly lower than all the others (δG<−100). A statistical analysis of such δG differences was performed bringing to light a group of transcripts (11A, 20A, 21A, 29A) whose δG is significantly lower than expected (Student' t TEST, 33 degrees of freedom, a significance level=0.1 corresponding to P-value 0.0001) thus keeping in line with their physiologically functional molecular organization.





MATERIALS AND METHODS
Databases and Searches

All the sequence searches and alignments were carried out taking advantage of the Basic Local Alignment Search Tool of the National Center for Biotechnology Informations (“BLAST”) at the web site for the (U.S.) National Center for Biotechnology Information. The sequences used as query were the following: H1 PSE-nCACCATAAAnGTGAAAn (SEQ ID No. 1) or nTTTCACnTTTTATGGTGn (SEQ ID No. 2), U6 PSE (Acc No: M14486) CTTACCGTAACTTGAAAGT (SEQ ID No. 3), 7SLPSE (as reported in PMID: 2011518) TTGACC-TAAGTG (SEQ ID No. 4), DSE (Oct1 consensus sequence)-ATTTGCAT (SEQ ID No. 5) or ATGCAAAT (SEQ ID No. 6) with or without a single base of mismatch.


Cell Culture, Transfection and Luciferase Assay


For transient transfections Hela cells (grown in DMEM supplemented with 10% FCS), were grown in multiwell Petri dishes 16 hours before transfection. The expression [21A, 21A(1), 21A(2), 21A(3)] constructs containing the regions of interest cloned in the pTopo vectors (Invitrogen) were introduced into the cells using the Fugene 6 transfection reagent (Roche) according to the manufacturer's instructions. A plasmid Expressing Luciferase was used as control of transfection efficiency (to which all the results were normalized). 24, 48 and 72 hours after transfection cells were harvested and firely luciferase activity was measured by Dual-Luciferase reporter assay system (Promega). manufacturer's protocol. In order to specifically inhibit RNA Polymerase III and/or RNA Polimerase II, a cell-permeable chlorobenzenesulfonamide (ML-60218) (Calbiochem, California USA) and/or α-amanitin (Roche Diagnostics GmbH, Germany) were used at the concentration of 20 μM and 10 μg/ml respectively in the medium for 25 h (ML-60218) and 12 h (α-amanitin) before the luciferase activity detection.


RNAi-Silencing Assay.


In order to test the promoter activity of the novel transcription units we prepared six plasmid constructs expressing a firefly luciferase silencing hairpin (obtained by Gregory Hannon's Laboratory-Cold Spring Harbor Laboratories) which transcription was driven by the 11A, 14A, 21A, 29A, 38A, 51A promoters respectively. The hairpin sequence [targeting a firefly luciferase mRNA from a co-transfected expression plasmid (Promega)] is:









5′GGAUUCCAUUCAGCGGAGCCACCUGAUGAAGCUUGAUCGGGUCUCGCU





GAGUUGGAAUCCAUU-3′.







Oligos used to subclone the novel Pol III Type III promoters within Not I/HinD III restriction sites (in capital) were the following:









11AFprom Not I:


(SEQ ID No. 7)


5′-atgcGCGGCCGCatttgcatgtcgctatgtg-3′





11ARprom HinDIII:


(SEQ ID No. 8)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccacgcact





cagctcgtg-3′





14AFprom Not I:


(SEQ ID No. 9)


5′-atgcGCGGCCGCaactgatgtatgattatatctt-3′





14ARprom HinDIII:


(SEQ ID No. 10)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccattatta





tctcctttgttctgt-3′





21AFprom Not I:


(SEQ ID No. 11)


5′-atgcGCGGCCGCacagctgtagcagatgct-3′





21ARprom HinDIII:


(SEQ ID No. 12)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccaccacac





ttggtcaactat-3′





29AFprom Not I:


(SEQ ID No. 13)


5′-atgcGCGGCCGCttctcacctaaaggagtc-3′





29ARprom HinDIII:


(SEQ ID No. 14)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccttctaat





cctcctaagatca-3′





38AFprom Not I:


(SEQ ID No. 15)


5′-atgcGCGGCCGCttcactaagatccagtgc-3′





38ARprom HinDIII:


(SEQ ID No. 16)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccgattcat





gaacacagaatatt3′





51AFprom Not I:


(SEQ ID No. 17)


5′-atgcGCGGCCGCgttgaacatttaactctgtat-3′





51ARprom HinDIII:


(SEQ ID No. 18)


5′-gatcAAGCTTcatcaggtggctcccgctgaattggaatccctcatgg





cacttggagat-3′






In this analysis the above constructs were co-transfected with a pGL3 plasmid (Promega) expressing Firefly (ff1) Luciferase as target to be silenced and with a pRL plasmid (Promega) expressing a Renilla Luciferase to which all the determinations were normalized. 24, 48 and 72 hours after transfection cells were harvested and firely/Renilla luciferase activities were measured by Dual-Luciferase reporter assay system (Promega) according to the manufacturer's protocol.


Plasmid Constructs Generation and Sequencing


The plasmid constructs p21A, p21A(1), p21A(2), p21A(3) were generated amplifying from a genomic DNA preparation the regions of interest; the PCR products were then subcloned in a pTOPO Vector (Invitrogen) following manufacturer's instructions. The oligos used to generate p21A PCR fragments were the following:









(SEQ ID No. 19)








21A Forward:
5′-GGAAATCTTACCTTCCTGCC-3′










(SEQ ID No. 20)








21A Reverse:
5′-TGGCTAGGTCATGTGACCAT-3′










(SEQ ID No. 21)








21A(1) Forward:
5′-GGAAATCTTACCTTCCTGCC-3′










(SEQ ID No. 22)








21A(1) Reverse:
5′-TTCATTCATTCATTCATTGATTCAC-3′










(SEQ ID No. 23)








21A(2) Forward:
5′-CAGCTGCAGCAGATGCTAGCAGGGC-3′










(SEQ ID No. 24)








21A(2) Reverse:
5′-TGGCTAGGTCATGTGACCATTC-3′










(SEQ ID No. 25)








21A(3) Forward:
5′-CAATCCTCAGAAATTTTCAACTGCC-3′










(SEQ ID No. 26)








21A(3) Reverse:
5′-TGGCTAGGTCATGTGACCATTC-3′










The plasmid constructs pAnti-21A was generated amplifying the transcribed region from p21A plasmid using the following oligos:











Anti-21A Terminator-containing Forward:







(SEQ ID No. 27)









5′-CTGAAAAAGTAGTCCCAGCACTTTG-3′






Anti-21A Bam HI-containing Reverse:







(SEQ ID No. 19)









5′-ATGCGGATCCGAGACAGGGTCTTGCTC-3′







thus generating the transcribed region in anti-sense configuration. The pAnti-21A promoter was obtained by amplifying p21A promoter with the following oligos:











21A Forward:







(SEQ ID No. 19)









5′-GGAAATCTTACCTTCCTGCC-3′






p21A Bam HI-containing Reverse:







(SEQ ID No. 28)









5′-ATGCGGATCCGAGCCACCACACTTGGTC-3′.







The PCR products were digested with the restriction enzyme Bam HI, purified by gel electrophoresis and ligated by T4 ligase (Invitrogen). The insert obtained was then subcloned in pTOPO vector (Invitrogen) following manufacturer's instructions. Prior to transfection all the plasmids were sequenced by DNA Sequencing Kit (Applied Biosystems) following manufacturer's instructions.


RT-PCR Reactions


In order to isolate and sequence a partial 21A cDNA ve performed different RT-PCR reactions. Starting from about 5 μg of total RNA, cDNA was synthesized by using an Oligo(dT)12-18 primer or a random hexamers mix and a Superscript first-strand synthesis system for RT-PCR (Invitrogen). cDNAs were diluted 10-50 times, then subjected to PCR reactions. The oligo used to isolate 21A RT-PCR product were: oligo forward 21AF 5′gctcacgtagtcccagcacttt-3′ (SEQ ID No. 29) and oligo reverse 21AR 5′-actatgttgcccaagctggtct-3′ (SEQ ID No. 30).


PCR products were separated on 1.5-2% agarose gel. The DNA bands were cut, purified by the DNA Gel Extraction Kit (Millipore) and sequenced.


2.8. Real-Time Quantitative RT-PCR


The RNA for 21A was measured by real-time quantitative RT-PCR using PE ABI PRISM@7700 Sequence Detection System (Perkin Elmer) and Sybr Green method. The sequences of 21A forward and reverse primers as designed by the Primer Express 1.5 software were 5′-GCTGAGGCAGGAGGATCACT-3′ (SEQ ID No. 31) and 5′-GCACTACCACACCCAGCTAATTTT-3′ (SEQ ID No. 32). The sequences of CENP-F forward and reverse primers were 5′-CTGCAGAAAGAACTCTCTCAACTTC-3′ (SEQ ID No. 33).


and 5′-TCAACAATTAAGTAGCTGGAACCA-3′ (SEQ ID No. 34). For endogenous control the expression of Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) gene was examined. The sequences for human GAPDH primers were 5′-GAAGGTGAAGGTCGGAGTC-3′ (SEQ ID No. 35) and 5′-GAAGATGGTGATGGGATTTC-3′ (SEQ ID No. 36). The sequences for human 5s rRNA primers were 5′-TACGGCCATACCACCCTGAA-3′ (SEQ ID No. 37) and 5′-GCGGTCTCCCATCCAAGTAC-3′ (SEQ ID No. 38). Relative transcript levels were determined from the relative standard curve constructed from stock cDNA dilutions, and divided by the target quantity of the calibrator following manufacturer's instructions.


Anti-21A siRNA Synthesis


The Anti-21A siRNA was synthesized against a region of the 21A transcript of no homology with CENP-F so that the silencing effect was specific for the Pol III regulatory RNA and did not interfere with CENP-F mRNA stability. The siRNA synthesis was carried out taking advantage of the siRNA Construction Kit (Ambion, USA) according to the manufacturer's protocol. The Sense/2Antisense oligos used were: 5′-aaGTGTGGTGGCTCACcctgtctc-3′ (SEQ ID No. 39) and 5′-aaGTGAGCCACCACACcctgtctc-3′ (SEQ ID No. 40).


Proliferation Assay


We tested proliferation of HeLa cells transfected with 21A, 21A-1, 21A-2, 21A-3, Anti-21A constructs plating 5×105 cells per well in round-bottomed 96-well plate, incubated for 24/48/72 hours after transfection and pulsed with 3H thymidine (1.0 μCi/10 μl/well) (Amersham Biosciences) for the last 18 hours. We harvested the cells and evaluated cell proliferation by counting the thymidine uptake. We calculated the averaged proliferation rate, measured as counts per minute (cpm), and standard deviation (SD) for the triplicate wells of each sample.


RNA Isolation and Northern Blot Analysis


Based on a single step acid-phenol guanidium method, total RNA was extracted using TRIzol reagent (Invitrogen) according to the manufacture's protocol. Total RNAs, from HeLa cells, were electrophoresed through 1.5% agarose gels in the presence of formaldehyde and blotted onto Hybond N membranes (Amersham). The blot was hybridized with an 85 bp long probe contained the region from nucleotide 1194 to nucleotide 1278 of the 21A reported sequence (see Table 1) spanning a region internal to the transcript and complementary (96%) to part of the CenPF mRNA. The probe was obtained by PCR (using the 21A plasmid construct as template) using the following oligos: 21AF 5′-GCTCACGTAGTCCCAGCACTTT-3′ (SEQ ID No. 41); 21AR 5′-AGACCAGCTTGGGCAACATAGT-3′ (SEQ ID No. 42). Blot prehybridizations was performed at 65° C. for 2 h in 333 mM NaH2PO4 pH 7.2, 6.66% Sodium Dodecyl Sulphate and 250 mg/ml denatured salmon sperm DNA. Blot hybridization was performed at 65° C. for IS hours in the same solution containing 106 cpm/ml of denatured and labeled probes. After hybridization the blots were washed twice at 65° C. for 30 min in 0.2% sodium dodecyl sulphate, 2×SSPE and once at 65° C. for 30 min in 0.2% sodium dodecyl sulphate, 0.2×SSPE. Membranes were exposed to autoradiographic films for 24/48 hours and then developed.


2.4 Real-Time Quantitative RT-PCR


Total RNA preparations from different CENP-F (Centromeric Protein F) (Acc. n°NM016343) samples was subjected to reverse transcription by SuperScript II First Strand Synthesis Kit (Invitrogen) following manufacturer's instructions. The cDNA obtained was measured by real-time quantitative RT-PCR using PE ABI PRISM@ 7700 Sequence Detection System (Perkin Elmer). The sequences of forward and reverse primers as designed by the Primer Express 1.5 software were 5′-CTGCAGAAAGAACTCTCTCAACTTC-3′ (SEQ ID No. 43) and 5′-AGTTGTTAATTCATCGACCTTGGT-3′(SEQ ID No. 44). The TaqMan™ fluorogenic probe used was 5′-FAM-AGTACCTGTTTTCTGCTTCTCCTGTGCAGC-TAMRA-3′ (SEQ ID No. 45).


The probe was placed at the junction between two exons. During PCR amplification, 5′ nucleolytic activity of Taq polymerase cleaves the probe separating the 5′ reporter fluorescent dye from the 3′ quencher dye. Threshold cycle, CT, which correlates inversely with the target mRNA levels, was measured as the cycle number at which the reporter fluorescent emission increases above a threshold level. For endogenous control the expression of Glyceraldehyde 3 phosphate dehydrogenase (G3PDH) gene was examined by quantitative RT-PCR as described above. The sequences for human GAPDH primers and probe were 5′-GAAGGTGAAGGTCGGAGTC-3′ (SEQ ID No. 46), 5′-GAAGATGGTGATGGGATTTC-3′ (SEQ ID No. 47) and 5′-TET-CAAGCTTCCCGTTCTCAGCC-TAMRA-3′ (SEQ ID No. 4S).


Relative transcript levels were determined from the relative standard curve constructed from stock cDNA dilutions, and divided by the target quantity of the calibrator following manufacturer's instructions.


Western Blot Analysis


Equal amounts of proteins (10 μg/sample) from each sample were loaded on standard 4-12% NU-PAGE gradient gels (Invitrogen S.r.l., Milano, Italy). Blotting onto Protran nitrocellulose membranes (Schleicher & Schuell, Dassel, Germany) was performed in the X-Cell Sure Lock™ Electrophoresis Cell (Invitrogen S.r.l.), according to the manufacturer's instructions. The membranes were saturated overnight in 3% non-fat milk in TTBS buffer (500 nM NaCl; 20 mM Tris/Cl, pH 7.5; 0.05% Tween-20) and incubated for 4 hours at room temperature with the human Anti-Mitosin/CenPF ab90 (ABCAM, Cambridge, UK) and/or anti-Alpha Tubulin (Sigma, Missouri USA) mouse monoclonal antibodies. The Anti-Mitosin antibody recognized a weak signal at a very high apparent molecular mass (350-400 Kda) while the Anti-Alpha Tubulin showed a clear signal at 45 KDa. The immunoreactive band was revealed by an alkaline phosphate conjugated affinity-purified monoclonal anti-rabbit mouse IgG (Sigma-Aldrich Inc.) and (in the experiment indicated in FIG. 1C) the ECL detection system (Amersham, UK) or (in the experiment indicated in FIG. 1E) the alkaline phosphatase substrate BCIP/NBT (ICN Biomedicals, Aurora, Ohio, USA).


Anti-21A siRNA Synthesis


The Anti-21A siRNA was synthesized against a region of the 21A transcript of no homology with CENP-F so that the silencing effect was specific for the Pol III regulatory RNA and did not interfere with CENP-F mRNA stability. The siRNA synthesis was carried out taking advantage of the siRNA Constriction Kit (Ambion, USA) according to the manufacturer's protocol. The Sense/Antisense oligos used were: 5′-aaGTGTGGTGGCTCACcctgtctc-3′ (SEQ ID No. 49) and 5′-aaGTGAGCCACCACACcctgtctc-3′(SEQ ID No. 50).


Results


In Silico Identification of a Novel Set of snRNA Gene-Like Transcriptional Units in the Human Genome


To test our hypothesis we focused on Pol III Type III extragenic promoters, that are located upstream of the transcribed region. We screened the human genome for regions containing the consensus sequences characteristic of Pol III Type III promoters: the Proximal Sequence Element (PSE) and the Distal Sequence Element (DSE) [15, 16]. As first we tested the PSE sequences of three well characterized Pol III Type III non-coding (nc) RNAs (U6, H1, 7SL) for their ability to identify a large number of similar (if not equal) elements in the human genome by using BLAST (Basic Local Alighment of Sequence Tags) algorithm as bioinformatic tool (available at the web site for the (U.S.) National Center for Biotechnology Information; “Short Nearly Exact Matches” option, “Homo sapiens” organism database). (For sequences used as query see Materials and Methods). Interestingly while the first search with U6 and 7SK did not identify a significant number of homologous regions scattered throughout the genome the H1 consensus elements shared a high homology with 60 novel putative consensus sequences. Among these we selected (by a BLAST analysis) those who contained a DSE consensus sequence within an arbitrarily defined distance of 1000 base pairs upstream the PSE. Results evidenced 33 putative novel PSE/DSE-dependent promoters. In order to test the functional relationship between the occurrence of the PSE and the DSE consensus elements within that defined genomic distance we examined the frequency of the DSE consensus elements occurrence versus the PSE-DSE distance in the whole pool of novel promoters. Results pointed out an inverse correlation between the DSE occurrence and its distance to the PSE. A very high frequency of DSE elements was associated to the distance of a nucleosome (about 200 bp) from the PSE that significantly decrease at about 800 base pairs to the PSE [17]. Although the restricted number of putative DSE elements did not permit a proper statistical analysis the inverse correlation between DSE frequency and DSE-PSE distance was taken as preliminary indication of their functional relationship in these novel promoters (FIG. 7).


However, since the Pol III Type III promoters were at the base of our search some of their structural features needed to be considered: i) the occurrence of a PSE consensus sequence does not constitute per se the minimal Pol III Type III promoter that is, on the contrary, the result of the simultaneous occurrence at an appropriate distance of the PSE and an A/T rich element (TATA box). In fact, it has been clearly demonstrated that the occurrence of a PSE consensus that lacks a downstream A/T rich element makes the promoter readable by RNA Pol II such as in the case of snRNA U2 [16]. In this context the transcription start site is not relevant for the choice of the RNA Polymerase at least in humans although it seems to be of fundamental importance in Xenopus [18]. Therefore the putative transcription units identified by our search might thus be transcribed either by Pol II or by Pol III, depending on the occurrence of a functional A/T rich region downstream the PSE. The further occurrence of a TATA box-like consensus sequence downstream the PSE in a large part of the novel element collection further support a canonical Pol III Type III structure pointing toward their Pol III-dependency. Altogether these findings brought to light 33 novel putative transcription units whose promoter organization is compatible with Pol III transcription (Table 1).


Table 1

  • i) The predicted TATA box, PSE and DSE consensus sequences (in sense as well as in antisense configurations) are indicated in bold.
  • ii) The putative transcribed regions are underlined and arbitrary predicted as starting from the 21th nucleotide starting from the predicted TATA box. A 4×T repeat was considered as stop although events of “read-through” are possible and documented in literature.
  • iii) The 21A region in Antisense configuration with respect to CenPF mRNA is indicated in italic.
  • iv) Single strand sequences, complementary strands deducible









Human Genome Map 14q11.2 (784 bp sequence)


(SEQ ID No. 51)


11A



ATTTGCATGTCGCTATGTGTTCTGGGAAATCACCATAAACGTGAAATGTC






TTTGGATTTGGGAATCTTATAAGTTCTGTATGAGACCACTTTTTCCCATA






GGGCGGAGGGAAGCTCATCAGTGGGGCCACGAGCT6AGTGCGTCCTGTCA







CTCCACTCCCATGTCCCTTGGGAAGGTCTGAGACTAGGGCCAGAGGCGGC







CCTAACAGGGCTCTCCCTGAGCTTCGGGGAGGTGAGTTCCCAGAGAACGG







GGCTCCGCGCGAGGTCAGACTGGGCAGGAGATGCCGTGGACCCCGCCCTT







CGGGGAGGGGCCCGGCGGATGCCTCCTTTGCCGGAGCTTGGAACAGACTC







ACGGCCAGCGAAGTGAGTTCAATGGCTGAGGTGAGGTACCCCGCAGGGGA







CCTCATAACCCAATTCAGACTACTCTCCTCCGCCCA
TTTTTGGAAAAAAA






AAAAAAAAAAAAAAACAAAACGAAACCGGGCCGGGCGCGGTGGTTCACGC





CTATAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACAAGGTCAG





GAGGTCGAGACCATCCAGGCTAACACGGTGAAACCCCCCCCCATCTCTAC





TAAAAAAAAAAAATACAAAAAATTAGCCATTAGCCGGGCGTGGTGGCGGG





CGCCTATAATCCCAGCTACTTGGGAGGCTGAAGCAGAATGGCGTGAACCC





GGGAGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCATTCCAGCCT





GGGCGACAGAGCGAGTCTCAAAAAAAAAAAAACC





Human Genome Map 2p24.3 (3000 bp sequence)


(SEQ ID No. 52)


12A


TGTATTTTAAATTATGATACATAATGACTATTTAACTTCCAAACAGAATT





CACTCATTTACATTTATGAACATTCTGGGTATAATATCCAGAGGGAATTA





AACCACTATCTCAGAGAGATATCTGCATTCTGATGTTCACTGAAACATTA





TTCACAGTAGCCAAAATACAGAAACAACCTGTCTGTCAACGAATTAATGG





ATAAATAAAAGAGATAAGGAATATATATATACACACACATACACACACAA





GCACACACACACACATACAATGGAAAATTATTCATCCTAAACGGAAATAA





AATTCTGCTATTTACAAGAAGAAGAATGAAACTGGAGGACCTTCTGCTTA





GAGAAATAAGTCAGACATAGAAAGACATATACTGCATGATCTGACTTGTA





TGTGGAATATAAAAAAGTAGAACTCATGAAAATAGAGTAGAAGGGTGGTT





ACCAGAAGTTATGGGGTGGGAGAAATGGAGAGCTATTGGTCCAAGGATGC





ACACTTTGAATCATAAGGAATAAGTTCTGGAGACCTGATGTGCAGTAGGA





TGACTATAGTTAATAATCATGTATTATATGCTTGAAATTTGCTAAGAGAA





TAGATATTCAGTATTCTTACAACACACACAGACACACACACACACAGGTA





TGTCAGGTGATGGATATGTCAATTAGCTTGATTGTGGTGATCATTTTTAT





AATATATACATATATCAAAATAGTATATTTCCAGTTTTTCACTTTTCTTT





TAATTTTTATTATCATATATTTTACTATATAAAATATTTTTAACTAACAT





GATGTCAGTCCAGCCTGACCAACATGGAGAAACCCCATCTCCACTAAAAA





TACAAAATTAGCTGGGCATGGTGGTGCATGCCTGTAATCCCAGCTACTGG





GGAGGCTGAGGCAGGAGAATCATTGGAACCTGGGAGGCGGAGTTTCTGGT





GAGCTGAGATCACACCATTGCACTCCAATCTGGGCAACAAAAGCAAAATT





CTGCCAAAAAAAAAAAATTCTGGACAGAATTTTGCATAGAAAGCCCTTTT





TCATCCCCAAATTATAATAATAACATAGTACATTTTCTTTTTGTAATTCC





AAGGGATCTATTTTTTGTTTATTTTGACATATAGCTCTTAGGTTCTTTTG





GCATTATTTAGTGTGTAAGAGTAAGTAAGGATATATTTTTATAGTTTTCC





AAATAATAGCAAATATCCAGAAATAACTTATAAAACAGGTCATCCTTTCA






CCATAAATGTGAAATGCTACCTTTATCCTATGTATTTGAATATATATACATAT







ATATTCAAGTACATTCTCTCTATATATGTGTGTTTATAATATCATATATA







TACACACACATATGTGTGTGTGTGTGTGTGTGTGTGTGTTACCTCTTTCA







ATTCCATAGTGTTTTAAGTAATCTAATTTTGGCATACTGAAAATACTGAT







AAGAAAAATTCTTA
TTTTTTCTTTCAAAATTTCCTTTGCATTTATAATAC






ATTAATTTTCCAGATAATCTTTAGAATCAGCTTATCAAACTTTGTTAGAA





GTGTATTTTATGTTAATCGAGACAATACTGGAGCTTGTAGAATAATTTCA





AGAAGAAAGACTCATCTAACATATTTGAGTATTTTCATGCAAGGGCAGAG





TATGTTTCTTCCTTTATTATTCTTTGCTCTCCTAAAGTAAAGATTTATAA





GTGGTTTATAATCCTTTTTTACTTTATATTAAGTTTATCTCTAGTTTTTT





ATAGTTTTTGCTATTATTATGGCTATAATTGTCTTTAATTGCTATTTTTA





ATTGAATGTTAATGTGTTAAAGGAAAACCATTAATTTTTGTATACTGATT





TGTGTCCTGTTAAGTTCATAAACTAGATTACTACTTCTAAAAGTTTTATT





TGATTGTTTTGACCTTTAGGTATAGAAAATCACATTGCTTGCACCTTACT





GCAAGTTCACAAATCCTTTCCATTACTTATACTTTGTAATTTTTTATCTG





TATTTAAATTAAGTAGTCCAGTGCAGTCAATATTGAATAAATGGTACTAG





TTATAGCAGGCCAGTTTTACTTTTATTATGAATTCTTACAGTATTATCAA





AGACGTTCTTTATCAAGTGAGGCAGTTTTTCCTATTTGCAGTTTGTCAAG





AGTACATTTTTAGTTTTACTATAAATTTGCGTTGAGTATTATCAAATGAC





TTCTTTCATATAGTGTCATTATCATGTATTTTCTCCTTTCACATTATCAA





GTAGAGAATTACATCAACAGTTGTCCTAATTCATATCATCCTGAACAAAT





TCTACTTAATCATGGCACACTAAATATGTAATTTTTTATAATAGTTTGGA





ATCTGAATTTATATTTTTGAATAAAATTTGTCGATAGTTTTTATTTTTCT





ATATGTGATTAATTTGCATTTTTGGAACAATGATTTTGCCAGGTTCATAG





ACTGAGTGAGAAAGGTCCATTAAAACTAGATTCATGTATTATTTGCTGAT





TAATAAATTAAATAACTTAGAAGTTATCTGTTAATAAATAGGTTACTAAA





ACTTGCCAGTGAAATTAGAGCTAAATTTTTATTTTTGTGTCAAGTATTTG





CCGAAATTCACTTTCTAAATTGTTATTGAACTATTTAAATTTTCTACCTA





TTCTTGAATCAAATTTTGTAATGTATATTTTTGTCAGTCTTACATGTTGT





TATAATTTTTAATATTATTTCATGCATTTGCATAAAATGTCACAAATTTC





TAAAATACGTTATGTTCCTGTAATTATGCTCATTATTTCATACTAACAAT





TTTCATTCTAGTACTCTTTTTTCCCCTTTCATCAGACTTAACAAAAGAGT





TGTCTATTTTATGAATCTTTGCAAATAAGTAGCCCTTGATTTTTATTTTT





AAGCCTATTTTTTATATGGAATTGTAATTGGAAGATTTAAAAAGTCAATA





TTGCACTGGAAAATATAAAATAAAAATTAATGTTTAATTCTATGTGT





Human Genome Map 3p12 (1921 bp sequence)


(SEQ ID No. 53)


14A


TTCTCTTTTCTCCACATCCTCACCAACATGTTATTTTTTGTCTGTTTAAT





AATAGCCATTCTAACTGATGTATGATTATATCTTATTTTGGTTTTAATTT






GCATTTTTCTGATTAGTAATGTTGAGCATTTTTAATATGCCTCTGGGCTA






TTTATATTTCTTCTTTTAAAAATGTCTATTCATGTTCTTTGCCGACTTTC





TAATGGATGATGGAATGCTAAAGGCCCAGACTTAACCACTATGCAATATA





GCCATGTAACAAAAGTGTACTTGTACCTCTTAAATTTATGCAAATAAAAA





CTCAAAAAAAAAAAAACAAAAAAACCTAAGATGACTAAATGTCAGAAAAC





CAGGTTTTACATGCCACTTCATTTGCTGAAATACAACGTACACAGCCTGT





TAAAATGAAGTCGTCTGCCCCCCAAAATATATAATATTAATAAGGTCTCT





ACCTAGAATCACCAGTTTACAATAAATGCAGAGGATAGATGCACATGTTA





GAAAACACCATAAAGGTGAAATCACCCAAAGTCTACTCGACAAATTATCC





AACTTCTTCAACCATTAAATAGCATAAAAGTTAGGGGAGGGGAATCTGTT






ACAGAACAAAGGAGATAATAATATATCATGCAAACACAAACCCATCTATA







TCTTGATTCAAATATAAATTGCAAAAAACGGCTTGAAATTACTATAGAAA







TTTCAACAGAAACAAGGTCTTAGATAAACAGTCCCCAAC
TTTTTTGGTAC






CAGGGACCAGTTTTGTGGGAGACAATTTGTCCACAGACAAAGGGTGGAGA





GGTGGGGATGGCTTCAGGATGAAACTGTTCCACCTTAAATCATCAGGCAT





TAGTTAGATTCTCAGAAGGAGTACACAACACAAATCCCTCACATGTGCAG





TTCACAATAGAGTTCATGCTCCTACGAGAATCTAATGCTGCTGCCCATCT





GACAGGAGGTAGAGCTCAGGCGGTAATGCTTGCTTGCCTGCCACTCACCT





CTTGCTGTGTGGCTCCGTTCATAACAGGCCACAGACTGGAACCCATCTGC





AGCCCCAGGGTTGGGGACCCCTGTCCTAGATAACATTTAGTAAATACAGT





TAATTCTTTTCAGTGCAATAACTTTGTTGAGATTGTTTTTTAACTGGCTA





GCCATATACAGAAAACAGAAACTGGACCCCTTCCTTACACCCTATACAAA





AATTAACTAATAAAAAAACACTGACATGTAAGACCTAAAACCATAAAAAC





CCTAGAAGAAAACCTGGGCCATACCATTCAGGACATAGGAAAGGACAAAG





GCTTCATGACAAAAACACCAAAAGCAAAGGCAACAAAAGCCAACATTGAC





AAATGAAATCTAATTAAACTAAAGAGATTCTGCACAGCAAAAGAAACTAT





CATCAGAGTGAACAGGCAACCTACAGAATGGGAGATAATTTTTGCCATAT





ATTCTTCTGACAAAGGGCTAATCTTTGTCAGAATCTACAAGGAACTTAAA





AAAATTTACAAGAAAAAAGCAACCCCATCAATAAGTGGGCAAAGGATGTG





AACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAAACAAATGAA





AAAAAGCTCATCATCACAGGTCATTAGAAAAATGCAAATCAAAACTACAA





TGAGATACCATCTCACACCAGTTAGAACGGTGATCATTAAAAACTCAGGA





AACAACAGATGCTGGAGAGGACGTGGAGAAATAGGAACGCTTTTACACTG





CTGGTGGGAGTGTACATTAGTACAACCATTTTGGAAGACAGTGTGGCAAT





TCCTCAAGCATCTAGAACAGAAATACAATTTGACCCAGCCATCCCATTAC





TGGGTATATACCCAAAGGATTATAAACCATTCTACTATAAAGGCACATGC





ACACGTATGTTTATTGTGG





Human Genome Map 9q22-9q31 (2521 bp sequence)


(SEQ ID No. 54)


17A


TTTCAGCCTCCCTTCTACCCCACTCCAGGTACTTCTGCCTCTGTGGAATT





CCTGCTGATTCTAAGCCATGATGAGCATGGCTACCCTACCCTCTGATCTT





CCCTCCTACCGTGCTGGGCTCCTGTAGGAGGGGATCCCTCTCTTCCTCCT





CCACCAAATGTTGTCTCTTTTTGGAACCTTGTCTGAGCACTCTCCCCAGG





TGGGATGAGTCACTTCCTCCCTTTGTTCCCAGGCCCCTTTGTTCCTGTTT





CCCCTGAGAGGTCTCTGTCTTCTTCACCATGCTGGGAGTAACCTGAGGAC





AAGGTCAAGGCCGATGATGTCTATGAGCCCAAGAGAGGGTCTGGTGCGTA





AAAGCTGTTTGAGAGAGTATGCAGAAGGAATGGACAAATGAAAATTAGAG





ACTGACTTACAACTGGGGAAACTTCTCGTTGACCCTTTCTGTTCCTAAAG





AGAGTGTCACCGGATAGGGGTCAGGAGCCTGGGCTTTCAGTTGCAACAAG





AAGACTTCTTTGCTGTGGGCTTTCTGAAAGACAGTTCCTCTCTCTGTGAC





TCTTCAAAACAGACATGACAATCATGTGTGCCCTGCTTGCCCCTGAGGCT





GCGTTGAGAGATATAAAACCATCAGGAAAGTGCTCAGTGGCTGTGCACCT





GCAGCCAGCACCTCTGGCCAGTGTTGGAGAGCAAGGAAGGGAAAGCCAAG





GGAAGCCAATTCCTGGGAGCTTCTCCTGTCTGGGATGCCAAGGTGGAAAT





GAACTTGAGACCCAGACCAAACTTGAGGCTCTTTCATAGTCAGGTAATTT





GGGCACCCAGGGCATTGAGATCAGTCTGCCATTCACCCTGTGGCTAGCCA





CACCTACCTTCAGCTTTTTGACACTGGTACAGGGATCGTTGGAGAAGCTC





TCGGTGTCTGAAATCTCAATGTCCTCGCCATACAGAACTCCAGTCAGGTC





ATTCCGCACCTGTCAGCAAAGAGAAAGCAGAGGGTGGGTGTGCTGGGGAC





CACAGGAAGGGCCAGTTCCGAGGGGTCACCCTGGGGAAGTCAATTGGGCA





AAGCGATTTTCTCTACCGACAATGCAAAGTGAGTGGTTTTGTTTTACATT





ATTAACTAGACCGCCCCACAAAAACTTGAGGATCCCCCAGTCCCACCCTG






CAACTGACACATGGATACAAGGAGGCCAGACAGGGAAGGGACTTTCCAAG







ATTGCCCAGGGAGTTCCTGCAAGAGTCAAGATTAGCACCTTTGCTGGTGT







TTCTCCACCACATCACACTGTCTCCAAATCAGGCTATTCAATTGTGTCTT






TGTTAATATTTTGCACTATTTATTTGCAACATTATTTCACTTTTATGGTG






AGGAAATAGCTAAGATATTCAAAGACAATATAGAGTAAAGGAAAGAGGAA






AGAAGTATGGAACCTGCCTATGATGTTACACGTAACTATGTGTCTACTGA





CACTCAGAATGAGGAATATCTATGGATGTGAAAAGCAAAGGGCTGCAAAC





TCCAGTGTTACCAGGACCAGCCAGTGTGTGAACTAGCCTGTGTGGAAGGA





TATTACAGAATGATAGGGCTGGGCGTGGGCTCACACCTGTAATCCCAGAG





CTTTGGGAGGCCAAGACGGGGGGCTTGCTTGAGCCCAGGAGTTCAAGACT





GCAGTGAGCCGTGATCACGCCACCGTACTCCAGCCTGGGTGACAGAACAA





GACCTTGTCTCAACAGAACAAAACAAAACAAAAGACAGTAATAGTTGGTT





GCTGAGTTAGAATGTGGGTCAAGGGTTACCAGACCTTCTGATTTTTGAGG





GGAGAAATCAGAAATTTAGACTTTTAAAATATAAAATCCCCTAATTTTTA





AATGTTGATACTATTTTGAATTAAAAAAAAAAGAAAGTAAGGATCAAACC





AAATAAACTTAAAGTCTGTATCTGGCCTGTGGCCATGGCTGTGCACCCTC





TGACATATAGCAATGGAAACTGGATTTTGGGTTTTAGTAGCAAGAACTAG





GCTGGGGTTAGGGGATCCAGCTTCCAGGTCCTGCTCTATCACTGACTTGC





TTGTGACCTCAATCTCTCGTGTGATTCTTCCCTTCTCTGGGCCTCAGTTT





CTTCCGCTTTAGGAGATGCTTAAAGCACTTCTTGTTCACACCCATTAGCA






TGGCTATTACCAAAAAGCAAAACCACAAGTGTTGGTGAAGATGTGGAGAA






ACTGGAACCCTTGTGTGTTGCTGGTGGAAATGTAAAATGCTGCCACTGCT





GTGGAAAACAGTATAGCAGCCCCTCAAAAAAATAAATATAAAATTACCAC





ATGATCCAGCAATTCCACTTCTGGGCACGTACCCAAAAGAATTGGAAGCA





GGGACTTGACAGACATTTTACACCCATGTTCATAAGAACATTTGTTCACT





GCAGCTAAAAGGCAGAAGCAGCCCAAACGTTCACTGCTCGATGAATGGAT





AAATGAATTGTGGTGTATACAGACAGTGAAATACTATTCAGCCTTCAAAA





GGAATAAAATTCTGACACAT





Human Genome Map 3p12.3-12.2 (2641 bp sequence)


(SEQ ID No. 55)


19A


ACATATGATTTTTTCAAATTTTCTAAATAGTAATTATTTCCTAGCTCTGC





CTTCTGAAAAGTCCTAGAATTACAACAAGCTGGAAACAATGAACAAATGG





AGCCTTCAGACTGTAATCTCTAAATATGATTTTCCTTTTAGTGAAAAGAT





TTCTTTGGAGAAATAGTTGATTATAGATCTAGGTCAAGACATTTATGAGA





TGACCCTGGGACATTTTATTTTTGTCAGAAAGCCTGGAAAGTATTAATGT





GTCTACACAAAACAAAGGAACCAACTTAAAAGAGCAGTCACTGACCACAG





CAGAGATAATTGAAGCATCAAACTGAATAAAAAATATAACTCATTCAAGC





AGATGCAATTAGTTATCCTGAAAATGATAAATGCATGAATGTAATCAAAC





ATTAATACTTGGTTTCCTGTGCAATTCCTTTTCAGGGTAATGAAAACTGA





TGAGTGAGAGTTAAATGAAGGACTCCAGAAAGAATGACAGTTACAATATA





ATGATTTGTGCCCCCCAAATAAAATAATTGATCTACACAAAATACATCAG





TATTAGGCAAAACTAGATGGTAAAAAAATTTCGAAGAAAAATAGATTACG





GAGAACAAATCAGAACTCACTGATCAAACTTGATATGACTAATTTATAGT





TATTTGAGAAATCCACATGCTGTTTTCCATAGAGGTTGACTATTTTACAT





TCCAACTAATAATGTATAAGGCATTCTCTTTTCTCCACATCCTCACCAAC





ATGTTATTTTTTGTCTGTTTAATAATAGCCATTCTAACTGATGTATGATT





ATATCTTATTTTGGTTTTAATTTGCATTTTTCTGATTAGTAATGTTGAGC





ATTTTTAATATGCCTCTGGGCTATTTATATTTCTTCTTTTAAAAATGTCT





ATTCATGTTCTTTGCCGACTTTCTAATGGATGATGGAATGCTAAAGGCCC





AGACTTAACCACTATGCAATAGCCATGTAACAAAAGTGTACTTGTACCTC





TTAAATTTATGCAAATAAAAACTCAAAAAAAAAAAAACAAAAAAACCTAA





GATGACTAAATGTCAGAAAACCAGGTTTTACATGCCACTTCATTTGCTGA





AATACAACGTACACAGCCTGTTAAAATGAAGTCGTCTGCCCCCCAAAATA





TATAATATTAATAAGGTCTCTACCTAGAATCACCAGTTTACAATAAATGC





AGAGGATAGATGCACATGTTAGAAAACACCATAAAGGTGAAATCACCCAA





AGTCTACTCGACAAATTATCCAACTTCTTCAACCATTAAATAGCATAAAA





GTTAGGGGAGGGGAATCTGTTACAGAACAAAGGAGATAATAATATATCAT






GCAACACAAACCCATCTATATCTTGATTCAAATATCAATTGCAAACGGCT







TGAAATACTATAGAAATTTGAACAGAAACAAGGTCTTAGATAAACAGTCC







CCAAC
TTTTTTGGTACCAGGGACCAGTTTTGTGGGAGACAATTTGTCCAC






AGACAAAGGGTGGAGAGGTGGGGATGGCTTCAGGATGAAACTGTTCCACC





TTAAATCATCAGGCATTAGTTAGATTCTCAGAAGGAGTACACAACACAAA





TCCCTCACATGTGCAGTTCACAATAGAGTTCATGCTCCTACGAGAATCTA





ATGCTGCTGCCCATCTGACAGGAGGTAGAGCTCAGGCGGTAATGCTTGCT





TGCCTGCCACTCACCTCTTGCTGTGTGGCTCCGTTCATAACAGGCCACAG





ACTGGAACCCATCTGCAGCCCCAGGGTTGGGGACCCCTGTCCTAGATAAC





ATTTAGTAAATACAGTTAATTCTTTTCAGTGCAATAACTTTGTTGAGATT





GTTTTTTAACTGGCTAGCCATATACAGAAAACAGAAACTGGACCCCTTCC





TTACACCCTATACAAAAATTAACTAATAAAAAAACACTGACATGTAAGAC





CTAAAACCATAAAAACCCTAGAAGAAAACCTGGGCCATACCATTCAGGAC





ATAGGAAAGGACAAAGGCTTCATGACAAAAACACCAAAAGCAAAGGCAAC





AAAGCCAACATTGACAAATGAAATCTAATTAACTAAAGAGATTCTGCACA





GCAAAAGAAACTATCATCAGAGTGAACAGGCAACCTACAGAATGGGAGAT





AATTTTTGCCATATATTCTTCTGACAAAGGGCTAATATCCAGAATCTACA





AGGAACTTAAAAAAATTTACAAGAAAAAAGCAACCCCATCAATAAGTGGG





CAAAGGATGTGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAAC





AAACAAATGAAAAAAAGCTCATCATCACAGGTCATTAGAAAAATGCAAAT





CAAAACTACAATGAGATACCATCTCACACCAGTTAGAACGGTGATCATTA





AAAACTCAGGAAACAACAGATGCTGGAGAGGACGTGGAGAAATAGGAACG





CTTTTACACTGCTGGTGGGAGTGTACATTAGTACAACCATTTTGGAAGAC





AGTGTGGCAATTCCTCAAGCATCTAGAAGCAGAAATACAATTTGACCCAG





CCATCCCATTACTGGGTATATACCCAAAGGATTATAAACCATTCTACTAT





AAAGGCACATGCACACGTATGTTTATTGTGG





Human Genonie Map 14q22.1 (2341 bp sequence)


(SEQ ID No. 56)


20A


AGGCCTCAGTGTCCTAGACTAGCACAGAACAAGCAGATGAAACAAAGTTT





ATATCAGAATGTCAACTGAAAAAGTATCATTTACCATAAATGGAAGATAA





TTGTATTAAATTCTAGTTAGATGCTAAAACTTCAAGAACTTTTAGAGTCT





GTACCTGCATTCTGTTAAAAATATAGATTAAAAAATGCTAACATGTTAAC





ACAAAGGACTTTCCAGAAAGACTTAAAGAAAAGTGAAGGGGAATAACTGT





CTTGCAATGTAATTCATTGTCGTTTAAGACTGGGTCTATGGAACACCCTA





AATCACCTGGTTCCATCACGTTCTTTTTAACATGGAGATGGATAGTTTTT





CCCCATACTCTATATATTGAGCATTCTATAGTTCATGATTTTTCTGCATA





GAGAATTGTTCAAGCCGGGGGTGCAGGCTCACCGACTGGATAGTGAATCA





AGAAAATAGTGTGTTCATTAGTTCATCATTACCCTGAGTTTCCAACAAGA





ATTTAGTACAGGAAAGTAGACAGCGGAGCTGGGAGCCATCTATTTGAAAC





TGTCTTAAGCAAACTAAGAAACCGAGTAAGCTTGCTTTTGGTGTCTTTCA






TCCCTTCTTGTGTGCCCCCTAATTATTCACTCCCCAATGCCCAGACATTA







TGATGCCTTCTCCTGCTCAGAGACCTTTCTGGGAGGAAGACCTACTCAGA







CCTGGTATTCCCTCATCCTAGGCTCTACCCTATTTTTCATCCAGCTGTTA







AAGCTGAGTGACTAATTTCACACTTATGTACGAATGACCCATAACTGGCT







TAATGCTGTGACCATCTTGGGGGTATTCAAAGCTGATAAACACTTTTTTA







AGTTATATAATAATCAAAGAAGCTTATCTTTCTGCTTTATTTCAAATTTC







ACCCCACAGGCCTTACTTATTTTTAAGATCAATGATTTTGATGGGCCCCC







CCTTCCCACTCTTAATTCAGGGTATTTCTGGCCCCATCCGGATCCAAACT







CTAATGCTCATCTCTTCCATACTGTCCTTTGCAGGTCATCGGTATTGCAA







GAGTTGCATAAGGCCCAATTCAGTCTCTGCCCCAAAAGCTCAAGTCCAAA







CTTCAGAATCTGGGAGGACAAGGATTCAGGAAATTTTGTCAGAACTATGA






CTTTGAACTTTCACTTTTATGGTGAGGGTCACATTTGGTCTGAATCAATT





AATCCATTACCCGCCCCCCCCCCCCCCCCCACCACCACCATGTGTGAATT





CAAAATAATCAACTTGGGTTTATTATAAAAAACAAAATATATTAATATAA





GTATACTAAGATTTTTCTAGAAAACTTGGCCGGGCGCGGTGGCTCACGCC





TGTAATCCCAGCACTTTGGGAGACCGAGGAGGGCGGATCACAAGGTCAGG





AGATCGAGACCATCCTGGCTAACACGGTGAAACCCCATCTGTACTAAAAA





TACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACT





CGGGAGGCTGAGGCGGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCA





GTGAGCCCAGATCGCGCCACTGCACTCTGCCTGGGTAACAGAGTGAGACC





CTGTCTCAAAAAACAACAAACAAATAAACTTAGAAGAATATATGTGACTA





TTGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCCCTTTGGGAGGCC





GAGGCGGGCAGATCACGAGGTCAGGAGATAGAGACCATCCTGGCTAACAT





GGTGAAACCCTGTCTCTACTAAAAATAAAAAAATAAAAAATAAAAAATGC





GAGGTGGCGGGCGCCTGTAGTCCCAGCTATTCAGGAGGCTGAAGCAGGAG





AATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCA





CTGCACTCCAGCCTGGGCAACAGAGTGAGACTCCGTCTCAAAAAAAAAAA





AAAAAGAAGAAGAAGAAAGAAAAAGAAAAGAAAAAGGAAAAAGAAAACTT





AATTCTGGCAATGGACTGTTTCTAAAATAATATATTAATACTACTTAATG





AGGAAGAAAAAACCTCTGACATCCTAAAATGCCAAGTGTTTGCCTTTACC





AAGGTTTAAGCACACATAAACACGCATATTCAAATACCACCCAAAGTGGA





GGTGCAAAGATCAGCCTGTACCGCACAGTAACACAGACTGGGTTGTTTTT





TGTAAAGAAGGCAACTAGTCCAGTGAGTAATCCCTTCATTTTCCACACAC





ATACCCTTCTGTTTTCTCCCTCTCCTCCCCCCACACCCTCCACTGCAGTT





AAAACGTAATTCGAAGAAGCCTAAGGTAAAAGCCCCT





Human Genome Map 8q24.13 (2100 bp sequence)


(SEQ ID No. 57)


GTGGACAGGGAAATCTTACCTTCCTGCCTCTCTATGTTCAGGCTGAGTGG





GTCAGAAGGAGAGTGTATTAGGTAAGAAAATTTATCAGTATTATTTAGTG





AACACTGGATTTATCCTTTTGCATTCTGGCTGTAGTACCCAACTTCCACA





TGGCAATGCACCCTCACCTCAGCCCTCCGCCCACGTGGTCCCCTTGCTGA





GCACTTTAATGAATGACTGCATCTCATTTTCACAGCTATTTGATGCACCT





GCTATTATTACTCTTATTACCATTTTCCAGTGGGAAGCTGCTTCTTGGGC





AGGGTGGATTTCCATCTGCGTCTCCTTTTCGGTGTTGAAAGCTGGTAAGT





GAGGACACCAGGATTGGAACCTGGGTAGTCTGAGTCCAGAATCTCTATTT





TCAAGTCTTCCTGCTCTCTGCTTCTGGCAAGTTTGATGTCCACTTTTGAT





CTTCACCTACATTCCAGCATAATAGCTACTTTTGGTTGTTTTCTCAGCAG





CACAAGAGAAGTGTGGCGAGATTTTTAGGTGAGTCATCTAGAGAAGTTAA





TCTTATTTTGGGAATTCTACTGGCAGCTTCAGGTGGGGAAAATTTTGTTA





TTTTCTATCCTCCTCTAGGTTCTAAAAGGGAAGAAAGATGGTGAGCGTAG





AAAGATGTGACTGTATTCACTATTCACCCTTTGTCGGGTGGTGAGTAAGC





AGCTTGCAAAGATGCAATGAAGTTTGGAACAATCCAGAGAACCAAACTTT





CAGCTGCCAGAGATGGCACCTGGTATCCTGGGTACATCTGCCTGTAGGGC





CCAGAAAGAGCTGGAAGCCAAGTGCATGGATCAGGTCTGTAGGAAGGTGG





GAGAGCCAGGAATCGAGTGTCAGGGGGCATTTATTACCCATGGAAGCAGG





TTTTTGTCAATTTTGTTCACTGCTGGATCACTAACACCTGGACTGGTGCC





TGGCCAGGTGGTGGCTTCATAATCATTTGTTGAGTGAATCAATGAATGAA





TGAATGAACAGCTGTAGCAGATGCTAGCAGGGCTTCCTATTTCTTCCATC






ACCATAAAGGTGAAAGACATCATAAACGGGAATTTAGACAATCCTCAGAA






ATTTTCAACTGCCATGTATCTTGACTTGATGCTTCTAGTAGTTATATTTA





TTTGTAATTCAATCTTTCTTTTTAAATAGTTGACCAAGTGTGGTGGCTCA






CGTAGTCCCAGCACTTTGGGAGGCTGAGGCAGGAGGATCACTTGAGCCCA








GGAATTTGAGACCAGCTTGGGCAACATAGTGAGACCTCATCTCTTAAAAA








AAAAAATTAGCTGGGTGTGGTAGTGCACACCTGTGGTCCCAGCTACTTTA







GAGGCTGAGGTAGAGGATTGCTTGAGCCTGGGAAGTTGGGGCTGTAGTGA







GCTTTGATTGCATCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTG







TCTCTAAAAAATTAAATAAATAATAAAAAAATTAAAAAGTAACTCCC
TTT







TCTTTATTTTCAGGCTTCCTTCCCACCTGCTAATTCAAACACTTTACAAC






CAAAAATATCTTACCTTGATCCTGTTTCTTTCTCTATAACCTCTCTATTT





CTGTTTCTTTCAACCAAATTTCTTAGGTCATCTATAATTTTGTTTCTACT





TTTTCTATGCATGCCTCAATCCATTGCCAACTCCTCAACCTGCCCCAAGT





GCCCACAACTCCACCAAAAGTAATTCTAACATTTTACCAATCCAATACAT





CACAGTTTTTTATAAAAAACTTAAGAAATATACTTTAGTTGAATTTGAAA





GAGTTGCCCACTTGTGTTAAATATTTCTTTCCTTGTGTCTGGGATATCAT





TTGATTCTGATTCTATTCCTAATTCTCTGACCACCCTTTCTTCGTAGATT





TCTCTTCCTTTGTTCAGCCTTTCACATCCTTGGAGTTCCATCCTCTGGTG





ATTGTTTGTCCTGTTCCATACATTCTCCTTATATGAGCATTGTGTTTTAG





CTTATGAATGGTCACATGACCTAGCCAGGCCAATCAGAGTCTTCCATGAG





ACTTTTGTTTATTTATTTATTTATTAATTTATTTATTCTTCCACATGCCA





TC





Human Genome Map 6q16-q21 (2100 bp sequence)


(SEQ ID No. 58)


22A


GCACACCTGAGCAAGGGAGAGGAAAGGGTTCTTATTCCTGACACAGGTAG





CCCCTACTGTTGTGTTGTTCCCCTGTTGGCTAGGGCTGGAACGCACAGTC





AAAGCTAATTCCGATTGGCTATTTTAAAGAGAGCAGGCGTAGGAGCCAGA





ATGGTGGGGCGAGTAGTTTGGCGGGAAGGTCAGTTACAGAACAGGTGACT





CAGGATGACTCAGGTCAGAGCAGGTGACCAGGGGTGTCTCAGGATGGAGC





AGGTGACCAGGGGTGACACAGGATGGAGCAGGTGATAGAGGCTAGGAGGG





GGTTGTTTACTGAAACTAGGGGCAAGGAGATGACGAGAACGAGAAAGTTA





AACTTTAAAATGAAGAACAAAGAACAGGGGAGCTGAACATACTGATAGAA





CTCTTTCAAGTCTACTTAGGTAACTATTTGTTTGTTTTTCTGCTTCTAAA





ATTTTGTTGAAATTTTCTCCTTTCTTATTCTCATTGTTCTTGAGGTTTCG





TGTATTTAAAAAATCTTCTTACTCTGTAATTGTCATAGTTGAGTAGGGAG





CAACGTTAGATTAATATATTCAATACTTCACTGTTACCTGGAATAAGAGC





CCTCTCTTTAAACAAAATATTATGCAGAAATCTAATACAGGAAGCAAATA





AAAACTAGAACTACTCTGGTTCAAATAGAGTGAAGACAGAGCAGATCTTG





TTCTTGTAATTGAAAGGAATATGATATAATAAGTATTGACAATATTTTCT





TCTCACCAAATAAGTTTCTAATTCTATATATAAAGGAAATACTTTCAGAA





TAAAACGAATATATGAGTTTTATTTTTAAATCACAAAACGAAGTTCAAGA






ACATTTTTGAAACTGGGAAGATTCATATTTTAGTATCTGTCAAATGATGA







TAAATTCGGAAGCCAGTGTAATTTATACCCTAGGGGCTGAGGTCTAATTC







AACATATTCCAGTTTCTATTTTCTAAAGCTAAAGAAACATGTGTTACAAT







GTAGATAGGGAATACTTTCTTAATGAACCATGCTGAACTGTAAGATTTTT






AAGACTCCTTTTTAATGCATTACATTACACTGTATCTTGTTTTCACATTT






ATGGTGAGGTTAATATAAAGAGACATTAAACAAATATATTTCTGCTCTTT






ACAAAGGATGATTATTGTTTTCTTACATTTCAACTAAAAATTTCTATAAT





ATTATACTTGCAAGAAGTATAACACTCTTAATGAGCAATACAGTTAACCT





TAAGGTTAACTTGCAAAATTTCATGTCTAATTTAGTATCATTAACACATT





GAAAAATCTCTCCTAAATTTCACTCATCTTGATCAAAATCCATGTTAAAG





GTTTTGAAACTACACTTAATACATCTGCCTTATTTTATGCCCCCACTTAT





ACTACTAGTTATTAATGCACTTTGGACAGCTGGTTCCTCTGCCTTTTGAG





GATTCTGTGGTGTAACTGATTGGTTCTCAGCTTTTTCCACTGCCCATTTG





GGATGCAACCCTTTCAAGTCTGCTTAGGTAACTATAATTTGTTCATGTGT





TTTTCTACTTCTAAAATTTGGCTGACATTTTCTCCTTATTCTTGTTGTTC





TTGAGGTTTTATGCACTTAAAAAATCTTTCTACTGTAATTATCGTAGTTG





AGTAGGGAGCAACATTAGATTCATGTATTCAATACTTCACTGTTACCTGG





AATAAGAGCCTTTTTTAAGGGCTCTTACTGAAAAACACAATACACTTATG





TTCTTCTATAATGTTTTAAGGAATTTTTTAACATTAATCTCCTGTCTCAG





CCTTTAAGGCCATTAAATGACTTAAGATAGTTGCTGTGGCTCCAAACATT





GTATCCACATTTCCACAAGAGGAAGTAAAAAAAGAAAAAAATGAGTCTTG





CCCTTTCCTTGTAAAGACAATTTCCACAAGGTTCACATTCCTCTGGTCAG





AAATCAGTCATACACCCACGCCTAGCTGGAAGGTAGGTTGGGTAATGTGG





ACTTTAATTCAGACAGTATTGTGTCAGTAAAAGTCAGGGGTTCTATTATT





AGAAGCAGTGTAAACAGACATGAGAAAACAAACTGTAGCCTCTGTGCTT





Human Genome Map Xq21.3 (2160 bp sequence)


(SEQ ID No. 59)


23A


TAAATATAAATAAATCATCACTAGGTATGTTCTAATAAAATTTCAGAACA





CCAAAGATGAAGATAAATTTTAAAAGTAGCCAGAGGAAAAAGGTGAATTA





CCTTTAAAAGGTTACAGTTTAACAAGAAGTCTGACTTTTCAACTACAAAG





ATTTTCAGAATAATATCTTCAGTATGCTGAATGAAGTTTTAAAAAGCAGC





TGCCAAAAGAGTTTTAAACTGTGTAGGTATATTTCAAGACTAAAGGGAAA





TGAAAACATCTGTAGATAATGAAATCTGTAATTACCAACTGAACTTAAGG





ATATGCTTCAAGTGGAAGAAAAGTTAATTGAAATGGAGGGTCTGAGATGT





AAGACAGAATGAGAAATAAATAAAATAGCAAATATATAAATAAATCTAGA





TGAACACTGACTGCAAAAAGCTACAATAATGATAACATCTTTGGGCATTT





AAAAAGATAATTAAAATAAGTAAGAGGAGTGACAAATTCTTTGGGAGGTG





ATTAAATTGAATGAAAGTATTCTAAGGTACTTGCACAGTCACAAGGGGTG





AAAAAAGGTTTTGTTTATAGTAAGACTTTGTCAAGTAGGCATATGTAATT





TCCAGGTTACCCATAAAAAATTCAAAACAGAAAGTGAAATTTCCAAATTA





GTAGAGAAAAAAGTGACATAATAAAAATTATTCAATTCAAAATGAGGCAA





AAAAGAAGAGACAAAGAAACACGGGATATTTAGTACAAATAAAAATCACA





ACATAATACAGTTCATTAAAACTCAAATTTGTTAGTAATTCCATTGATTA





TATATGAATTATGTGTTCCATTTATGAAGCAAAATATCAGAAGAAAAATC





CACCCATATACTGTTTTAAAGAAACATTTAAGACATAAGAATACAGAAAG





TTTGGCAGTAAATGAATCAAAAATGAAATAATGAGTCTACGTGAGGATAA





TCAATGTTCACTGAAATATTAGGGTGAAATGCTGATGGAGAACTTTATAA





TAGATATACCAGGTCTATAACACCTGAGCCTAATCAAATGTAACACCATA






AAAGTGAAATATCCAGACGCTATCCACCAGATTATAGGAAATGCAAAGCA






AAAGAATATTAAAAGACATAAAGATGACTCAATCTTGCAATTCCAGAACA






TGGGAACTTCTAAAAGATAAATTGTTTTAATCAATATGTAGTAAAAAGGG







AAAGGGAACTGTTATTGAATAAAAGTGACATCGTGACCAAATGTAATGTA







ATAACTTTGGACACTGCTTGAAGAAACCAACTATAAAAATTCATATTGAG







TCAGTCAAGAACATGTTTATATTGACTGGAA
TTTTATTACTTTAAGGATT






AGTATTAATTTTTCAGTGTAGTAATGGATTGTAGTTATAGTAAAAAAAAG





TTCTTATTTTTGAAATTTACATTGAATTATTGATGAATAAAATTATGTGA





TATTTGGAATTTTCTTTAACATAATTTTCATTATTAATAATAAAATCATG





AAAAGGAACAACTCTTGTTGAATGCACATTGGAACTCTGTTGAAGCAGGC





ATTTCTGACCTAGGGGGAAAAAAAACATAAAAGAGAAGATTTTTATGTGA





TAAATACAGGTGGTTGCCAGGGGCTGCCGGGTGGGGAAAATGGGGAGATG





TTAGTCAAATGGTACAAAGTTTCAGTTGTGCAGGATGAGTAAATAAGCTC





TGGAGATCCAGTGTACAACATGATGACTATAGTTAATAATACTGTATTAT





ATACTTAAAATTTTCTGAGTAGGTTTGAAACGTTCTCGCCATACACACAC





AGAAAAGGGTAACTGTGAGGTGATGAATACGTATTCAAGCTAATCACGTA





ATTAGCTCGATTGTGGTATTTATTTCACAATGTATAAGTAAATTAATAAA





TCACATTGTACTCAACTATAWATATTTTTTGTCAATTATACCTCAATAAA





GCTGGGGAAAATGTAAAATAAATAAATAAATTACCGAAAAJ4ACCCAAAC





ATCCATAAATGAAAATGATACCAAATCTGGCGCCACTTTTTACAATGGAT





GTAAAAGTCAAGAGTTAAAATCTTTAACATGCATGCTTACTATGTCGAAA





GATCACGTACATGAAAACAAACATACTTTATTGTGATTTTTTTGAATGTA





AGCGATGAA





Human Genome Map 12q21 (2219 bp sequence)


(SEQ ID No. 60)


24A


TATAATTATTAACTGAAGTCATAGTTTACATTAAGGCTTACACTTTGTGT





TGAATAGTTCTATGGATGAGGGAAGGGGCTAAAATGCATAATTTTATGCA





TTCACCATTAAATATCATGGGGAATAGTTTTACTGTCTTAAAAATTTCCT





TCATTTCAATTATTTGTTCTTCTCTCCACTCTCTAAAGCCCTGGAAACCA





CTTATCATTTTATTGTCTCTATATTTCTGTCTTTTTCAGAGCGTCATGTA





GCTGGACTTATACAGCAAGTAGCCTCTTCAGATTGGCTTCTTTAACTTAG





TAATATTCATGTAACATTGCTCCATGTGTTTTCGTGGCTTAATAGGTCAT





TCCTTTTCATTACTGATCATTTTATTCTGTGCATGTACCACAATTTGTTC





GTCTACTACTGAATGATGTCTTGATTGTTTCGGTTGTTGGTGATTATGAA





TAAACTTGCTATAAACATTTACTTGTGTGGATGTAAGTTTTCAACTTATT





CAGATAATATTTAAAAGAGCAATTGCTGTATAGTATGGTAAGATTATGTT






TAGCCTTGTATGGAACTGCCAAAGTGGCTGTACCATTTTGTATTCCTACC







AGCAATGAATGAAAACACCTGTTGATCTGCATCCTTACCACTATATGATA







TTGTCATATTTCAGATTTTAATCCGTCTAATAGATGTGTAGTGGTAGATA







GTTGCTTAATTTTCAATTCTCTTATGACATACAATGTTTAACATCTTTTT







ATATGTATATTTGCTATCTGTATATCCTCTTTGGTGAGGTGTCTGTTCAG







ATCTTTTTCCCATTTTAAATTGGATTGTTTTCTTATTTTTGAGTTTTAAG







TGTTCTTTTTATATTTTAAGTGCAAGCCCTTTATCAGATATGTATTTTGT







GCATATTTTCCCACTCTGTGGCTTGTATTTTAATTCTCTTAATAATATCT






TTGCAGAAGTTTTTAATTTGAACAAATTTCACTTTTATGGTGTGCTTAAG





AAGTTGTATCTAAAAACACAAGGTCACCTATATTTTCTCCTGTTACAGAA





GTTTTAGACTGTGGGTTTTTTATTTAGCTCTATGATCCATTTTGAGCTAA





TTTTTGTGAACTGTGTAAAGTCTATGTCTGGATTCTTTTTTTTTCCAATG





TAGATATCCAGTTGTTCCAGCATCACTTGTTGAAAAGATTATCTTTTCTA





CAGTGAATTGCATTTGTTTCTTTGTCTAAGATCAGTTTACTATATTTGTG





TGGGTCTATTTCTAGGCTCTCTATTCTGTTCTATTGGTCTATGTGTTAAT





TCTTCCATAACATGCTGTTTTGACTATTGCAGCTTTATAGTAAATTTTCC






ATTTGAATTGTGTCATATTCTTCTTTGTTCTTCTTCTTGTGTATTATGTT






GCCTATTCTGAGTCTTTTTGTATTTTAATATAAACTTTCTTGTCAATTTG





TTGATACACAGAAATAACTTGCTTGGATTTTAATGGGAGTTGCAATGAAT





GTGGAAATTAAGTTGAGAAGAATTGACATCTTAGCAATATAGAGTCTTTC





CTGTCCCTATACATAGAATATCTATCTAGATCTTCTTTGATCTCCTTCAT





CAGACTTTTGTAGTTTTAGCCACATAGATCCTGTACATATTTTGTTTGAT





CTATACTTAAATATTTTATGTAATCAATTGACTTTTGTATATTAACTTTT





TATCCTACAACCTTGCTATAACAGCTTATTAGTTTCAGGGACTTTTTGCC





AACTATGGGATTTTCTGCATATAAATCATGCAAAATATGCAATCATGTCA





TCACCAAACAAATATAGTTCTATCTATGCCTTCCCAATATGTACACCCTT





TATTTCTTTTTCTTGTCTTATTGCATTGGCCAGGCCTTCCAGTACAATGT





TGAAAAGGAATGGTGAGATACAATATTCTTGCCTCTTTTTTCATTTTACG





AGGAAAGCATTCCTTTTAATAGTAGGCAGTCAGAATATAATATGTAATAT





TTTTAAAGGCAATAAATAGACATCTAAGTGAGTTATTTTAAAATTGAGAG





TTTAAAATCAAATAAAACTAAAAGAATTTAATAGTTTGCCTCTGTATCAT





GGAATGAAGGAGTTAACAAGAGCTGATGAGAGAATCTGCTATTTGTCACT





ATATCTTTTATTAGCATTTGACTTTTAAATATGTTACAATGAATATTTTA





ATAATTTTCTTCATAA





Human Genome Map 7q22 (2160 bp sequence)


(SEQ ID No. 61)


27A


ACATCTGTCTGTTTTGTGTGGCCGTCACAAAATAATCAAAGACTAAGTAA





TTTATAAAGAACAAAAATTTATTTCTCATAGTTAATGGAGGCTGAGAAGT





CCAAGACGAAAGTGCTGGCATCTCATGAGGGTCTTCTTCCTGTGTCCCCA





CAGGGCATAAGAGTGTAAGACTATGAACTCATTTCTGCAAGCCCTTTATA





CAATGATGTTAATTCATTCATGAGAGTGGGGACCTCGTGACCTAAACACC





TCCCATTAGATTCTACCTCCCAACACTGTTGCACTGTGCATTGAGTTTCT





AACACATAAATTTTGGGGGGCACATTCAAACCATAACATGGAGTTTTCTG





CATTGAGAAATGAAGGATCCATTTAATACAGGGACCTCAAAATACAAAGA





GAAAACTGACTGGCTGTATGGAGCTAGACGAAGAGGAGTAAGAAACTACT






ATTTGCAAGGCTGTGTAATTCCAAGGACTGTTATTCTTGGATGCTATGAT






GTTTTTAAAGAACAJACTACTATACATTTGTAAGTTATTAAATTATTAAT





ATTATTTGAGAATTTCAAATGGCTTAACTAATCAATGTGACATAGTGGGA





AAATTGGGCCTTTAATTGAAGACACAATTTGCTGATTACCACTTGGTAAC





TTAGCCCTTGCTTCTCTAACCCTTAGTTCATCTTGTAAAATGCATTAGTT





CTACTCCATAGGGGTATTGTGAGATTTAAACGCAGTGCAGCATATTAAGC





ACCCAGTGTAGTCCCTGATACATAGTGAAACATCAATAATAAATTGTTGC





TACTGGTAGAAATCCCTTGGCGTTTGGTAGATTTCCAATAAATACTAATT





CTTCTAAAACTTTTAATGATTATGTAGATAGATATATGCCTAGATCTGGT





AACAAATATGCTATATCAATAGTCAAAACATTCTCTCTTAATTTTATTAT





GATATATATTGGAAATCTTAGTGTGGTTTTGATTATACTAACATAATTAT





GTGGCATTAGTATGCCAAATGTACTCACAGTTATGCCAAAATTACCTGCC





CCAAATTACAGCTAATCCTTTCTTTGGTCCTAGGAGAGATACGCACACTA





GGGATATCACCATAAAAGTGAAGAAACACTTTATTACTGGCTGGGCTTGT





TTCTGAAATTCTAACACAGAGTTCTTATAACATGGACTTTTCCTTGCCTC






CTAGTTCAAGCTTGAGGGCTTACTGTGCTCTTGCAGGGAAAGATAAAAGA







AAGTGTCAGAGTGAAAGAATGGTCAAATGTATGAACTCTTC
TTTTATTTA






TTAATTTAAATACAGTGACTCTGTTCACTAGTAAACACACCTAACCCCTG





CCTTAGAGTCAGATTAACATCTTCTTTGAGGACAGCCCAAAGAAGAAAAA





TGCAAGGATGAAGCCTAGAGAGGTTTCCATCTCGTATACTTATATTCCAC





TATCTTTGGTTCTTTCTTTCAACCATTAGACTTAAACCCAACTGTATAAT





TAATCAAACATGTGGATATTTCCTTGGAGGAAGAAATAGAGAAGTGTCAG





GGAAGTTCGACCGCCACCTAAGTGTGTCTGCTTTTTTAATGCTGCCTTAT





GGTCTAAAGAGATGGGTGAAAAGCAGAGTATTCATTTCAAGGCCATACTA





TATTATATGCCATCTATTCACTCCAGGCTGCTTGTTGTCAAGGAAGAATA





AAAACCTTGATATCAAAGAGAATTAAGCTCTCAAAATTAGTTTCTCTTTC





ACATACCAAAGTAACCTTGAGCTTTCTAGCCTGCAAATTTCTCTCCCTTA





ATATTCTTTCTCTGTTCCGTTCCACTGAAAGTGATGTCACAGTGGTGTAG





TTAGAGTCTGGGTTACTCTTTCCTGCAGAACTGTTCTTCAGTACCTCTAG





ATAGAAAATAGTCCAACATCAAGTCTTGCATGAGTTTTCCTTTACCAAAG





ATCTAGTAGTCTAGAAGATATTTAAAAATCACATTATTGAGCCCACATCT





GCAAAAAGGAGAAGTATATACAATATTCTTAGGACTCAATACATATTACT





TGTGTGCTTGTCTTTGCATGGACATGTATGTGTTTTAATTTCTCTTGCGT





AAACACTTAGGGTTGGCATTGCTGACCCACATGGTAAGTGTATGTTTAAC





TTTATAAGCA





Human genome Map 11p15 (2160 bp sequence)


(SEQ ID No. 62)


29A


TACTGCTTCATCCTTGAGTTCTACAAAACACACACACACAAAAACCAACA





AAACTTAACTATAGGCTGGGTGAAGTGGCTCATGCCTGTAATCCCAGTGC





TGTGGGAAGATCTTTTGAAGCTAGGAGGTTTAATCAGCCTGGGCATCAAG





GCAAGACCCCATCTCTACAAAAAAAAAAAAAAGCCAGGCATGGTAGTGCA





CACCTGCAGTCCTAGCTACTCAGAAGGCTGAGGTAGGAGGATCACTTGAA





CCCAGCAGTTTGAGATTGCAGTAAGCCATGATCACATTACTGCACTCCAG





CCTGGCTGACAGAACAAAACACCACCTCTAAAAATAAAAATATAAAATAA





ATAAAAAAATTTAAAAACCTAAACATAGCTGCACTTTACTCAATATATTT





ACAGTTCTACATATGTAAAAACTTGTATATTGACTATGTTTTAAATGTGT





AGGGGAAGTTTCTCACCTAAAGGAGTCCCATAGTGAACATTTAAGAGCAA





ATGATTCCTTTTTTATTTGTATTTTTGGTTTTGCCTCTAGCACATCAGGT





ATTCTTTAAGAAGGCTATGCCTCTGAGGTTGCATGATCATTAACTAATTC





ATAATTTCCCTTGCATATATTTGGGTATTTTGGTGTTTCAGCCTTTCCCA





CACTTTTTTTATTTGCATGTCTTCACGATCACCATTATATCTTTGTTCCA





CCTGTACTATTATTTACTCACTCTTTGTCTTTAAATCAAATCACGTTTCT





TACTCAAGTAGATTTAGTTTTAAGACAAACCTTATGGCCGGGCACAGTGG





CTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATCATG





AGGTCAGGAGTTTGAGACCAGCCTGGCCAACGTAATGAAACCCCGTCCCT





ACTAAAAATACAAAAAATTAGCTGGGCGTGGTGGCGGGCACCTGTAATCC





CAGCTACTTGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGGGGGCA





GAGGTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCCAGGCAACA





ACGCGAGACTCTGTCTCAAAAAAAGAAAAAAAAGGAACTTTATGTCGCTA






CCATAAATGTGAAATTACTAGAACTCACAATAAATAGAAGTTAGTAAAGA







CACTGAATTCTAACTAGACGCTATTGCTTGTTGAAGGCTTTGATCTTAGG







AGGATTAGAAAGCATTCTAGGCCAGGCACGGTGGCTTCCTGTGTGTAATC







CCAGCAGTTGGAGAGGCTGAGGCAGGCGGGTTGCTTGAGCTCAGGAATTT







GAGACCAGCCTGGGCAACATGGCAAGACCCTGTCTCTACAAAAACATACA







AAACTTAGCCAGGCGTGGTGATGGCCACGTATGGTCCCAGCTACTCAGGT







GGCTGAGGCAGGAGGATTGATGAACCTGGGAGGCTAAGGCTCTAGTGAGC







CATGATCACACCACTGCACTCCAGCCTGGGTGACAGAGCCACACCCTGTC







TCAAAG
GAAAAAAAAAAAAAAAAAAGAATTCTAGTGGTGTGGTGTGGAAG






ACACATTCTCAGCAGACTAAGGTTGTATCTTTATAACCACAAGGATTGAA





AAAGAACGGAAGGACAATAACTTTCTCATAAGGTGATTCAATGTTATTTA





GTGCTGTTTCTGTGTACCATCAAAAATCCTCTTACTACACACAGAATATT





ATAACACCATCTCATTGTCCACATGAGCTCAGAAATTGGTCATCAAAGCA





GAAAAGTCTTTAAAACATTGATCTCCGGCCGGGCGTGGTGGCTCACACCT





GTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCGGATCACAAGGTCAAGA





GATCGAGACCATCCTGGCCAACATGGTGATCCCATCTCTACTAAAAATAC





AAAAATTAGCTGGGTGCAGTGGCAGACGCCTGTAATCCCAAGCTACTCGG





GAGGCTGAGGCAGGAGAATTGCTTGAACCCAGGAGGCAGAAGTTGCAGTG





AGCCGAGATCACGCCACTGCACTCCAGCCTGGGCAACAGAGCCAGACTCC





ATCTCGAAAAATAAAATAAAATAAAACATTGATCTCCAAGAAAGTAGATC





ATATCTGCTCTCTATCTGACCACATTGTTAAACTTGGTTATGTTTGCAGG





TTAAAG





Human Genome Map Xp21 (2040 bp sequence)


(SEQ ID No. 63)


30A


CAAAGACAGGCCAGTGCTCTACTCCTTGCTTCCTGGGCTCCCCAAAAGGG





AGCTGACTCCTCATCCCTCAACCTGGAGAACCAGTTCAGCTCTTCTTTTC





ACCAGAATCCTTTCCCTGCTTCCGACTCATCTTCTTTTTCTCAAAGCTGT





TGTAACTGTATTGTTCTCACCTGCTTTGCCCAGACAGATTCCCCAGTCCT





CCCCATCAGTGTTTGGCATTTATTCTGGGTGTTCTACTAGTAATGCCCAG





CCCCGGTCCTGGGCTTCCTGCTGTTTCTATTGCATCTCCCTAACTCTTAC





ATCCACCCCAACTCAGTGTTTTTGGCCTTCCTCAGCAACCAGGAATCTAA





ACCACCCTCCACCCCATAGCACCCTATGGATGACGGAGCCTTAGTTCTTG





ATGGTGATGCAGACACCTTGAGGTGTGGCCATGACATTCACTCAGCCCTT





GGCCTGGTAGCAGCAATTTTCCCTGATAAGGTCCCCAAACTGACCCTCAG





TTGTCCCCTGCAGTCCCATTAGGGCCTGTGGAATTTACGACTTCCATACA





CAGCACCAGGAAGTTGAGGATGGCTCCACGTGCTAGCTCAGTCTCTTTGC





CCTCTCTCTGCCTGTGGCAGATTGTATTTTCCAAAGATGACTGCACCAAA





ATATTCCACCCCATGTTATCTTCTTATGTGAAGTTCACACTAATTCTTCA





AGAAATGGGGCCTCTGTTTACACCTGCTGAATCTTGGCAGGCCTATAATT





ATAGTGGTTATGATTCTAGTGATGCTATATGACTTCTGAGACCATAAAAA





GACAATACAGCTTCCACCTGGTCCTATTGGAACAGTCATTCTTGGAACCA





AGCCACCATGTTGTGAGAAAACCCAGCCCACATGGGAAGGTCACATGTAG






GGATGACAGTCCCCACTGAGCCCCAGCCAATAGCCGGCATCAACTGCAAG







ACATGTGAGTAAGCGAACCCTCAGATGATTCCAGCCCCCAGCCTTTGAGC







TGCCCCAACTGATGCTTTGTGGAACAGAGAAAAGCTGTCCCCATTGAGCT






CTGCTCAGATTTCACATTTATGGTAAAAATCTATATGGTCCTTACTTTAA





GTTACTAAATTTGGGGATGCTTTCTTTACATAGCAGTAGGTAATTAGAAC





ACTGCCTGATCAAACTGCACTGCAACTTTTACTCGGCTGCTAACTATATG





GCTATAGCCGAGCATCATGGGGCCACCGTGTCTGGCAGTCCCCACATCCG





AGTTCCAAATGCGGAGCACAAAAGTCCCACTGTCACTGATCTTCCCTTCC





ACTCTCAGAATCTCAGTCTAGTATGGGGAAGCAAGGGTCGAACCATGTGC





TTCCCCCGTCAGGGCAGATGGTTCTCTTCCTGCCTGGAAGGAATTCCCTC





TACATAAAAGCCTCTTTCCACCAGGTATGGTGGCTCAAGCCTGTAATCCC





AGCACTTTGGGAGGTGAAGTGGGCAGATCACCTGAGGTCAGGAGTTTGAG





ACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAAATATAAAAA





TTAGCTGGGCATGGTGGTGGGCGCCTGTAATTCCAGCTACTCGGGAAGCT





GAGGCAGGAGAATCACTTGAACTCGGGAGGCGGAGGTTGCCGTGAGCCGA





GATCATGCCACTGCACTCCAGCCTGGGCAACAGAGTGGGACTCCATCTCA





AAAAAGTAATAATAACAAAAAATTTTTAAAAAGTGTTCTTCTTCCCAAGA





AAGCAGACATCAGACATCTTTCCCCCTTCATTGGGGCCTTAATTGCAGAT





GGGACTCTGGAAGAGATACTGACATAAGCATAAAAGTAGGTCCAAGAATA





TTTAACCTCTACATAAGAATTCAAATAAGCTATTGACCTTATGAGAGAGT





CACAATGATGGACACCTTCAAAGGAAGGAGAAGCACCATGGAGGGCAGAG





GAGAAAGACCATACCTGCTTGACTTGGTGTGAGAGGCATTCTAGATGTTA





TTGACATCATATAATAGACAGATGACAAGCATAGAAG





Human Genome Map 12q21 (2100 bp sequence)


(SEQ ID No. 64)


31A


TGTACATGCATTCATTTTGCTATCCTGCATTTGTTCTTTCTTCCTCAGAC





CTTTTCAGTCCCTAAGAAAATGGTATCATTCTGGGTAGGACCTAAGATCA





GTGATGAAATAACAGAATGCAGGATGGCAAGACTCTATATGGAGAGGGAA





ATTTTACAGAATCTAAACCTGGGGATACTAAATTAGATCAATTGAGTATA





GGCAATATCAGAGGGTAATAAAATAGTTTAAGAATACATAGATGTTTTTT





GTTTGTTGGTTAGTTTTTGCTTTTCTTGTAATTCAGGTTAAAGATGTGAC





ATTTCCTAACAGCACCAAGGAAGGAGCACCAGAGAACATGAAAAGGCACT





CAAGCTAAGTGGTCTGTTGAACTTTGCATATCTTCCTCTTTGTCAATGAA





AGAAGGCAAAACCAAACCTAAATGACAAAACAAAGAACTACTTACAAGGA





GTTTTAAAATATCTCAATCTCTGCGTTACTTATGTAACCCACAGAGTATA





TAGATGACCACTTAGAGGTATTCCTACTATTAACAAAGGTATTAGTATCT





GTGTTTTACCCATGAAAAATTAGAAACTTAGAAAAATATCTTGTTCAGTT





TCACACTGGTACAATATGAGGGTATGAAAGTTGTAACTGACTCTAAAGCT





TGAGCTATTTTCTTATAGATATAATTTAATAATGTCTATCAACTTTCTTG





AAATATTCTCATTGTTACCTAAGAATTTAAAATATTGATATGCAATTGAT





CTAAGAGAGGTTAAACATGAATTGGAAATTCCTTCTCCGATATCAGGTTT





GATTTTTCACAAATATCAATGTTTATGAAAGTATTCCTAAAATTTCAGGT





AAACCACCCAATAATATGACTGTGAAAAATTATGCTTCTTCCTCTATGAG





CTACTACATTCTTAAATTATCTGAGCATTCTATTAAAACTTAAAAAAATG





CTTAACTTGAGTCTGCATGAATCTGAATTCCCTGCATATTTAATTTTAAG





AAAATAGTTTATTTTTTTGTTAGACCAATACTTTACAAACTTCCCCAACC





AATAAGAAAGAACAAAGAGGAGAACATGAATATCCCTGGGTATTTGTGAG





TAAATCCCCAAGAGACTAACCATAAATGTGAAATTTCTTTATAATTGTAT





GTCTTCTTCTAAAATATTCATGTGGATTGTGCATTCTATTCTATCTTCTT






ATTTTAATAAAATCTGTTTTAAATTATTTACTTCCTGGAACAAATCTCCC







TGTTGTGTTGGTTTATGAACATGGTTCTATTGCCTTCAGTCTATTGTCGG







AAATAAAAACAGTCCTGCAGTTGTTGATTGAGTGTACTATGCCTTTAAGA







AGTCATGGCACTCATGCAACAGCCATGTAGTTGTTGATTGAGAGTACTGT







GTCTTAAAAAAAGAAC
TTTTGCTAAATAAACTGACTCTGTGAGCAGCCCT






TCATCATTTAAGTGAGAAATGTATTGAATTAAGTTACCTTGATATTGCCT





TTTGTTATATTTTTATTTCTTTGATACAAAAGAGTAACAATTTAATTCGA





AATTTGAAATCCCTGAATTGCCTATCCTCTCCAGTAAGTCACTACACACC





TGTATAGGGGAGCAGCCTTTCAGAATATTTTTCCTGAACATGAGAATATA





AAGCAGGAGGTGGTCATATTTGTTTGAGTAGCACCTCCTGATACCATTAA





TCTGAGCAGAAGAGTATGGGTCCATACTAGAACAGGATATGACTAGGAAA





ATGAAGAAGAATGAAAGCAAAGTATTCAACAGAAACATCTATGCTTTTTG





CCATTAGCTGAATGTGACATAAGAGTATAGAATGATTTGACACGATTCCA





AATCTAAATGTAACCAAGGAACTTTAAATATTATTAATGAGCATGGCAAA





GTTTAGGGTCAGGGGGAACAAATTTAAAAACTATGAGCATTCTCATGACA





TGAGTTAAAATGCAAAGACGTAAGTTAAACATAACTAATGACATTAATAA





AGTGATTGAAGCTCTATGTCACTTAAAGATAAGAAGGTATGATAGTTTAG





ACATTGTTCTAAAGGCCAATCTAAGTGAAAAAAGTTTTCAGG





Human Genome Map 17q21 (2100 bp sequence)


(SEQ ID No. 65)


32A


AGTTAGAATTCTGTGAGGTTTGTATAAAAGGAATAGAGTGGGGGCCCAAA





AACCAGTAAGATGAGAAAGTACTGTTTGCTCAGTTCTAGGATCCATGAAA





TAAATAATAAATAAATAAAAAAGAGAAAGTAGTGTTTCCTGCCACTTTAG





AGGAAGGACTCACATATCCTACCTTCCATCAGCCTTGAAGGAGATGAGTG





CCCTCTCTCCAACACCTGGTGGCCTTCCCTACCCCTTCCCCAAAGCCTCC





AAGAAGGCCCCTGGCCTAGCCTGATGCCCACTATCAGCAGGAACAGGCAC





GACAAACTTTCCCCTTCCTATCCCTCCCCACCTCTGGAAAGGGCTGGGGA





CAGCAGATGTGTCCTTGTTAGTTCCATCCATTTCAGCTTTGGCTGGGGAG





CTAATTTCACTGGAGCCAGGATAAGCATTAGGGTAAGTAACTATTTTTCC





TGTCTTGGGCAGTTTCCTCACTGACAAATGAGGGCAGAGTTCTAAGCTCT





CTTCTAATTCTAAAATTCTAATGTAAAAATTGCCAGACTAGTGGTGGCGC





AAGCCTGTAATCCCAGATACTCAGGAGGCTTAGGCAGGAGAATCGCTTGA





ACCCAGGAGGCGGAGGTTGCGGTGAGCTGAGATCGCGCCATTGTACTCCA





GCCTGGCAACAAGAGGGAACTCCATCTCAAAAAAAAAAAAAATCACCAGA





CTAATATTTACCTTGAGTGTTATGCGCATCCATGTGAAGAGACCACCAAA





CAGGCTTTGTGTGAGCAATAGTTTTTTAATCACCTGGAGTCAGCAAAAGG





AGATGGGGTGGGGCAGTTTTATAGGATTTGGGTAGGTAGTGGAAAAATTA






CAGTTAACGTGCGTTTTCTCTTGTGGGCAGGGGTGGGGGTAACAAGGTGC







TTGGTGAGGAGCTCCTGAGACTCATTGTCCAGGAGAAGGAATGTCACAAG







ATCAATTGATCAGTTAGGGTGGAGCAGGAACAAATCACAATGGTGGAATG






TCATCAGTTAAGGCAGGAACTGGCTATTTCACGTTTATGGTTCTTCAGTT





GCTTCAGGCCATCTGGATGTATATGTGCAGGTCACAGGGTTATGATGGCT





TAGCTTGGGCTCAGGGGCCTGACATTGAGGATTCTTTTTTATCTTCCTCT





GATGCTCTTCTATAAGAATGACTCTGTTTTGGAAGAAAACGCAATTAAGA





TTTTCCATCACAACAACCACTATCTCCAAATCTGTATTCATTCCTTTTAA





TTCATTATAAGTCTCATCTACCTAATGAGATAACTTTTTTGAAGACAGGA





ATTGTATGCTGTTTAACAGTGCTTTGTTTCTTCCATAGTTCAGTCATCCT





TGATATTTTGCGGGGGACTGGTTCTAGGATACTGCCCCCACACACCAGAA





TCTGTGAACGCTCAATCCCTTACATATAATGGTGCAGTATTTGAATATAA





CCAACACACATCCCCCCGCCACCACCCAATTAACTTTTTTACTTTTTTTC





CCCCCCGAGACAGAGTCTTGCCCTGTCGCCCAGGCTGGAGTGCAGTGGCA





CGATCTCGGCTCACTGCAAGCTCTGCCTCCTAGGTTCATGCCATTCTCCT





GCCTCAGCCTCCCGAGTAGCTGGGATTACAGGTGCCCGCCACCACACCGG





GCTAGTTTTTTTTTTTTTTTTTTTCTTTGTATTTTTAGTAGAGATGGGGT





TTCACCATGTTAGCGGGTGGACCTTGTGATCCGCCCACCTTGGCCTCCCA





AAGTGCTGGGATTACAGGTGTGAGCCACCATGCCCAGCCAATTTTTGTAT





TTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCTCGAACAC





CTGACATCAAGTGATCCGCCCACCTTGGCCTCCCAAAGTGCTAGGATTAC





AGGCATGAGCCACCGCACCCAGCCTCAGACTAAACTATAATAAAAGAGAA





AGCAGAGAGAGTAAGAGCACCTCATATGGAATCACCTACATTTCAGAAGC





TGGAAAGAAAGAGAGTGGTCTACTTGATGATATGAAGCATGATCAATCAG





TATCAATACTAGCTTTAGGGTGAAGGCATAGCCAAATTGGAAACTGTGGA





Human Genome Map 1q32.2 (2100 bp sequence)


(SEQ ID No. 66)


33A


AAAAAAAACCTTGTCCAGGCACAGTGGCTCACATCTGTAATCCCAACACT





TTGGGAGGCCAAGGTGGGCTGATCACTTGAGGCCAGGATTTTGAAACCAG





CCTGGCCGACATTGCAAAACCCCACAAAAACTAGCCGGGTGTGGTGGCAC





ACACCTGTAATTCCAGCTACTTGGGAGGCCGAGGCACAAGAATCACCTGA





AGCTGGGAGGCAAAGGTTGCAGTGAACCAAGATCATCCCACTGCACTCCA





GCTTGTGACACAGTGAGACTGTCTCAAAAAATAATAACGAAAATAAAATA





ATCTAAAATTTAAAAAAACCCTAATTCATAGTTATGGAATTATTGAGCAT





ATTAAATAAGATAATGCATGCAAAGTACTTAACAGCATCGGACATATTTT





AAGCACTCACTGATGCTTGCTATATAGTTAAATTATATAGCTATATGTAT





GTGTATATACATGCAAAGATCAGGAGATATGCTGACATAGAATGACTATG





GCAGGGTCCTGAAAGAGACCACAAAAGAGAGAAGTTTTCACACTGGTTCT





TTCCTTTTGGGGGATGCTGACAGTTCCCCTAGAAGGCAGCAGACTTTGCC





TCTGGGAGCAAGCCACTGGCCTGGCCCAGCACTCCTGAGATGAGCAGAAA





TGGGCAGAGGAGAGCTCAAGACAGAGCACAGGCCAGACTAATGTCTTCCT





GAGAGGAGAGCAGTGGGAGGAAAAAGGGGGCAGCAAAGAGACAAGAGATT





GCCTCCTTCACCTCCACCAATGTTACCTAAGCTAAAACCCCTCTGTCTAC





CAAATCAGCCCTGGTCACAAACTAAAACCCAAACCCAACAGGAGGCTTAC






TTATCCACGCCAATCTGAATTTCTCCATGACATGGACCAGGTGGGACTGT







GGGTTTGGTGCCATGTACATGACCTGTGACTTAGTGGATGGAGTTCCTTA







GGCCACAGCAGCCTCTGGCTCAATGAAGCTTGATCTACTGAGTACCTGGA







CCACATGGGGCTCTAGCAGCAGTCCTATCTTGAGCCCAGAACAGTAACTT






TCAATAGAATATACACTGGTATGTTGAATCAGAAGTTCAAACGCCCTTCA






CCTTTATGGTGACTTTTCTCTCAAGGACCTCCACTGCTTTCTTCTACTAT






GCCTTCGTATCATTGACCATTCCATCAGTGAGGGCCACCACAGTCCCTCA





GAATTCTTTAAGACTAACTAGGGGGAGATTAGAGTACCAATCCTTCTAAA





CCTTTCAAAAGGCTTCTTTTGAACCCTTTTCAAAAGATTTCTTCACTTAG





CACCCTGGAACCAAATGGAAGTGAATATTTTTGAGAAGACGTGACATCTT





TCTCCTGGGCCTTGCCCAGCCAAAATGTTCTGTTATCTGTTGCAATTAAA





AGAGAGCAAAGAGTAAGAAGTCTCTTTCCTTAAAGTTTCTTTGGCCACTT





GAGCGGAGCTTCCCAGAGCAGTAAACTCCTTTAGGATAGGGACTGTTGGA





ATTAAATGAGCTGGGGAACCACAACCTAGAAACTGGACTTCAGCTTTGTA





AACTCCGAAACTCATTATCACTGTGATGGTTAATTTGATGTGTCAACTTG





AGTAGGCCATAGGGTGCCCAGATTAAATGTTGTTCTGGGTGTGTCCATGA





GGATGTTTCCAGATGAGAATAGCATTTGAATTGGTAGACTCGGCAAAGTA





GATTGCCCTCCTCAGTGTGGCTGGGCATTGAAAAGGCCGAAGAAAGAATT





TGCCCCTCTTTTCCTGCCTCACTATTGAGCTGGGATATCTCATTTCACCT





TCTCCTGCCCTCAAACTGGGATTTACATCATCAGCACCCCTGGCTCTCAG





GCCTTTGGACTTGGACCAAACTGCATCACTGACTTTCCTCCATCTCCAGC





TTGCAGACACAGATTATTGGACTTCTCAACCTCCATAATCATGTGAGCCA





ACTACTCATAATAAATAAATAAATAGGCTGGGTGTGGTGGCTCATGCCTG





TAATCCCAGCACTTTGGGAGGCCCAGGTGGGCAGATCACGAGGTCAGGAG





TTTGAGACCAGCCTGGCCAATATGGTGAACCCCCATCTCTACTAAAAA





Human Genome Map 5q15 (2040 bp sequence)


(SEQ ID No. 67)


34A


TACAGGATGAAGGTAACAATAAGAGAAAGTGATCATAATAGTCAATATTT





AATACATATTTAATATATATATTTTTAGATTTAACAACTGGTTAAATCTA





TTAACCATATATCATCTAACCATTTCTATACCTTCCTATCACTCTTCTTT





TCCTATTCTCTCTTAATTCCAATTTTCCTACAACACACACACTCATATAC





ACATACGCACACATGCACCCACTATCCATAAGACCATCACGTCTGGGGAT





TTTGCACATACAGAGCCTAATAAAATTCAGCAACAAAGATCATTCAAATT





CATAACTCAAAAATTATCAGGTACAGAAAATACATGAACTGAGGTGAAGA





AAAGCCAAAATACTGGGAGAAGTAGAATATCTTTCACAAAAGACCTTCTA





GGAAGATCATATGGTACTGTTCTGCAAATCTTTCCTTTTACAACATTGAA





TGTTTTAATGTGAGCTTTGCAGATTCAGTTTCAAATCTTATCACTAATCC





TGCCCTTAAGCAAAGCTGTAAAGAAGGTGAAATTAATTTTATACATTTCC





TATTCTGCATTCTGTCATCCTCATCTTCCTTTGAGGGTCTAACAACTTCC





TACCACTTTCTGCTTGTGCCCATTACAACCCAGATTTTCATCTTTTGTAC





CTGGAACAGGCCTGGCCTTCCACAATGCTCTATGTGCTATGAAAGTCAGT





TTCTGCTATTATCATTGTGTTCTATTATTTCATGTATTTTCTAATAGCCT





TAGATTACTTTGAATAGGCCTGGAATCTCTAACACAATTAAATACTATAG





CAGGCATATAGTATTACCAAGGAAAGTAAAGCAAGATATAGAACAAATTG





AATGATGAAAACTGAGACAAACTGGAGACAGGGACCATGTCCAAAATGGA





CATCCATTATTCAACTGTAGCCTCATGTTATCATGTGGGAATGAAGGCCT





AGTGTTGTAAGATTTTAGATTTTTCAAGAGGAGCCAGAAATTTGTACCTT





CATACAAAAATTTCAATATTTGTAAAACACCATAAAAGTGAAAAAAATAC





CTACAAATCAGAATTTAGACTATGTTGACATTAACTTGCTACCTCTGTGA






TAAGCGATTTTAGAATAAGA
TTTTATTCTTGCTTAATTCTTCTCTTCAGA






GATACCTAGTGTAGTAGGAGAATCTAACACTTAAAAACAGGTCAGGTATG





GTGTCTCACACCTATAATCCCAGCACTTTTGGAGGACAAGGTGGGTGGAT





TGCTTGAGCCTAGGAGTTTGAGAGCAGCCTGGGCAACAGAATGAGACCCT





GTCTCTACAAAAAATACAGAAATTAGTCAGCTGTAGTGGCCTACGCCTGT





ACTCCCAGCCATTTAGGATGCTGAGGTGGGAGAACACTTGAGCCCAGGAG





GTCAAGTCTGCAGTGAGCCATGATCATGCTACTGCACTCCAGGCTGGGCA





AGAGAGCAAGATCCTGTCTCATATAATAATAATAATAGTAATAATAATAA





CAATTTTGTGATGGGTGATAAATATCATAGGGGCAAAATGTCATGGGAGC





ACAGAGATGGGAGAGGGGACTTTCATAAGCCTAGAATGTTCTCAAGGAGT





ATGTCTCAGAGAATATGAATCTCAAATGAAAGTAGGCCTTTACCAGAGAG





AGAGAAAATAAAGAGTATTCCAGAGAGTTGTGTGTGGGAAGATGCAGACA





TAAGAAACAGCAGCATTTACTTGGGGAAAAAATAGTTTAGGTTCTGTTCC





CAGATAAGTGGAATTATATCAGATACAGTTTTTAAGGAGAGTCTATTTGG





GGCAGGAGGGCCTCTTGAGTTCTTATTAATAGTTTTAAAATGTGAACACA





CCTTACTGCACATTAAGCACATGTACCCCAGAACTTAAAGTATAATAAAA





AAAAATTTTAAAAAAAGAAAAAAAATGTGAACACACCTCTATTTCTCTCT





CCAGGTAATTTTAACATGACCTTGCTACTCCCTTGGATGAAAGGATCATC





ACGAAGTTTTACAACAAACTTTATGGTTATGGAAGTTCT





Human Genome Map 8p11.2 (2100 bp sequence)


(SEQ ID No. 68)


35A


TCTAAGGCTTCTGGACCTGAACTGAGCCATGCTACCAGTATTTCAGGATG





TTCAGCTTGCAGATAGCCTGTCGCGGAACTTCTCAGCCTCTAGAATCACA





TGAGTCAATTCCCCTAATAAATCTCCTTTTATCTATCTGAACATCTCTCT





TCATCTCTCCATCCATCCACTCATGTGTCCATCCATCCATCCATCTATTG





CTATCTATCTATCCATCCATGCATCCATCCATTCAACCATCCATCCACCC





ATCCATCCATCCCTGTGCCATCTATATCTATCTATCTATATATCTATCTA





TCCATGCATCCATCCATCCATCTATCCATCTATCCATCCATCACTATCTA





TCCATGCATCCACCCATCCACCCATCCATCCATCCATCCATCCATCCATC





ACTATCTATCCATCCATGCATGCATGCATCCATCCATCCATCCATCCATC





CATCCATCCATCCATTTATCGCTATCTATCTATCCATCCATGTATCCATC






CATCCATCTGTTCATCTATCACTGTCTATATATCTATGTATCTATCTATC







CATCCATCCATGCATCCATCCATGCATCCATGCATCCATCTATCACTATC







CATCCATCCATCCATCCATCCATTCATCCATCTATCTGTCTTCTACCTAC







CTACCTATCTAACTCTCTGGAGAACTCTGACTAATAAACTAGCTTTATAA







ACATGTTATTCTCTCTCTGCAATGTCTATTGCTTTATCTTCAGGAACATT







CCACACATCCTGTAAGACTTCAGTTAAATTATCTCTCTGTTTCTTCTCCA







ATCATCCTCTGCCTTCCCTAGTCTCCTAACGTACTTTGTACATCTGTCAC






AAACCCCTCATCATATTTACTGTAATTTTTTTCCTACAGATTTGGATAGG





AATTGAGCCATTTTTTTAATTTCACTTTTATGGTTGTTACAAATAAAAGA





GCAAGCAGGCCCCTCACTGTAATTCACCTGTATTTGCATTTAACTTATTA





ACCAAGGCATACTATTTCAATAATCTAATATAGTATTTCCTATTTAATAA





CCAAACATACAGAACAGTTCCAAGCACATGTAACCATGTGATACATTTTC





CTCTTTGAATAATAATATATTTCTTATAATTAATATGTGATAAAATTGCA





ATATTTTTAATCTCCTACATCCTTCTCTTTTAATCAGGTTTCCTTATCAA





CTGGTTCCTATCTCACGGGGTTGTTGCAGAGATGAGGAAAAAAAGTATTC





TATTGGTTCATGCATCTCAAAATAGGCAGATTCTTTTCTCTGCTTCTTCC





TTCATTGGCTCAGGTGTGGAGTGCTTCTCCCAATTATATGTGCCAGCCTT





GGTATGTTCTCATTGCTGTACCACACTGCCTGAGACATCCAAGACCACAT





CTTCCTTTGGGGGCACATTGGACCTTTGTCATTGGCACTGGCAGGGAAGC





TTTTATTTCACCAGGTCTAAGGCAATTCTTCCAAAAAAATCCCAAATAGT





GAAAGAATTGATTTATTCTTCTAATATTTAAGCAAATGTAAAAAAAAAGT





TACATTAGTTATGTTTTTTTCAGATTTTGGATCAGTGAGACTTCATTAAA





ACACTTTGAGGTTATAAAGCAAGTAATTTTTGTTTCCAGAAAAGTTAGTT





TCCTTTGGCTGAAGGGACATCTCTATGCAGGCCAGATCAAGACAAAAATA





ACTTTTAAGAAGGGAAATGAGGGAATGGAGTTTGGAAAACATAAATCCCA





CAGCAAAGTACGTCACCAACAATAAGAGTCATCTCTTTCACAGAGGCCTT





TCCTAGAAAAGCCCTGACAGACTAGGAGTCCAATCTTCGGCTCCCATAGC





ACCCATGCCTGCTTCCACTCTGGAGCTTACTACTTTGCGTTGAAATTAAT





TTTTACATGTCTATGGCTTCTATTACAAATAGCTTATTGAAAAGAGAACC





ATGTACATTACAATACTTTTTTAGAGTTGCTGAACTGAACAAATCAGTAC





CTACGGGGTTAGTATGCTGGCTTCTATTCCAGCAGGGTTTTGAGCCATGA





GATTTTGAATGCTCCCGACATTGTTAGTTCAGGATGATTAAAAATAT





Human Genome Map 3p12 (2040 bp sequence)


(SEQ ID No. 69)


36A


TGAGAAAATGCAAGAAAGGAAGCCAGAGACGTTGTGGACTGCAGGCTCCT





TCCCCATCATGTCACTCAAACACAATGTTTCATTTGTAAAACATATTTTA





AAAGATTATGAATGCTATTTAAAAGAACACTAAAGGCCGGGCACAGTGAC





TCACTCTTGTAATTCCAGCACTTTGGGAGGCTGAGGTGGGCAGATTACTT





GAGTTTAGGAGTTTGAGACCAGCCTGGCCAACATGGCAAGACCCTGTGTC





TACTAAAAATACAAAAAACAAACAAACAAACAAACCCAACATGGTGATGT





GTGCCTGTGGTCCCCACTACTTGAGAGGCTGAAGTGGGAAGATCACTTGA





GCCTAGTAGGTGGAGGTTGCAGTGAGCCAAGATCACACCACTGCACTCCA





GCCTGGGTGACAGAGCAAGAATACATATATATATATATATATATATATAT





ATATATATATATATATATATGTATATATATATATATATATATATATATGT





ATATATATATATATACAGCAATCAACCAAACAACAGCAGCAAAACATTAA





AGTGACATGCTGACTCCTTGGAAAGGTGGTAAGCTCTTTAGGCTTCCTAA





TCAGAGAAGGCAGATAAAGAGTAATTTAACATCTTTCTAATCTACCCCAA





TGGAATTTGCAGTGATTTTCTTTCCATTTTTTCTCATTGTTTTTCAACCT





GATCACTAATAGGTAGCTGAAATGGAGTCACTTAATGGTTTTTGCTTTTT





AAGAATTCCAAACTCACAGTTTGAAAATTATAGTTCTTGCATTTGAAGTT





TTTCTTCATCGTGCTTGGCCTGCCTGGTGGCTTTTTGTTTTGTTTTGTTT





TGGTTTGGTTTGGTTTGTGGTCTCTTTCATCTACCCAAAGCCAGTTGAAA





TAAATCAAAAGTTGTCTCACTCAGGAATTGTCTAAAGTAAATAAATGAAA






AAAAAAAAAAAAA
CAAGACTAATAATTAGGCAACTCATTGAGTAGGCTGT







TGAACCAGCTAAAGTGGGAAAGAAATTATTCAAGTTCTAAACCTTTCTAC







TTGCAAATTAGCCAAAATCAATTGCATTTTAAGCACTGCATCACCTTGAT






TGATTTTTAAAATGGATAGCACTTTGCTGTTCACATTTATGGTGAGCCGT





GAAGGACTTGGCAATGGGCATCTTTTCTACCGTGTTCTGCATTAAACTCT





TTAAATAGCTTCTGCTTCTTAATGTTGAATGAACTTTACTGCAGACTGAG





TCTGAGGGTTTTTTTTTCAAGGTTGAAATACATTCTTCAGACTTTACTTT





TTGCATGTAGCATTCTTCTTACTTAAAATACCTAAGAGTTTCTAACTAAT





TTCTTTCAGCCACAGGAAATATTTCTGTAATTTTAGGGTTAAAATGGAGA





ACTATAGGATGAAAATATAATACAAGAAAATGAATTAAACCCTAAAATTT





ATTATTATATGTGGGTAAAAGTAGGGGGGAAAATCACTGGTTTTGAAATT





AAAAGATGAAAATTGTGAACACTTGCATGGAGACCCTATTTGTAAACTTG





GACAAGCTTCAGTGCCCTCTCTCTGCATCTTCTGTCATTATTATTTTTCC





TCAAGGCATCGTTTTGAGGATTAAATTAGAAAATGTGAACTAGCTTGAGA





GTACAGTCAGCACTTGAACAGCATGGGTTGGAACTGCAAGAGTCCACTTA





TACACAAACTGTTTTCAAACAAGCTCTGATCTAAAATACAATATTTGTAG





GATCTAAAACACGTGTATACAGAGGGCCAACTTTTCACATATGAAGGTTC





TGCAGGGCCAGCTGCAGGACTTGAATGTGCCTGGATTTGGGTATAAACAG





GTAGTCCTGGAACCGATACACCAAGTATACTGAGGGACAATTGTAATAGG





CACAAAAATGTCGATTGATAGATTTTGTTCTTTTTCCTGAAATGCAAACC





AGGACACTTACAAAACTAAATGAATAATTACTTATACATTTAGTGTCTCT





GTGCTTCTCTCTTTTACCTTTTCCTACTTCTTCCGTAT





Human Genome Map 14q13 (2100 bp sequence)


(SEQ ID No. 70)


37A


AAGTACAATTGGCCAGGCGTGGTGGCTCATGCCTTTAATCCCAGTACTTT





GGGAGGCGAAGGTGGGCGGATCACTTGAGGTCAGGAGTTCAAGACCAGCC





TGGTCAACATGGTGAAACCCCGTCTCTACTAAACATACAAAAATTGGCTA





GGCGTGGTGGTGGCACCTGTAATCCAAACTACTCGGGAGGCTGAGGCAGG





AGAATGGCTTAAACTCAGGAGGCGGAAGTTGCAGTGAGCTGAGATCGCGC





CGCTGCATTCTAGCCTGGGCAACAGAGCAAGACTCTGTCTCAACAAAAAA





AAAAAAAAAAAAAAAAGTACAATCAGTGTTCTGTTGTGTTTTGTTGTTGG





TTTTTTTTTTTTTTTTTTCTTTTTTTAGACAGGATCTTGCTCTGTTGCCC





AGGCTACTATGCAGTGGCACAAGAACAGCTTACTGCAGCCTTGACCTCCT





GGGCTCAAGTGATCCTCCCACCTCAGCATCCATAATAGCTGGGACTACAA





GTGCACACCACCACACCCAGCCAATTTTTTAATTTTTTTGTAGAGACAGG





GTCTTACTATGTTGCCCAGGCTGGTCTCGAACTCCTAGGCTCAAGTGATC





CTCCCACCTCGGCTTCCCAAAGTACTGAGATTACATGCATGAGCCACCAT





GCCCAGCTCTATTGTGTTTCTTGTTTTTTAGCTTGACAGGAGGGTGTCAG





GGATTTCCTGGCTTACAGAAATGATATGAATTTGCAGAAGAAACTAAAAC





TGTTAACAAACATTTGAAAAAAGTTAGCCCCATTATTTATTTTTTAAATG





CAAATTAAAACAACATACCTCAGATTTAATGTAACTTCTATCAAAATCTC





TGCTGGCTTCTTTGTAGAAATTGACAAACTGATTCTAAAATTCACATGGA





AATTCAAGGGACCAAGAATAGCCAAAACAACTTAGAAAAGGAACAAAATT





GGAGGGCCCACACTTTCTGACTTCAAAACTTGCTAGAAAGCTACACTAAT






TAAGACTGTGTGGTACTGGCATAAAGACAGACAAACAGATCAATGGAATA







AAATTGAGAGTCCAGAAATAAACCTTCACATTTATGGTGAATTCATTTTT






AAGAAGGGTACCAAGATAATTCAAGTAGGAGAAAAATAGTCTTTTCAACA





AATAGTGCCAGGACAACTAGATATCCATATACCAAAAAGTGAAGTTGGAC





TCATACCAAGTACAAAAATCAACTCAAAGAGAAAAAAAACCTAAATGTAA





AACTATAAAACTCCTAGAAAAAAAGATGTAAATCATTGTTACTTTGGATT





AAACAATGGTTTCTTTTCTTTTTTTTTTTTTTTTTGAGACAGAGTCTTGC





TCTGTCACCCAGGCCGGAGTGCAGTGACACAATCTTGGTTCACTTCAACC





TTTGCCTCCCAGGTTCAAGTGATTCTCCTGCCTTAGCCTCCCAAATAGCT





GGGATTACAGGTGCCTGCCACCACGCCAGGTTAATTTTTGTATTTTCAGT





AGAGATGGGGTTTCACCATGTTGGCAAGGCTGGTCTAGAACTCCTGACCT





CAGGTGATCTGCCCACCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTG





AGCCACTGCGCCCACCCTAGACAATGGTTTCTTAAGGTACAAAACCAAAA





AGACAAGTTATGAAAGAAAAAAAATAGATTGGACATCATCACAATTAAAA





ACTTTTGTGCTTCAAAAGTCATCTTCAAGAAAGTGAAGCCAAAAACAGAA





TGGGGGGAAAATTTTGCAAATATATATCTGAGAAGGACCTAATATCCAAA





ATGCATAAAGAACTCTTACAATTCAATAATAAAAGAAAATCAATCCAATT





TTAAAATAGGCAAAGGATCTGAATGGACATTTCTCCATAGACTATACACA





AATGGCTAATAAGCATATTAAAAGATGCTCAACATCATTAGCCATCAGAG





AAACACGAGTCAAAAATCACTTACGATACCACTTCACACCTATTAGTACG





ACTATAATAAAAAAGACAGTTAACAACAAGTGCTAGCAAGGATATGGAGA





AATTAGATCCTTTATATACTGCTGGTGAGAATGTAGAATGGTACAGCCCT





Human Genome Map 4p15.31 (2100 bp sequence)


(SEQ ID No. 71)


38A


TAGAAATATTGCAATGGAAACTTCAGAAGTAAAAATGATTATAACGGGCT





ATTATAAACAATTATGTGCAATATTTAATCAGGAAGAAATAGAAAGCTTG





AATGGACCAATAAAAATTAAGAGATTGAAATATGAATTCACTTTGCAACA





AAGAAAAGCCCAGGACGAGATGGCTTCATGAATGAATTCTACTAAACATT





CAAAGAAGTATTACCAATATTTAAATTCTCCCAACAAATAGAGATAGAAG





AAATACCTGCAAACACATTTTACAAGGCAAGCATCACCTTGATCCCTAAG





CCAATGACATCACAAAAAAGAAAACTATAGGCCAATATCTCTGATGAACA





TTGATGGAATTCTCAATAAAATATTAGCAAACAAAATTCAACATCACATC





AAAAAGATTATACATCATGACCAATAGGATTTATCCCTAGCATGCAAGGC





TGGTTTAATACACGAATGAAACAATGTGACACATCACATTAACAGGATGA





AAGATAAAAAACACAGAATTTTCTCAATCAACACAGAAAAAGCATTTGAC





AAAGTTCAGCATCCTTTCCTGATAAAAACTCTTAACAGTTTATGTATAGA





AAGAAAATTTCTCAACATAATATAATAAAGGTGATTTATGAAAAATCCAC





AGCTAACATAATAATCAGTGGGAAACAGTTGAAAGCTTTTTCACTAAGAT





CCAGTGCAAGCACAAATGCCCACTTTTGCTACTTCTATTCCACATAATAT





TGGAAGTACTAGCAATAGCAATCAGACCAGAGAAAGAAATAAAAAGCATT





TAAGTCAGAAAGAAGAAAAAGTAAAATTATCTCTATTTGCAGATGATATA





ATCCCTTATGTAGAAAACCCTAAAGATTCCACAAAAAACTGACAGAATGA





TTAATTCAGTAAACTTGCAGGATACAAAATCAACATACAAAAATCAGTAG





CATTTTTATACACTAATAACAACATATCTGAAAGACGCTTTAAATCCCAT





TTATGAAAGCATAAAAATAGTTAGAAATAAATTTAACCATAAAGGTGAAA






TATTTGTATACCGATAACTATAAACCTTTGATAAAAAAAGTTGAAGAAGA







CACATATAAATAGAATAATATTCTGTGTTCATGAATCAAAAAATTTAACA







ATGTTAAAATGTCTGTATTAACCAAAGCAATATACAAATTCAATGCAATT







TCTATCAAAATTTCAAGGATATGCATCACAGAAATAGAAAAAAAATTCTT







GAAATTCATATGGAACCACAGACACATAAAAACAGAATAGGCAAAGGAAC







AATGAGAAAGCAAAACAAAGCTTGAGGCATCACACTTCCTAAGTTAAAAT







TATATTGCAAAGCTACAGTAATCAAAAACAGTATACAAATGGCATGAAAA







CGAAAATGTGGACCAACGGAACAGAATATAGAGAGCCAGAAACTTAACTA







A
TTTTCAACAAGGGTACCAACAGGACACCCTGAAGTAAAGATAGTTTCTT






CAATAATGATTCTGGGAATTGGATTGCACATGCAGAAGAATGAAATTGGA





CCCTAATCTTGCACCATATACAAAAATGGACTCAAAATAGATAGGAGACC





TAAATGTAAGATGTGAAACCATAAAACTCCTAGAGAAGAACATAGGGGGA





AAAATTCCTTGATATTGGCCTTGGAGATGATTTTTGGATATCACACCAAA





AGCTTAGGCTACAGAATCGAAAATAAATAAATGGAACTACATCAAACTAC





AAAGTGTCTGCACAGTAAAGGAATCAATCAACCAAATAAAAAGGCAACAT





ACAGACTGGGAAATATATTTTCACACAGCATATCTCCTAAGAGGCTAATA





TTCAACATTTGTAAAGAACACTTACAAATGAGTAACAGAAACAACAAACA





GCTTGATTAAAAACAGGCAAGGGACCTGAACATACTTTTCTCCAAAGGAG





AAATAATGGCTAACAGGATATGAAAAGGTATACAACATTGCTAATCATTA





GGGAAACACAAATGAAAACCACTATGAGATATCACCCTTCACCCATTAGG





ATGGCTATTATAAAAAAAAAAAAAGACAAGA





Human Genome Map Xp11.3 (2100 bp sequence)


(SEQ ID No. 72)


39A


AGTAAGTGGTGGAGCCAAGAATTGAACCACAATGTTCAGGATTCATAGAA





TGATTAGAATATAGTGAAAACAAAGCAAGAGATAAATTAGAGAGCTGGCA





GGCGGGGCCCACTCATGAGAGATGCATGTGTACGCCATGTAGGATACCCA





GGTTTTCTTCTTTTGGTGAACGGAATCTCTTGAAGGGTGTTGAGCAAGAC





AGCAATATGAGCAGAGAGTTAGAAGCCCCACCACTCAGGAAGCAATGCAG





AGGTAGGCACGGGAGTGCATCTGAGATGAAGAGAATGGGCTGAGGTTGCA





GCTCAGAGGCATAAACTAGAATTGAATGTGCTGGGCCTCGGATGGACTCT





AAGCCTCTTGTTGAGTGTTAGGGAGACAGGGCCATCATGGAAGCCAGCTT





TGGACAGCAGGAGGGACACCTTTTCTACCGAGATGAAAAAGGAATGGCAA





GTTGTGGATGTGGGGGCATGGGTGTGGTTTACATCTCAGGATCTCTATAT





GCTCTATTAACCTGQAGATGAGGTTTTCTGTTATAAATTGGAGGAAAATG





GTGAAGTTAGGAGCTTAAGAGTGAGAAAGTCTGAAATATCCATTGTGGAG





AGTGGAAACAGGTACAACTAGGCCTTGATTCCCTCCTTAACTGCTTCTTC





ATCCTCAGCTACTCACTGATCCATCAGTTGTCCAGTTTGTCATCTGTGAC





TTTGATTTCTATTGGCCCTTTCCTTTTGGACCTTATTGGTCCTTTCCTTT





CAGCATATAGAATGTTCATGTCTCTCTCAACTTAAAACAACAGCAAAACC





CAGCCCATGACCTTCTGCCCGGTAAAGTCATCCTGGTAGTGTCCACCAGC





CTGGCAGAACCTGTCTTCCACAGCAGCCTGGTGACAACAAGAAGCCACAG





CAGCAGTGTTTGGCAGTGGTCTGGCCCTCTCCAGACAAAATAAGCATCCC





TGGGGTTCCTGGACAATGAAGGGCAAAGGAAAAGAGAACAGGTCTCAAGA






ATATACTGACATCTCCAAGAGGAATTCAAGATAATATGGCAAATGGGAAT







TAAATGAGAAAGTAAAAGAGAGGTGACCATATGCAATCTGGAGCAGGTGG






AATGTGTCATGATGGTTCAAGGGCAATCAAGAGTTCACATTTATGGTGAG





GATTTCTCTTGATTTTTTTTCCTCCTGTCATCTTATTTTGTGTTTTCAGT





TTTTCATGTATTGTTACCATTACCTTATATTGATTGCTTCTTGTCTTTTG





CAATACATCCTAAATATAGCAGGTTCTTGAATAACATCACCTCGTTCAAC





ATCATTTTATGATAATGTTGATGGGGAAAAAAAAATGGCTCCAGGCTGGA





GCCACTGTCTGCATGAAGTTTGTACTTTCTCTCCATGTCTGCGTGGGTTT





TCTCTGGTTTCTTCTCACATCCCAAAGCTGTGCACATGAGGTGAGCTGGC





ATGTCTATATGGTCCCAGTGTGACTGAGTGTGGATGTGTGAGTGCACCCT





GCGATGGGATGGTGTCCTGTCCAGGGCTGGTTCCCACCTTGTACCCTGAG





CTGCTGGGACAGGCTCCAGCCACCCATGACCTTGAACTGGAATAAGCACA





TTGGAAAATGAATGAACAAATGAATACAAATTAGGATAAAATAAAAACTC





ATCAAGTCTATGACAATAAAGGACATGGGACAAAAGCGCTCAGCAAGCCT





GCTCTACTTGTGATTTTTTGGTTTTGAACTGCAAGGTGGGAAAAGATGCT





CCTTACAATGTTCGCTCTGCAAACATTTATTCCCTGATTTAACCCATCAC





TACCATGGCCACTGCCACTCACTGATTCACCAATTGGGTAAATCATTGTC





TTGTTTTTATTAATTTTTTTTTTTGAGACAGAGTTTTACTCTTGTTGCCC





AGGCTGGAGTGCAATGGTGTGATCTCAGCTCACTGTAACCTCCGCCTCCC





GGGTTTAAGCGATTCTCCTGCCTCAGTCTCCCGAGTAGCTGGAATTACAG





GCGCCCGCCACCACACCCAGCTAATTTTTTGTATTTTTCGTAGAGATGGG





GTTTCACCATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTTAGG





Human Genome Map 11p15 (2100 bp sequence)


(SEQ ID No. 73)


40A


AAAGGCTTCCTTCCCTCAACAAAAAGGATCTCACCATTCTTTATATTCCA





GGTTTACTTTCTGATTTACCCGTACAGTATCATAGCCTGGAGGCTCCTGA





GATGCATTCTTTTTTGGAAGGGGCCTGATTTTGAAGTCTGACTCAGCCAC





TGATTAGTGAGCAGGCTTTCCTAAATCTTCCTTTCCTCTCTAGTAAAGTA





GGTCAGATCGTAATCTCTTCCTCACAGGACCATTGTGCAAATTAAAGGAG





ATAACGTGAATGGTTTGGTAGCAACTCAATGAATGTATCTGAATCCTCCC





GTCAATTTACTCTGCTGTCCATTATAGTCAGTTATGTATCTGTTTTATCC





TGTCTGGTCGAGAATGGAATCTGAGGACCAAAACTCCTCTCTTACTCATC





TCTGTGCATTTTCCTCTTTGCCCCTGCCCCTTCCTCCAACCCAGTACCTA





GCATGGTTTCTTCATTTATGTGTAAATTTTATCAAAGTGGTGTCAGTCTG






TGCAAATCATCTGCTGAAGTCTGTTAAGAACGTTCAGCAATATACACTTC






AACAGTAACAGGGACAGTGTGGAAAACCCTTGTTTTCTTCCTACTCTCCA





ATTCTTCTGCCTCTTTCCACTGCTTTGGAGAGGAGGTTACAATCAGAGTC





ATTTCACCATAAGAAAATCATCAATTTTCTAATGAAAACCCCCCTCCTTA





AATATTCAGCCGTGGCACAATCCCTAAAGGAGAGAACACATTAATGCAAT





GCACTTGGCCAATTTGTGAGCCCTGACTTGTTGAGCACAGACTCTTCCCT





GACCCTGGAAGACAATCGGCAGGACCCCTGAATAATGAAGTATGAATGCT





CACCATTGTGCTATCTCTAGCTACACCAGCTTCTACCTAATCTTTTTTTT





CCTTTTCATTGCTCTCCTTTGCAACTTCCTAAGGATTTGGCCATTTTCCA





CTGTGTCCAACCTACGAAGCTGTAAATACCTGACTGAGAAACACAAAATG





TGTTTATAGGACTTCTGATGGCTTCTCATCTAAACCATAAATGTGAAATG





CATTTCAACATTTCTCAGAAAACACCCCATCCCCCAGATTCAATTGGCAG





CACAAATTTACTTCTCAGAAGACAGCACCAAAATCTCAACATTGGCATT






TTGAATCAAGCACACACACGCAGCTGCATTGTGTTAACAAAGTGAAACAT







TATTAGGTCGCATACTCTGAGTGACAATATCCTCGAATGATCATTTCTGT







GAGAAATTATTAGCTATGAGAAATTCAATTTGGTAGCATTTGGGCATTAC







AGACAGCTAGTCTGTTTATATCAGCAAGGCTTTGATGTTAAGACTGTGTA







ACTGCAGCCACAGGAAAAGCAGACTGAATACAGGGTGGATAAGGTCACAG







ATATAAAAATCAGATAGAGTTCTGTTCTATTATCTACATAGTGTGTACTT







TGGGAAGTTACTTAATATTTCTAAGCCTCAGTTTCCTCATAAAAATAAAA







ATGGCAAGCAATATGAAAACTATCTAATAGAATATTTGTGACACTAAATT







GTAATAATGTATATAAATCACTTAGCCTAGTATGTGGCATTTATTAACAC







TCAAGCAJAGTGTAA
TTTTTTAAAAAAACTCTTATATCCCTTACATGACA






GAAATATTAAGACCAAAAATGGTTACTGAGCCCTCAAAGGTATTATCTCA





TTCTGGCTGAGCTATCTGGACCTGGAGA4AGTCTAGAAAAGACTCTATTT





CACTCCAAGTTTCTTGACCCTATCTTTATTTTTTATCTTCTATCCACTAG





GACCTGTGATCAGGCCAGGATTAACCAGTGTTCTCTAGGATTAACGTTTT





TGGCAGCTGGGGATGATTGCCTAAGATAATTGTTTTTGTGTCTGCCTCTC





CTGCTAGAATGCAAACTCTCAAGGGCAGGACATATGTCTTTCTTTATCCT





ACCTGTTAGTGATCAACAGGAGAAGGCCACTGCTTAACTGTTAGTGTCAG





GTCAGCTCCAAGCTGGTACTTCTTAGGAACTCTTTTCTTTTCTTTTTCTT





TTTCCTTCCTTCCTTCCATTTCTTTCTCTTTCTTCCTTCCTTCCTTCTGT





Human Genome Map 2q31 (2100 bp sequence)


(SEQ ID No. 74)


41A


CACGTGAGGACACAGCATAATAGTAGCCACCTGCAAGCAAAGGAGAGAGG





CCCAGGAGAAACAAGCCCTGCCAGCACCTTACTTAATCTTAGACTTCCAG





CCTCCAGAATTGTGAGAAAATAAATTTCTGTTGTTTAAGCTATCCAGCCT





GTGATATTTTGTTATGGCAGCCCCAATAACTAGTATGTGTATAATGAAGC





CCTAGACAACAAGGGACTCTCATTTCTCCGCATATTTGTAGAACTCATCC





CAATTATATAGAGCTCCTACTCTGAGTGCTAGACACAGTGTTAAACACTT





TCCCTGTGTTATCTCGTTTAACCATTAAGCTGAATCCTCCAAAACCCTTT





GGAAATCAGACTTATCTAAGAAACTCACTATTGTAGTGAAGCTGTTTTAA





AGAAGAATTGAAGGTATTTTTCTTTATCTTATAATCTGTTACATTGTGTT





ACATTTTAAGATAATACTAATCTAAGGACTGATAACAATTTAATTTGCCA





GAATCATTAAACCAAATAACATCTTTAACAGTGGCTGCTAGACAGGGGCA





GCTGTATATTTTAATGCCATATTTGGGGGAAAAAAAACAGGGTAGCAAAC





ATATCTATAAATAAGAATTAATTGCTACAAATTACCTGGGAAGGGAAAAA





TGTCAAGTTCATATAAAGAATATTATTGACCCATGGATTTACAGCTATAT





AATAATTTGGTACCTGGTTTATTTCTTAAAGACCTAGCACGTTTCTTGTT





TTCTCCTGCTATATTACGTGTACATGGCGTTTCAATAATCAAGCAAAAAA





GATGTATGCACTATCTTAGTCTTTGTTGTCTAATTAAAACTTTTTATGCA





TAGCAATTGCTTACCATTTTGCATTATCACCAGAGCTCATTTCTCATGGA






AAAAAAA
TTAGCATCAGTTTAAAAGAATATTTCTTTAATCAACAGTTCTG






ATTGTCAGTAGTACCATTTTGTAGATAGTTTTTAGCTGACTAACAAATCT





TTTATTTTATTGGCTGTCTCATTTTGCTCTCTTGCATATTTCACATTTAT






GTCTATTCAGACATTCTCCTGTTTTGTTAAGTGGAAATCTGTGTGGTCT






TTGATGTAAGACATAATTTATTTGACAAGGAAATATGAGTCTGTGCCCTG





AATCCACATTTAACTGATGGATTGAGAAATTTTAAAATTGCAACAAGATA





GACTCTCCTCCAGATTGCCGTACTACTTGCATTTTGCTTATCTATTTGGG





AGTGAATTTACATATGTGTGTCTATATACGAATATATAGAGAGTCATACA





ACCATGCAGCTGTACTTGTGCAATTTTTCTACTTTGTTAATAGAAAATGC





AGTCTCATTTTGTTAGTCATTAATGGTTCCTATAGAAAATTTTTAAAGAA





TTTTTTTCTGAAATTAAATTCAAGATACTTATTATGTTTTATCTTCATAT





AGATAGCTTTATAAAGAGAGTGATGTCTTCAAGTCTGTACTGCTCGCTTC





TCAGCCTAGTAAATGGAAGTTTTGTTAGCATTTCAAGATTTATATATTTC





ATATGTTCTCCCAAGTCTATGGCCCAGTTCTCTGTAATGGAAACTTACTT





TCAGCTCATTCCCTCTGCTCAGACTACTTGTCAATTAACCTTTGCAAAAT





GATAGTTTTAAAAAATATGACTTTCATATTTCAATCATGTTCATTTTCAA





TCATCTCAAAATGTAGAAATTGAATAACACCCGGGGTTCTACAGTGCTTT





TTACATATCATTTAAGGTTTAAAACATCTCTTTGATGTTCAAATATGACT





GCCATTTATATTCAATGGATGAGATTAAGTGGTTAAAATTACTTGTACTG





GGCATGCCCCTGCTTTGTTTATAGGTATGAACAAAACACTAAGGATTTTT





CATAAATATGCACCATTTCCATTGATGTTTTTGACTGCTGTCTGTGACAC





ACTAGGTAGGCCATATTAAGTAATGGGGAAGAAATCATAGGTCCTACTGT





GATATTAAAAATTTACATTTTGATGAATTAAATAGAGTTGTTGACCATTC





TACACTGTTGATTATATGAAGGGAAAAAGCTAACAACTTCTAAGAATAA





Human Genome Map 3p12.3 (2040 bp sequence)


(SEQ ID No. 75)


42A


AAAGGTAAAAGAGAGAAGCACAGAGACACTAAATGTATAAGTAATTATTC





ATTTAGTTTTGTAAGTGTCCTGGTTTGCATTTCAGGAAAGAACAAAATCT





ATCAATCGACATTTTTGTGCCTATTACAATTGTCCCTCAGTATACTTGGT





GTATCGGTTCCAGGACTACCTGTTTATACCCAAATCCAGGCACATTCAAG





TCCTGCAGCTGGCCCTGCAGAACCTTCATATGTGAAAAGTTGGCCCTCTG





TATACACGTGTTTTAGATCCTACAAATATTGTATTTTAGATCAGAGCTTG





TTTGAAAACAGTTTGTGTATAAGTGGACTCTTGCAGTTCCAACCCATGCT





GTTCAAGTGCTGACTGTACTCTCAAGCTAGTTCACATTTTCTAATTTAAT





CCTCAAAACGATGCCTTGAGGAAAAATAATAATGACAGAAGATGCAGAGA





GAGGGCACTGAAGCTTGTCCAAGTTTACAAATAGGGTCTCCATGCAAGTG





TTCACAATTTTCATCTTTTAATTTCAAAACCAGTGATTTTCCCCCCTACT





TTTACCCACATATAATAATAAATTTTAGGGTTTAATTCATTTTCTTGTATT





ATATTTTCATCCTATAGTTCTCCATTTTAACCCTAAAATTACAGAAATATT





TCCTGTGGCTGAAAGAAATTAGTTAGAAACTCTTAGGTATTTTAAGTAAG





AAGAATGCTACATGCAAAAAGTAAAGTCTGAAGAATGTATTTCAACCTTG





AAAAAAAAACCCTCAGACTCAGTCTGCAGTAAAGTTCATTCAACATTAAG





AAGCAGAAGCTATTTAAAGAGTTTAATGCAGAACACGGTAGAAAAGATGC





CCATTGCCAAGTCCTTCACGGCTCACCATAAATGTGAACAGCAAAGTGCT





ATCCATTTTAAAAATCAATCAAGGTGATGCAGTGCTTAAAATGCAATTGA






TTTTGGCTAATTTGCAAGTAGAAAGGTTTAGAACTTGAATAATTTCTTTC







CCACTTTAGCTGGTTCAACAGCCTACTCAATGAGTTGCCTAATTATTAGT







CTTG
TTTTTTTTTTTTTTTTCATTTATTTACTTTAGACAATTCCTGAGTG






AGACAACTTTTGATTTATTTCAACTGGCTTTGGGTAGATGAAAGAGACCA





CAAACCAAACCAAACCAAAACAAAACAAAACAAAAAGCCACCAGGCAGGC





CAAGCACGATGAAGAAAAACTTCAAATGCAAGAACTATAATTTTCAAACT





GTGAGTTTGGAATTCTTAAAAAGCAAAAACCATTAAGTGACTCCATTTCA





GCTACCTATTAGTGATCAGGTTGAAAAACAATGAGAAAAAATGGAAAGAA





AATCACTGCAAATTCCATTGGGGTAGATTAGAAAGATGTTAAATTACTCT





TTTTATCTGCCTTCTCTGATTAGGAAGCCTAAAGAGCTTACCACCTTTCC





AAGGAGTCAGCATGTCACTTTAATGTTTTGCTGCTGTTGTTTGGTTGATT





GCTGTATATATATATATATACATATATATATATATATATATATATATATA





TATATACATATATATATATATATATATATATATATATATATATATATATA





TATATATATATGTATTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGTG





TGATCTTGGCTCACTGCAACCTCCACCTACTAGGCTCAAGTGATCTTCCC





ACTTCAGCCTCTCAAGTAGTGGGGACCACAGGCACACATCACCATGTTGG





GTTTGTTTGTTTGTTTGTTTTTTGTATTTTTAGTAGACACAGGGTCTTGC





CATGTTGGCCAGGCTGGTCTCAAACTCCTAAACTCAAGTAATCTGCCCAC





CTCAGCCTCCCAAAGTGCTGGAATTACAAGAGTGAGTCACTGTGCCCGGC





CTTTAGTGTTCTTTTAAATAGCATTCATAATCTTTTAAAATATGTTTTAC





AAATGAAACATTGTGTTTGAGTGACATGATGGGGAAGGAGCCTGCAGTCC





ACAACGTCTCTGGCTTCCTTTCTTGCATTTTCTCAG





Human Genome Map 4q13.3 (2040 bp sequence)


(SEQ ID No. 76)


43A


CTCAGTTTTAAATGTTTCCATCAATCAGTAATTCAGCTCCAGAGTTGCCA





TAGAAGGTTATGGGAAAAAAATCCTTCTGCTTTTCCAATATCAAAGAGAG





AGATGTTCTGGAAGGTTTTATTTTTGCCACCCTGTTTCTAATGCATTTCG





CCTTAAGAATAATATTACTCATCTCCAGCAATCAGGCTCAAGGAGGAAAT





TTGATACCATTCTGTGGGTCATCCCCAGATCTCTGCAGGCTTCTGGCAGA





TGTATGATGTAGTGGGCACCACTAACTTTGTCTGCTAGGGTATTAGTAGG





ACGTGGTCTACTGAATACCGGACAGACATTTGGAAATTAAACTAATCAAA





ATAGGCTAATTTCACGTGCTAAGCAATGCAATTTCCCTGAATTTGTAGTT





CCATGATCTACTTTTTCTTCTACATTTCTCTTACTCCCTCTCTTCTCCGT





TTACAACACAAAATTCAACAAACTGCTAACTCTAGCTATTAATATCCCAT





AGTATTTCTCTAAGCAGCTTCATAGTCACAGTTTCAGTTAAGGCTCTAGG





GCTTTCATTCCTGAACTACGTGTACTACAGATCCCAGTTAAAATCTCTAT





CCTTCCCACAACAGTGGTTGACCACCTTCCTCAACATTGGATTTGGGGTG





ATAATGACAACATTCTGAACAAAGCTCATTTTTTCCCCTAACCCCCAGCT





AAATAGAAGAAATGTTAATGTTACTCCTCTTTAGATTTTTTTAATTAAGA





ATATTTTTAAAGGATTTTTTTATGATTTAATGGGACACAATGAAAAGATA





TTTTGACAAAGGTAAACATCTGAAACTGAGGCAAAGAATTTTAGATGTTG





CCTGTGTAACCATTATTCCATGATCAAAAGCCCAATGTTTAACATATCCT





GATTTCATCATTAAACAAGCATAAGAAAAAAAAAAAAGAAAACCATAAAA






GTGAAATAGATTACATCTTGTAATAATACAGCTATGAAATTCTGACCAGA







ATGAAAATATGAGTATGAAGAGAGTAATCATTTGCTTATTAATTCAAGGA







ACAATTTGCCA
TTTTTCAAGTATTATGAAAATAAGAGACTGTTGGACTCT






TTTTAAACACGCAGGTTTTTCAAATGTATGTACAGTAATATTATAGCTCT





GGTGAAAATTTTGATGAAAACAAAATTTTCTGTCTTCTTTTACTTACCTT





GCCCTTTTCAAAAAATAGTGCTTAATGTTAACCAATGGACAGTCTAACTA





CCTGAAGCTTTTCATTCAGCTTTATTTTCTCAGCAACTATGGTTGAAACT





GACAAGTTAGGTGAAAGGTTGTGTAAGTATCCAGGCAGGGGCAAAAATAT





CGAGTTATCCCCAAATACTAACAAGCACATAGGTAGAATATTTCTACCAA





GTTAAAGAGAATAAAGGAACCACATTGAGCAGAGCTACCTTATTCAAGGA





CCTCATTATCTCAAGGCACCCCAATTGAATAAGTGTACCATTATTCCCTT





CGTTCTGTGCAAACAGCAGACGTAGAGCACAAAGAGAGACGATTTCAGTG





AATCACACTGTAATTATAAATGCCACATTAAAAAACGGAACAAAAGCAAC





AGCAGGACACTGTAACGTCGATGGTTAAGGAGGGCAAACAGAGAAACATT





CTCAAAGGCCACAATAAATTACATGATCCAGTTCTTTGTTACAGGCAAAT





TATTGGACAATAAGAGAGACACTGAACACAACTTATCAGTGGTAAAGTAA





CTTGCACACATTCTCCTACCACTGAAATATTCCTGTTACCTACACAACTG





CATTTGTATATACAAGCAAGAATTTTGATGCACTAAGTAATTAATATAGC





TCTCTAGTATTTTTTTTACCTCTGTGCTTATTCTATCTGGGCAAGGTGTG





GTAATAGCACCTTAAAAAATAAGATCAGATTTAGGAGTGAAGAACACTGC





ATTGGAAAAGGTAATTGCTAATTTTATTGTATTTTAATTATTTGACCATT





TGTGCACAAAATTAAATAATACTTGCTTCATCTCTATATT





Human Genome Map 4q13.3 (2160 bp sequence)


(SEQ ID No. 77)


44A


GTGTATTGCTGTGAAAAAAGTCACTTCAAATTTAGTAGCTTCAACCAACA





ATCATTTTATTTGCTACCAATTTTTTGGGTGAGAAGTTTGTGCTGGGCTC





AGTTGGACAGTTCTACTGATTTCCCTGTATATACCTCATGCAGCAAAAGT





CATCCTGGTGGTTCTATGTGATGGTTAATTTTTGTATCGACTTGGCTGGA





TGATAGTCCCCAGATATTTGGTCAAACGTCATTCTAAATATTTCTGTCTA





TGTGTTTTGGGAATGAGATAATATTTTACTGGATTATTCTTCACAATGCG





GGTGGGCCTCATCCAGTTAGTTGAAGGCCTTAATAGACAATAATTGACAT





CAGACCTAAGTAAGAAGGAATTCTGCCAGCAGACTGCTTTTGGACTCAAA





TTGCAACTCTTCCCTGAGTCTCAAGCCTGCTGGCCTACCTTGCATATTTT





GGACTTACCAAGCTTCCACGACTGTATGAAGCATTTCCTTAAAATAAATG





TACATATCTGTCTCTCTACACACATACATATATACACACTCTCACACACA





TCCTGTTGGTTCTCTTTCTCTGGAGAACCCTAACACACTCCACTCAGACA





GATTGTCTAAGGTGGCTTCACTTAAGTTTTGGATATCGACTCTTGCCGTC





ACTCTCTTGAAACAATGTTCTTAGACTCTCATGTAAAGAAACTCCATCTA





GCTGCACCCTCGGCACTGTCCCAAAAAAGTGAGGATAATACCTGCAAGGT






TTCTTAAGGATTATGCCTTGAAGTCATATTTTACTTCTGTAGAGTTCTAT







TAGATCAAACAAGTTACCTGGCCAAGCCTAGGGTCATAGTGGGAGAATTT







TGAGGGCCATATGGCAAACAGCCCACCATACAATACATTCTCAAATGGCT







TCTCAAATTTTACATTCTTGTGAATGATTCTCTCTTCTTGTGATTAATTT






TACACACATTACTTCAATATAAATTTTTATCTCATTGCATTTTCAGTTTT





TTTGTAATTTCACATTTATGGTACTCTTACAATGTGCCATGTGCTATTCT





AAGTATTTTATGTAGATTAATTTAATTCTTACAACAACCTTTTGAGGTAG





GTAATACTATTTTGTTCCCATTTTCAGATGAAAATGCCAAGGCATAGAAA





GCTTATGTAACTTGCCCAGTAACACTCAGAGACTTAATGTCACAACCAGT





ACTTAAATGTATACTATCTGACTACAGGGTATGCATGCTTAGTCATAATG





TTATTAAAATATCATTTGTGATGACTGAGGCATCATGGCAGATAGGAGGC





AGGACTAGATTGCAGTTCCAGACAGAGCAGGAGACAGAGGCTTGCACATT





GAATTTTAGCTCCAGATCGACTGCAAGAGCAAACCGGTAATCCTGAGAGG





ACCCACAGATCCTCTGCCGGAAGCAGACTGTTTCTGCAGGACCAAGGAGA





CACCACAGATACTGTGGGTGTCCCAACTGCAGAAATTGGAAAGGGAGACC





CTTCTCTTCCAAACACACACCCCACTGGAGAAGCTGTTTCTGACTTTACC





TGGAGCTGAGTCAAGTTAGAGAGCTGAGCCAAGTGAAATACAGGGGTAGG





GGAAGTAGCGGAAAGACCCTGGGAGCTCGCTGGGTCCCCCAAGCAGCCCA





TACCTGCCTGGCACCACAGGGATCCACTGGGAGGTTGGCCAGAGAAGTAG





GGGGTAAAATACCACAGGCAGAAGGAATTCTCTAGCTAAACTCTGTAACA





ATTTGAACGGGGCATGAAGCCTCCTGGCCAGTACTTCAAGGAGGGTGTGA





ATCCAGCATGCAGACCTCACAGGCAGGGGGGAAAACTAAAGCCCTTTTCT





TTGGCAGCCGGGAGGTGGAAAGCCTCAGGCAAGTTTTCAAGCAGGGCTCA





CCCTCCACCTGGAAACAGACTCCAGGTTGTTGAGGGGGACACGGTGGGAG





TGAGACTGGCCCTTCAGCTAGCATGTGAACTAGGTGAGGCCTGTGACTGC





TGGCTTTCCCCTACTTACCTGACAACCTACATGACTCAGCAGAGGCAGCC





GTACTTCTCCTAGTGTGTCCGGAATTGGTGGGTTCTTGGTCTCGCTGTCT





TCAAGGATGAAGCCGCGGACCCTCACGGTGAGTGTTACAGTTCTTAAAGA





TGGTGTGTCCG





Human Genome Map 1p14 (2100 bp sequence)


(SEQ ID No. 78)


45A


CCTCCCACAAGGTCCAACTCAATCAGAACCAAAAGGGAGATCACAGCATA





TCCATGCAATCCCTGGCTGGACAGACGGGGCACCCTAGGGCCTGGAGTTA





CGCAGCTGACTGGCAGAGGTCAGTACCCAGTTCTACCCAGTGTGGCCACC





CGATCCAACTCTGTGACTCATTTTAAATCATAAGTAGTTTGAACAAAGAC





TTAAAATTAACGGGTTTGGTCATCATTAAAGTTTATTTTTAAACGTCAAG





TAATTTGGCATTTTACTAACAACAACTTGAGGATATCCACAGTGTATGAA





ACACCAACTCTTGTTTCAATAAAAGTCTAATGAAAGTTTCTCAAATTCTG





AAACCTAATTCCAGGATTCTTATTTGGAACTGTTTTTTTGTTTTTGTTTT





TGTTTTTGTTTTATCAGAGTACATTAACTCAGGGGGAAAATGAGATTATC





TTTTGATTCAGAGAGAAACAGAACATTCCACTGATAGTTTAAAAATAACA





CAGTGACCACAGATAACTGTAGTTCAGCAATTTTCAAATTCAGATTCTGG





GTCAGGGCACAAGATTATGCGTCTTTAACAAGCACAACTGATTATAATGC





TGATGGTCTAGAGGAAACTTGATGGGAAACACTGATCTATTCAACACTTT





TTAAAAGTACACTTTAGTACTATTTCTACCTAGTCAATAAAATAAAGAAG





GAAGGAGAAAGGAGGACGAATAAGAGAGAATCCGAAAGACACACTACCCA





GACAGACTACTCAGACAGACGAGACAGTCAGGCAGACATGGTGCTACCCG





TCAAGCATGCAGGAAAGCAGCTTTCATGGAATAACATTCCTAAACTCTTG





CCTAATAAATTATGCTGAGAGCTGCTGCTAAGAATTTTTTAAACCAACTC





AAAGCAAAAAAGGAGCTATTCACCCAATCAACAGGTGAAATCAAGTCACA





GACTAGTATAGGGTTTGGCAGATTTCAGGCCCTCCAGAAATATCTGTTTA





ATTGAGAAGCAACTCCAGCTCTAGCTAGAAATCTATTTAACCATAAAAGT






GAAATCATAATGAATTTGGTCGTATCTTATTTTTCCCCTTTGTTTGTTTC






CTCGGGGCATCTATAATGGCTGAATTGGAAATGGAACCACAAGTATTATA






ACAACATTTGTTGGAAAGTTCATCCTGTA
TTTTAGTAGTACATAAGTTGA






CAGATATGGCTTTATGAATTGTTCTCAGAGACTTAAAAAAAAAAAACCCT





GAACTTTGTAAAAATTACATCCATTATCCAcCAAGTAACATTTGCAAGCA





AAACCCTCTACTAGAAAAAATGGGTGCGAAAATAGGAAAAGGAGAAGAAC





AGGAGGAAGAAAAGGAGAACAGGACGTACAATTAATTGAGGGGAAAAAAA





TCATGAGTAAAGAAGTCAGAAATAAATGTAGCTAAAAATACAAACTGCTA





CTTTATGGTCCAGATATTGTAATATATCATTTTTAACATAAAAGAAAAAC





AAATCCTCAACAGACTTCCTATAAACGAAATTATCAGAGTTCCCGAGTAC





ACCGGGGGTCGAGGGAAGAATCTCCATGTGCTCCGAGTATCGATAGCCAG





TCCAGCTTCATTCACTCATTCATTTCTTTTCTTTCATTTCAGGAGAACAT





TTAGCAGTGTTTTGTTTTATTTATTTTATTCAAAGGGAAATCCTCATGTG





ACACTAGCGGTGAAAATAACTTGTATTTGTAAGTTAATGTCTGCTGTACA





TCTGAGTACACAATTGTCTTTCACAGAAGATGGAGCAAAGTATTACGGAA





AGTTCATTGGCTTCTGAGTCTGAGAGAAATGGGTTCAAATCCTGAATACG





TTCCTTATCTGTGTGATCTTAAGACTCATCATTTAATATTCTGAGTCAGT





TTCCTCCTCTATAAAACAAGAATCAGACGGGGCACAGTGGCTCACGCCTG





TAATCTCAGCACTTTGTGAGGCCAAGACGGATGAATCATCTGAGGTTAGG





AGTTCGAGACCAGCCGGACTAACATGGGAAAACdCCCGTCTCTACTAAAA





ATACAAAATTAGCCGGGAATGGTGGTGTACGCCTGCAATCCCAGCTACT





Human Genome Map 2q22.1 (2040 bp sequence)


(SEQ ID No. 79)


47A


TTGATTCATGGGATGTTTATGTGGATAATTCCTTTGAAATCCAGCTTGAT





TTATGAACAATCTTCTCTGCTCTATTGAGCCATTAAATCCAGAGTATTAG





TGCATTTGGAATACACAGAGATGATAATGACATCCAAAGAAGAGTCCAGC





AAAACTTATTTCCATGAGGACTTTTTCAGAGGGATGAAGTAACATTAGCT





ATACAGGTTAGCATTATAAGACTTCCCAAGTGTAGATGAGAATAATGGCA





ACTCTGTGGTCCTAAGGATGAATATTGCTCTGGAATATGCATTTTACACT





ATATGAAAGAAATTAGGATCGATATAAGCTCACTTATCTTTGCCTTATTC





CTCCTCATGTTGTTTTTGTCTAGATTGTCTCAGCCACTTGTTTTATTTTA





CTTAAATTTTAATTTCATCTTATTGTAAACCTCCATTCCTTCAGAAACAG





GTCAAGAACATGTCAATCTACCTAAGTGAATAACTAATATTAACAATTAA





ATAATAAATAGTACTGAATGAATATACGAATACAAGAATAAATAAAAATA





AAATGTATTACTTCATCGATGGATTTCCTAGTAGATGGGGAAACGGTGAG





AGGATATGAGCTTCAATAAGAAAAATGGTGCAATAAGGCAGAAGCAAATG





CCCAAAACAAATCAACACATTCACAATTTTTCCAAGGACCTGTCATGTAT





ATATTTTTTTCTTTTTTTAACCATTTGTGGCCCCTTTTTTTAACCATTTG





TGGCCCCTTTCTTATATCTCATTTCTCTCTTTTGTAAGGCTTCTGTGTTA





ATTGACAGCATGTTCAGATATAAATCCATCACAGGAATGTGATGAAATTA





GCCATTCAGACCCCTGATATTAAGAAATTCAAAGAAATGGATAGAGTATC





CAACCAGTGAGGAATTAAAGAAGAAAGAAGAGAAAGAGAAGGAGAGAGAA





ACTAGCTGTAAAGTTGGGATGGGTCGGGGGTGGTGAAGAAAACCAATTAT





TCATTGAAGGTGCCAGAAGGAAAATTGATGGCATGAATCCATAGCTTCTC






ACCATAAAGGTGAATAATGACACAGACACTTAGATTGGGGAATGAGAAAA






AAAAGGTGCATGCAAGGTTCTTCTATTTATATCTGATTAAGATATGAAAA





GAAAATGAGAGACTGGATTACTAAAGAAAAATTCCAGACAGTTAAGCAAT






TTTAGGAATGATTCATTTTAAGATATGGCCATCAATTATTTATAAGGGTT






AATAAATAGATTTATAAGCAAGAGGTACATGGAATCTAGAAATACATAAA





TGCTCTTCAATTATTTACAGCTCTGACAGTCATAACACATGAACTACTAC





CAAAAACACCATTTACTTGACTTTAAAATTTGCACCATAAACTATAAATG





GACCAGTTATGGAGCATCAGCCATTTGTAATGTGCCATGCAATATTTAAC





ATCAACTAAATGTGTTTTCACTAGCTGCTGACCACTTGGATTAATTTAAT





AAGCATGCCTAGTGCCTAATGATTTATTTGTGGGTAAATGATCATAACTA





TTTAATGGCCTTAATATTACAGATGTAATTCTGAAATAAAATATCATAAC





TTGGATTTAGTACATCCAGTTAAATAACAAGCATCGACATTTTTAAAAAA





TAATAAAAACAGTGGCCAGAAAAAGAAATTAAAGCACTTGCTAGTCATAT





GTCCCCATAGGTTTCCAGCTTCATATTGGCTTTATTTCTTTTTTTCCTTT





CATTTAGGTCACCCATTAATTTTCTTTCTTCATTTGCACACCCTCTTCCA





TTTCCTGTACTATCTTTTGTTCTAATCCTCTAGTAATTCCCCAGTGAGCT





CTCAGCTTCCAAGGGCACTCTATTTCTATTAAGCATGGCAGTCAACAAGT





GGAAATAGTCCTTGGTTGTCCTGCTTTCTGGGTGAATAGCAGAGTCCCTT





TGCATCACCTCAAAGACTCTGATTCTCATGATCCTCAGTCTGGTGCTGAA





TTGTGCTTTTGCTCATCCACACACATCCCCTACC





Human Genome Map 11q24.2 (2100 bp sequence)


(SEQ ID No. 80)


48A


ACTCAGCAATGGGTAGCTATACTTGAGATAATAGGCGGGATTTTATGTGC





AGCAATGTAGAGGATGCAGGGGCCCAGGATGGGCTGCCAGGTCTTCCAGA





GAGTGCTAAGGTATCCACCAAGGATCATGAATGTGAACAAGATAATGAAT





CACTGTCTACTTACTCTTTTGGAAAAGCTTCCATATCTCTGCCAATTGAA





TCACACTATAACCAGTCCCAGGCAATTCAGGATGACAAGTTCCACTTCGA





ACAGTTCTGGGAGTCATCCTGAGGGTCCCTGTGTATAGACATAAAAAGTT





CCATTTGTTCTTACACAGTGAAAATGACAGAACAAATATTATGGGGATTA





TGCCTGGGGAAAAAAAATCTGTCTCTGGATATTCCTGACACTATGGAGAG





AAAATCAGCAAAATTTAGAATCTTGGATCTCTTCCACTCACACTAGGATG





TTGTTTCTAGAAATCTCCCTGAAGTATGGTACTGACTCTTGGTGGTAAAA





GTGGAGAGGCTTAGAACTGAAATCTGGTCAGTAGAAGACTGAGGGTTAAA





AGTGGACGGTCAACCCATTGAATGAAGGCCTAGCAGGAAATAGAGAGACA






AAAA
TACAGGCATTAAGGGAATAATAGCTGAATAGTAATAATAATACATT







ATGTCAACAGCGGTGACAAAGGAAACACTCAATGTATTTATAGAGCTAAA







TAAACGGCAGATCTAGGTCCTACGTTTTGACTCTGAACAACCTTCTCGGT







TGGATTTTGCTTCTGCCTAAGGATTATTTTGGAAAGAGCTATTATTATCC







GTGATTTATCACGCTGCACTGGGGGGAACTCATACTTTCCACGGAGACAA







TTACTGAATTCTCACTGGAGGCGCTTAAAGGAGCCAGGACCTGTTCTGAG







GGTTCAGGTGGGAAAGGTGTGCCAGCAGGGGACTGCAGCCTGGCACCATG







GGACGTGTGTGCTGTTGACCACTTCTGTGCCCAGATCCCTCAGGCGCTTT







CTCATTAGATGCACCCTTCAATCTCCTGGTTATTGAAACAGGACTGGGGA






GAGGAGTTCACATTTATGGTGAGCCCATGCAAGAAGACCCTCCGACAGGT





GCCTGTCACCCCTGAGGAGTCACTGGTTGCAGCCCGTTCTGAAGTGTCAT





TGAGATAGAAACCAAGTCAAAGCCGTGGCCTAGAAAGAGAGTCTGGGCAG





AATTCTGCAAGCAGATTCTTTATTTGAGTAAGTATTCCTTGAAGAAGCCC





AGTTGTGCAGCTGTGTTTGGGTGGAGGTCATCAGAGGTTTAGAAAAAGAG





AGAAGTCATGGTTAATATTAGAAAAGAACTCTGAGAATCTGGAGGAAGGA





AAATGCATTACTAGTTCTAAGCAACAACTGTGGAATAAACAATGATAAAT





ACCGTATTAAATCTAAAGAGTTACGTTAATAGATAATAACAAGTAGGAGA





GCTAATAGCTAGCCATTAATACAGGCCAATTTATTATTTAAAACATTTAT





TAAGATTTAACAATAGTCAAATAATTTTTTTGTGAAACAGTTATTAAACT





GAATCTCTGCATACATTAATCAACTGATATTTATCATTCAGAATGTATCT





CATTATATCCAAAAGGGTGTGTGTATAGGCTTCAAAAACAAACTGGAAGA





TTTAAAATGAACTGTAGTTCATTTTTGCAAAGTGTAGATGTGTAAAGATT





ATTATGTTTGCCAGCTGGGTAGCCAGACAGTGAAGTGGACTTGTCTAATT





AGGAACAATCGCTGATAAATCAATTCTTTCCTTTTATAGGACAATTACAG





TTTGTGTGTATATGTGATTGTGTTTTAAATTCTAATTCGATTTTGTGCAT





TGTTCTGTAACCAAGTTAATTCTTTGAAGCCTTTTTAAATGGTACAAATT





TTCCATAAAATATAAATAGGTTTATTGCTGTTTTATCAGTCACGCAAATA





ATCCAAGATCCATCTATTCACATAATTCAGGCATTAACTGTGTATAATTA





CTCACATGAAGTCTTCAGTCTGGTTTACTATACGGAACCCCAAATATGAC





TTTAAATTGCTCCCCTCCTCTTTTCCTCTGTTATTTCTCTCCCTCTCTT





Human Genome Map 21q21 (2103 bp sequence)


(SEQ ID No. 81)


49A


TTGCATCATCTGACCTCTCTTCGAGTCCAAAGGACTGAGAACTAGAAGAA





CTACTGCTGTAAGTTCCAAAGTCCCAAGGCCCCTGAACTAAGATCTCCAA





TGTATGAGAGCAGGAAAAGATGGATATCCCAATTTAAGGAGAGAGAAAGA





GAAAATTTGCCCTTCTTGTTCTATTTAGATCCTCAAGGAATTGGAATGCC





CAACCACATTGGTGAGTGTGGGTCTTCTTTACTTATTCTACTGATTCAAA






TGTTAACAGATTCTGGAAACGTTCTCACAGATACACACAGAAATAATGTT






TTGCCAGCTCTCTGGGCAGCTCTTAGCCCAGTCAAGTTTACATATAAGAA





TAATCAACCCAGCTTTTTATAATCATCTTAGTATTTAATCAAGGAAATGA





TATCAGCTATCTACTACCACAAAAATAATTTTAAAAATTGGCTTATAAAA





GATGACTTAGTGGCCCTCAGCTGGGACAGCTTGTCACTATCCAACCAGCC





TTTAAATCCTTCCAAGAAGCAATCCTGGCTTGTTCTCCTGAAAACTGGGT





AGTTTTTCAAGAGATTGAGCAGAAGCATACAAGGCCTCCTGACACCTAGG





TGTGAGATGGGCACACAACCACTCCTGTCAAATTCTATTGGCCAAAGCAA





GTGACAAAGCCAATGCAGATTTAAGAGGTGGTGGAAAAAAACCCTAAAAA





TAGAAGTTGTTGAAAAGTCATATTTCAAAAGTCATTGGTATAAAGTAGTG





AAAAATTTGACATTTTTGCAATCAAGCTTATCAAACAATATTATCCCAAA





ATATAACAATACACTCAGTTTGCACACTTGTTTACCTTTTGCAAAACAGG





TAAGACAGTAGGACAAAGCAGGTGCTTTATGTTGTTTCAATCATTCAGGA





TTTGGACAGTTTGGATATTTTCTGTATCACTATAATTGATAAATACTCAG





ATGATTCTATAGTTAAGTTAGAATGGAAATTTTGGGTATAGTAACAAATA





CTACTTTAATTTAAACTTACATGTAAACAGTTTCCCTAAAGCAGTTAGAA





GTGTGACCATAAAAGTGAAATGGTTTAAATACATGCATTTACATCTGTCC





TAGAGTGATTAATGTAACTTTATTATAAAACTACTAATTTTGTGATTACA






TACACCCTTCCAAAGATACATTATACATTCCTATGTACACTCAAATATTA







TTTTTAAACTTCCATTCCAATCATTAAGTAGAAATGCATTTAAGAATCAT






GATTTTTTTAGAGTAAGTCTATAGGTGGTACTTTTATATTATAGATAACA





TTTCCTATACCCTTTCCACATAAACACAAGAACATTATGCTATAGATTGA





AAATTCCTGTAAACACTAAGCAGAGCTTTTGTACATAAACTTGTAAAAAC





TCTACATAAATGTATTCAGAAATACATGCTATTAAAATATTTTATTGTAT





ATTACTGTTTGGAAGTTTTCAGCTTAAATATTTTTATTTGATGATCAATA





AGATCTAGTATTAAATGGTCTTATTTATTAACCATTAAGTTAAATACATG





GAGAAATCCACTATGTCTTTTCCTCCAGCCTGTAAGTAACACAGGGTTGC





ATTTCTAATATTAACTAAGTTACATGTATTTTCCATTGAGAAGAGTGCTA





TCGAACTCATCCATGTTAATCACTCTTATGTGGAAAAGGCTAACATATAA





ATAAAAAAACTAGAAAATTTAAAAAAGGATAAAGAAAGAAGAAAAATGAA





CAGAATTTAACAGCAGTGCAACAGTAGTCTCTTCCTACCTTTCCTGGGCA





TCTTCCAATTTTATGGTGGTCTGATAAGCTTTCCAAAACACTTTGCTCAT





TTCCAGCACTGGACATTTACACTCAAGACTGCAGACTCGAGGAGTCACAC





ACTCAGCATCTTTTAGCTGTATGTTGTCAAGTTCAGACTACTCAAAGTGG





CATGTCTTTAAATTAGAATGTGTCAAGTGGGTCTAGTAACTGCACCGAAA





TATTTTAATAGTCATATTAATCATTAATAAGTCAGGAAACATGTTTTTCT





AATTTTCAGATCCCAATACACATGACTGATATGGTTTGCATCTGTGTCCC





TC





Human Genome Map 21q21 (2100 bp sequence)


(SEQ ID No. 82)


50A


AAGGTTTGGAAAGCTTAAGTCAAAATGTGTTGTTCATAAATACGGTCTGA





ATAATTTGAACATTTTCTGTTAATGGTATTTGTTCAACTATAATGATATT





TTCCAGCCAAGATATAATTGGCAATGTCAAAGTCACACACAGATGGGTAA





AATGGCCAATGTCTCTGGAAAATCTTGATAATAACTTTTTAGTATCTCTG





GTGCAAGGTCACTTAAATTCAGAAAATAGCACCCAAGGAAAAAATAGCCA





TATTCAAAAAAATAAGCTCCATATATTTAGATGTAGATATAAATTTGGGG





TGATTTATTTCTTATTAGACACTAATATTTTTTAAAACAGAGAATGACAA





ATAAGGAAATTTTGCAGTTAACTATGTCCTAATGAAAAAGGGTAGTAGTT





TTACAAGAAAGATATAATTCATCAAAAAGGCAGGGAAGCATTCAGACTAA





ACATTGAGTATGTTTGGAAATAATAAAAATTATTGTTTCTTTTACCAACA





TCAACAATCTTTTCAAATTAATTTATAAAACTGTCATCTCTGTTCACTAA





TTTTGAATTACTCATATTATTTTTAATTTTGAATACTTATAATATTACTT





ACTAATTTTTAATTAATTTTGATATACCTATATCACTGTTTTGAATTGAT





CTATGAATGATCTAGAAATGACTTTGCCTGTTTTTTTTTTTGACTCATGG





GTATTTACTTTTCATTAGGTAATTTTAATGTATTGTTAACTAGAAAAATA





AGATGAAGAAAAAAACATTTTAAATGCAAAATATAAATTTAAAGAACTTC





AAAAGAATAAAATTTCAGTTTTATGTCTTTCAAGTAAATTTGCTGTTTTC





AAAATTATTTTTTGTTACAAACCTATTTTATTTCAAAAAATATGCTATTG





TTTTTAACCTATAATTTTTAAATATCTGACAGCATTGTAGGACTTAAAGC





TATTAAATATATAAAGATATAATAGAACTTATTGGAAATATTCAAGGAAA





AACTAACATATTCTTTAAAAACATTTTAATTTTTAAATTCTATGTTAATT





GACTTTTTGATACATATTTTACTTTTCCTTCACTTCTTTTGTCAATTCTT





AAAAATGTCTTTCTTCATAATTTTTGGCAATTAGTTTTTACACTTTAATA





GCAAACATTGCCATAAAAGTGAAATTAAGCATTAATTAATTTTATGTCTG





CAGGCAGAGTGATTTCCTTAGGGAATCAATTTAATAGAGAGAACTATGTT






TGTACCTGGCAGGATATTCACAGAAATAAAATATTTATTGGCCATCTACT







TTGTTTAAGACCTCTTAACAAACCATAACTTATTAAAGCATAAAGTAACA







TACATAGTAAATAC
TTTTAAAATCTGTAAACAACTAATTCCTTTCTTCTT






GTGAAGTCTTGTTTAGATCATTAAAGTAATAGCAGATTTTCTCACAACAG





GTTTGTGAATATTGTCTGTTTAACATGAAAACTATAAAAAAATTAAAGAC





AATTGATATATATTTATTCAACTATGTCAACTCAAAGATGATCTGCAATT





GTTTTCTGAATAACTTATTAATAATGCTTAGGCCCCTTTGTTGAACATGC





TTTTATTTGTGTAAATAAGAATTCATTTAAAAATACATTGTACAACTTCA





ACACATTGTGTGTCCCTGAAGGTACTCTGAGATTTTGCAGTTATAGTATA





AATGAGACAAAACGGCAGAGAAAATATTCCCCATGTGTAATTCTTTCTAC





ATTTATTTCCCACATCAATCTCACAAGTGTTTTTATTTCACACTGATTGA





TATCATTGAGCACATACCTCAATATCTATTATCACAAAAACTATCATTAT





CAACAAGGACTTTAAAAAATATCTAAACATTATTATCTGGGTAGCAACTC





TATACTCCATTTTATCCATTAATTTTGTCTAATTAGTAAAGAAGTACTTA





TGGTAAAAACAAATTAAAAATAGTACAGAAAACATACTCCTGTATGCAAT





TATTACAAATATTTTATTTAGTTCCTATAAAGTATTTACATAGCTGAGAT





CACTATATAATATTATACTCATGTTACTTTATGTCCTAACTTTATATCA





Human Genome Map 11q23.2-q24.2 (2040 bp sequence)


(SEQ ID No. 83)


51A


CGGCTCTCCTGGCCTCGCGCTGCACATTCTCTCCTGGCGGCGGCGCCACC





TGCAGTAGCGTTCGCCCGAACATGGCGACACGGAGCAGCAGGAGGGAGTC





GCGACTCCCGTTCCTATTCACCCTGGTCGCACTGCTGCCGCCCGGAGCTC





TCTGCGAAGTCTGGACGCAGAGGCTGCACGGCGGCAGCGCGCCCTTGCCC





CAGGACCGGGGCTTCCTCGTGGTGCAGGGCGACCCGCGCGAGCTGCGGCT





GTGGGCGCGCGGGGATGCCAGGGGGGCGAGCCGCGCGGACGAGAAGCCGC





TCCGGAGGAAACGGAGCGCTGCCCTGCAGCCCGAGCCCATCAAGGTGTAC





GGACAGGTGAGCAGTTTTGCAACCCGCCTCCCTCCAGTTTTTTCCTCTCC





CTGCACTTCCTCACCCCCGCATCCATCCGTTGCAGTCGCCTCCTAGGTGC





AGGCACCACTGGGGACTTCCCGGCTTGCATTTGTTTTTTTCCTTCACGAG





TACAACCGTCAGCACTTGAATCGCATTGATCTTTCCTTCTTCCTGTCGAT





TTAGTAAACGTATTCCAGGTAACTCGCCGGGTGCAGTGCGTATTACCCCA





GGGTGTGTGCAGAGAGATGTAGTTTCCGGCAGGTATAGGAGGGGTGCAGC





TTCATTTTACATCTGGATAAAAAACGGGCTTTCTTTAGTGTATCATCAGT





TGGCAGTGGAGGCGAGCACCCTGCAGTTGCGGTACACTTACACAGAACAG





CACGAGGTGGGGGTTTCCACACTTAGCATTATTAGCACAATAAAAGTGGG






CAAACCTGAAAGCTTGTCGACTATCTCTGTACAGTCAGACAAGAGGTGTG







TGTATGTGTGTGCGTGTGTAAAGGCTGAATTTTTAATTTTTAATTTTTGG







CGAGCGTGTGAGATGCTCTCCATTCCTTCTTCCCCACCCTTCAAGATGCT







GACTCTCCCACCCCCGTCAAGATAACTTTATTTTGGAGAGGAATACCCCT







CATGGCACTTGGAGATTTGAAAGGACTGCAGGAAATTTGGTGGGCATTAT







TATTCTATAAGTGATTTATTTCTACCCAGGCAATAGGTTTATTAGATCAT






AAGTAACGTGAATTTCACTTTTATGGTCAGACTTACTGCGAGGAATTGCA





GATGGAGTTTGTAGGTTAGGATCAGCACTGGCAAAATTAATTTGACCGTG





TTATTGCCTCATGAGACTCCCAGTCCTGCAGTTAAGATTGACATCAGCAA





AAGTATAAGGTCGGTGGGGGAGAAAAAGTAGGACCAGAGGAGGGGGTAAA





TACACTTGTTTTCTAGAGTCAAATTGTTCCTTTTGAAGTAGAAATTATTA





ATAAAAGATTACCCTGAGTTCTGCCTTTTCTCACTAATTTCACTTTAGCC





ATTTCTTCAGGAAATACAGAGTTAAATGTTCAACCCTTGGATCCAGGACG





AACCTTGTAAACATATCACCCTATTGTGTCATTTTGTTGGTGAAGAAACT





GAAGCGTGGAATGGTGAAGTGACTAGTCCAAGGTCATACCGGGAAGGTGG





CCTGCTCTCTAGTTTTTGTCTGCATTGTCTCAGTGACCTTTGCTTGACTG





CAGTCACCCTGTCTTTATGCAATGCTGCTGAAATACCTCCTTTCTAAAAT





AAAATAGATCTGGTATAAAGGGGGAAAGGATGGTGGTGACTGGGTGGGAG





CGTTGGATTTCCCTCCACTATTGGTCCCTGGGCAAGAATGTGTGCCCCAG





GGCATGTAACTAATGGTGGCCACAGGCTGCAGGAACCTGCATGCTCAGTT





CCTCTTGGGCCCAGATCCTTGTCCCCCTGTCCCCACCCCATATGACAAAT





ATGTGTATGAACAAAAAGAAGTCATCAAGGTCCTTGCTCTTAACAGCGAC





ACCAGCATGGGGCTGATGGAGGGTGGGAGAAGGAGGAGGAGTGGCCCACT





TCTTCATTGGGCCTCCGCAGTCAGCCCAGCTCTGCTGTGCTCTTGAATCA





GCATTCTGGGAACTGGGAGTTGGGGGCTGGTGGGAGACAA





Human Genome Map 8p11.2 (2100 bp sequence)


(SEQ ID No. 84)


52A


ACAAAAGGCAAATTGGTGTCTCTGTCCTGGAGTCCTTACTCCTCATCTTG





TGCTTAGACATGAAATTACACATCTCCAGCCTTGGGATTCCAGGACTTAC





ACCAGTAGCATGCCTATGTTCTAAGGCCTTTGGCCTGGGACTGAGAATTA





CACCATCAGCTTTTCTGGTTCTAAGGCTTCTGGACCTGAACTGAGCCATG





CTACCAGTATTTCAGGATGTTCAGCTTGCAGATAGCCTGTCGCGGAACTT





CTCAGCCTCTAGAATCACATGAGTCAATTCCCCTAATAAATCTCCTTTTA





TCTATCTGAACATCTCTCTTCATCTCTCCATCCATCCACTCATGTGTCCA





TCCATCCATCCATCTATTGCTATCTATCTATCCATCCATGCATCCATCCA





TTCAACCATCCATCCACCCATCCATCCATCCCTGTGCCATCTATATCTAT





CTATCTATATATCTATCTATCCATGCATCCATCCATCCATCTATCCATCT





ATCCATCCATCACTATCTATCCATGCATCCACCCATCCACCCATCCATCC





ATCCATCCATCCATCCATCACTATCTATCCATCCATGCATGCATGCATCC





ATCCATCCATCCATCCATCCATCCATCCATCCATTTATCGCTATCTATCT





ATCCATCCATGTATCCATCCATCCATCTGTTCATCTATCACTGTCTATAT





ATCTATGTATCTATCTATCCATCCATCCATGCATCCATCCATGCATCCAT





GCATCCATCTATCACTATCCATCCATCCATCCATCCATCCATTCATCCAT





CTATCTGTCTTCTACCTACCTACCTATCTAACTCTCTGGAGAACTCTGAC





TAATAAACTAGCTTTAAAACATGTTATTCTCTCTCTGCAATGTCTATTGC






TTTATCTTCAGGAACATTCCACACATCCTGTAAGACTTCAGTTAAATTAT







CTCTCTGTTTCTTCTCCAATCATCCTCTGCCTTCCCTAGTCTCCTAACGT







ACTTTGTACATCTGTCACAAACCCCTCATCATATTTACTGTAATTTTTTT






CCTACAGATTTGGATAGGAATTGAGCCATTTTTTTAATTTCACTTTTATG






GTTGTTACAAATAAAAGAGCAAGCAGGCCCCTCACTGTAATTCACCTGTA







TTTGCATTTAACTTATTAACCAAGGCATACTATTTCAAATAATCTAATAT






AGTATTTCCTATTTAATAACCAAACATACAGAACAGTTCCAAGCACATGT





AACCATGTGATACATTTTCCTCTTTGAATAATAAATATATTTCTTATAAT





TAATATGTGATAAAATTGCAATATTTTTAATCTCCTACATCCTTCTCTTT





TAACAGGTTTCCTTATCAACTGGTTCCTATCTCACGGGGTTGTTGCAGAG





ATGAGGAAAAAAAGTATTCTATTGGTTCATGCATCTCAAAATAGGCAGAT





TCTTTTCTCTGCTTCTTCCTTCATTGGCTCAGGTGTGGAGTGCTTCTCCC





AATTATATGTGCCAGCCTTGGTATGTTCTCATTGCTGTACCACACTGCCT





GAGACATCCAAGACCACATCTTCCTTTGGGGGCACATTGGACCTTTGTCA





TTGGCACTGGCAGGGAAGCTTTTATTTCACCAGGTCTAAGGCAATTCTTC





CAAAAAAATCCCAAATAGTGAAAGAATTGATTTATTCTTCTAATATTTAA





GCAAATGTAAAAAAAAAGTTACATTAGTTATGTTTTTTTCAGATTTTGGA





TCAGTGAGACTTCATTAAAACACTTTGAGGTTATAAAGCAAGTAATTTTT





GTTTCCAGAAAAGTTAGTTTCCTTTGGCTGAAGGGACATCTCTATGCAGG





CCAGATCAAGACAAAAATAACTTTTAAGAAGGGAAATGAGGGAATGGAGT





TTGGAAAACATAAATCCCACAGCAAAGTACGTCACCAACAATAAGAGTCA





TCTCTTTCACAGAGGCCTTTCCTAGAAAAGCCCTGACAGACTAGGAGTCC





AATCTTCGGCTCCCATAGCACCCATGCCTGCTTCCACTCTGGAGCTTACT





ACTTTGCGTTGAAATTAATTTTTACATGTCTATGGCTTCTATTACAAA






However since the in silico search was based on the H1 PSE consensus and considering that it was used as query allowing only the first and the last bases to be different in the targets, it can reasonably supposed to have identified only those promoters whose, structure is very similar to that of H1 (for sequences used as query see materials and Methods section). This is further supported by the fact that out of H1 no other previously known Pol III Type III promoters were found in our PSE-based collection. Therefore this finding together with the observation of the large sequence divergence among the PSE consensus sequences of U6, 7SK and H1 suggests that the use of a degenerated PSE consensus as query (most likely derived from a bioinformatic analysis of several known Pol III Type III promoter consensus elements) would bring to light a considerably higher number of novel PSE-dependent transcription units in the human genome that would better clarify the likely impact of this effect at genome scale.


In order to further characterize in silico the novel transcription units we arbitrarily assumed as transcribed the sequence stretch starting from the 21st nucleotide downstream the predicted TATA box. In addition a 4×T repeat was considered as a Pol III transcription STOP signal although events of “read through” are possible and most likely affected by sequence context features [19, 20]. Although it has to be emphasized that the transcribed region of each element of this collection needs to be experimentally determined case by case (possibly in the context of its target gene of regulation), based on their in silico characterization we selected 33 novel transcripts to be subjected to additional analysis.


In order to test if a common secondary structure could be a hallmark of the novel molecules an in silico analysis of their secondary structure was performed by mfold algorithm [21]. Results showed that although hairpins with short stems (5-7 base pairs) were frequent no shared secondary structures were recurrent indicating that a peculiar molecular organization is not the common hallmark of this set of non-coding molecules. Interestingly, although their averaged free energy (δG) was extremely variable (−42.7±41.2) four transcripts (11A, 20A, 21A, and 29A) showed a δG value significantly lower than all the others (δG<−100). A statistical analysis of such δG differences was performed bringing to light a group of transcripts (11A, 20A, 21A and 29A) whose δG is significantly lower then expected (Student't TEST, 33 degrees of freedom, α significance level=0.1 corresponding to a P-value of 0.0001) thus keeping in line with their physiologically functional molecular organization (FIG. 8).


In order to assess if the pool of transcription units was prevalently constituted by repeats such as retroposons we analyzed all the transcripts by Repeat Masker algorithm [22] evidencing that: i) only 2 out of 34 (5.9%) are Short Interspersed Nucleotide Elements (SINEs) such as 21A and 29A that were marked as AluJb elements. ii) three of them (8.8%) are part of Long Interspersed Nucleotide Element (LINE) such as 24A, 37A, and 38A. iii) two (5.9%) contained a MIR (17A and 40A) and iiii) three contained different types of Long Terminal Repeats (30A, 32A and 44A) (Table 2).









TABLE 2







Sequence analysis by RepeatMasker Web Server (available at:


http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker)












Seq.
Rep.




Seq Name
Length
Length
Position
Type





11A






12A






14A






17A
159
115
 1-115
Mir (MIR3)


19A






20A






21A
333
307
 18-324
SINEs (AluJB)


22A






23A






24A
406
406
 1-406
Line L1 (L1MC)


27A






29A
360
286
 74-359
SINEs (AluJB)


30A
158
135
 1-135
LTR/MALR (MLT1G3)


31A






32A
140
140
 1-140
LTR (LTR7)


33A






34A






35A






36A






37A
 50
 50
 1-49
LINE (L1M4)


38A
357
348
 1-348
LINE (L1M3)


39A






40A
484
220
253-472
MIR (MIR b)


41A






42A






43A






44A
218
 52
 66-117
LTR/MALR (MLT1M2)


45A






47A






48A






49A






50A






51A






52A













Placing results in the appropriate context (such as considering that Alus, LINEs and MIRs constitute about 15%, 30% and 1-5% of the human genome respectively) one should expect a higher frequency of repeats in this novel pool of sequences. In addition we observed that no more than three of the repeats-containing elements are ascribed to the same class of molecules. Altogether these observations evidence that the novel PSE-dependent transcripts are not associated to a specific class of repetitive sequences scattered throughout the human genome but instead they constitute a novel eterogeneous set of Type III promoter-driven elements.


When these non-coding sequences were used to challenge the human genome database (BLAST Analysis) results showed that 7 were internal to known or predicted protein-coding genes, 4 being in antisense and 3 in sense configuration. Interestingly, most of the novel sequence elements not mapping in coding regions shared a high sequence homology (˜80%) to a Pol II transcript/EST that maps in a different locus (Table 3). Such homologies reached much higher values (often about 90%) if only parts of the putative transcripts were considered. In fact, no ESTs entirely containing one of our transcription units were found so that if a sense/antisense-based regulation would occur it should be related to parts of the ncRNA sequences while the other part could have structural properties that facilitate this regulatory action (perhaps binding specific structural proteins). Based on these observations, a novel control mechanism of gene expression could be postulated where Pol III (or Pol III-like) elements act as trans-locus antisense of their homologous protein-coding RNAs. In this model the Pol III co-genes in antisense configuration with respect to one (or more) specific target gene could regulate its expression either by interfering with its mRNA maturation (if the homologous region is internal to an intron) or by inhibiting protein translation (if the homology is associated to an exon).

















TABLE 3











BLAST







Genomic
Blast Human

Human


Tr. Unit
Tr. Length (nt)
Hum. Gen. Map
Contig
Genome
gi (gen. ident.)
ESTs
gi
e-value























11A
344
14q22.1

H1 RNA






12A
141
2p24.3
RP11-

51460874
DB275493
83216976
2.00E-12





98I18


14A
148
3p12
RP11-

21206095








206J21


17A
159
9q22-q31
RP11-
GPR51 (intron 3)
51467683








349P17
Sense


19A
148
3p12.3
RP11-

19774315








206J21


20A
547
14q22.1
R218E20

11611180





21A
333
8q24.1
RP1-
CENPF (Intron
22657510
AA737281
2767556
1.00E-31





316L14
7,14,18) Antisense


22A
235
6q16-q21
RP11-

10045412
AA361955
2014276
6.00E-29





487F5


23A
200
Xq21.3
RP13-

6855342








258015


24A
406
12q21
RP11-

9957971
DA811538
81279558
6.00E-15





997P16


27A
91
7q22
CTA-

2341013








369K23


29A
360
11p15
AJ400877
ASCL3 (intron 1)
8052236
BX645799
34480132
2.00E-36






Sense


30A
258
Xp11.4
RP11-

50582666
DA496935
80536970
3.00E-05





157D23


31A
231
12q21
RP11-

21039699
AW303617
6713306
2.00E-19





743I10


32A
140
17q21
MCK41

75875068
CA310957
24529055
9.00E-73


33A
210
1q32.2
RP11-

21622744








465N4


34A
33
5q15
RP11-

21281496








274E7


35A
351
8p11.2
RP11-

28565756
BF995135
12401458
5.00E-21





1147M13


36A
122
3p12
RP11-564-

20334518








P9


37A
49
14q13
RP11-

37550867
BM724961
19046292
4.00E-10





192K2


38A
357
4p15.31
RP11-
KCNIP4 (intron 1)
19807889
BF475563
11546390
8.00E-17





19D21
Antisense


39A
76
Xp11.3
RP5-
FLJ22843 (intron 10)
9581533








1158H2
Antisense


40A
484
11p15
RP11-

27413210
BG570298
13577951
4.00E-04





265F24


41A
79
2q31
RP11-

15668089








12N7


42A
122
3p12.3
RP11-

20334518








564P9


43A
65
4q34.3
RP11-

18129587








43303


44A
218
4q13.3
RP11-

18464317








401E5


45A
78
4p14
RP11-1I10
APBB2 )intron 1)
18450176









Antisense


47A
48
2q22.1
RP11-

16950374








745P9


48A
405
11q24.2
RP11-

32188045








168K9


50A
156
21q21
AP001675

7768691





51A
273
11q23.2
RP11-
SORL1 (intron 1)
14517581
BG698692
13966211
8.00E-04





730K11
Sense


52A
142
8p11.2
RP11-

28565756








1147M13










21A as Co-Gene Experimental Model


To test our hypothesis we selected one of the novel transcription units (here referred to as 21A) that maps in 8q24.13. If aligned to the human genome it shows several homology hits among which the highest were associated to multiple intronic regions of Centromeric Protein F (CENP-F; 1q32-q41) (Acc. N° NM016343) [23] thus constituting its putative natural trans-chromosomal antisense (FIG. 1A, B, C). Although similarly to all the 7SL/Alu-derived elements 21A is expected to be primate specific [24] an evolutionary conservation analysis was performed aligning its sequence with the mouse predicted CENP-F gene. No significant similarities were found indicating that in rodents a putative CENP-F antisense regulatory role, if any, would be associated to a different class of noncoding elements. Interestingly, in spite of its high sequence similarity with other human Alus, 21A lacks the Alu-specific intragenic consensus elements needed to promote its Pol III transcription such as the blocks A and B [25]. This was a further clue pointing toward a 21A transcription driven by an extragenic Type III promoter.


To check for 21A expression in cultured cells, we performed Northern blot analysis on total HeLa cell RNA using a 21A dsDNA probe. Two positive bands were detected: one corresponding in size to the expected 21A transcript (−300 nt), and the other one corresponding to a high molecular mass transcript (as expected for CENP-F mRNA) (FIG. 2A). However, considering that the 21A double-strand cDNA probe would detect transcription of 21A-similar Alus from multiple loci we also amplified a 21A-specific cDNA from total RNA samples, extracted from skin fibroblasts and four tumor cell lines (293T, LAN5, HCT, HeLa), by random hexamer-based RT-PCR in order to better identify a 21A-specific transcription product (FIG. 2B). The DNA band obtained was then purified and sequenced evidencing that the amplification product was the expected 21A. In addition, to better assess 21A transcription we fused its promoter to a luciferase silencer hairpin and co-transfected this construct with a plasmid expressing luciferase. Results showed a halved luciferase activity 48 hours after transfection thus demonstrating an efficient transcription directed by 21A promoter. In the same experiment a set of five novel promoters from our collection were tested demonstrating an active transcription of the hairpin promoted by four of them (FIG. 2C). These data support the conclusion that the majority of the novel putative transcription units is under the control of active extragenic Type III promoters.


Pol III-Dependency of the Novel Transcription Units


The same experiment as above was repeated after 24 hours of cell treatment with ML-60218, a cell-permeable indazolo-sulfonamide compound that displays broad spectrum inhibitory activity against RNA Polymerase III [26]. Results showed an efficient luciferase-silencing activity in the absence of the Pol III inhibitor (as evidenced by a decreased luciferase emission) while after treatment with ML-60218 the luciferase signal was increased (FIG. 2D).


Altogether, these results evidence a decrease in hairpin synthesis of the novel transcription units as consequence of the reduced Pol III activity according with their Pol III-dependency of their transcription.


21A Acts as CENP-F Regulatory Co-Gene Modulating its Expression at Post-Transcriptional Level


To test whether the 21A transcript acts as an antisense inhibitor of CENP-F expression we measured by Western analysis CENP-F protein level in HeLa cells transiently transfected with four different 21A constructs carrying: i) the whole 21A region containing both DSE and PSE elements (p21A), ii) its upstream moiety, that contains the DSE and a MIR element (p21A-1), iii) the novel Pol III Type 3 transcription region (that includes an Alu Jb module) (p21A-2) and iiii) an empty vector as Mock control (pMock). Starting at 24 hours from transfection of the whole 21A region, inhibition of CENP-F accumulation (followed by a rapid degradation) was observed. Such inhibition was specifically associated to constructs expressing the 21A RNA (p21A, p21A-2) while the MIR element in the upstream moiety of the fragment (p21A-1 construct) was ineffective (FIG. 3 A-D). In this context it has to be noted that a slight delay of 21A-2 inhibitory action if compared to the immediate CENPF decrease determined by 21A has been observed suggesting that a more detailed mutation analysis of 21A promoter could bring to light further Type III promoters regulatory regions. In order to measure the occurrence of 21A transcription in transfected cells we analyzed by Real Time quantitative RT-PCR its RNA level in all the samples. As expected a very high amount of 21A transcript was detected in p21A and p21A-2-transfected cells (210 and 480-fold respectively at 48 hours from transfection) while the 21A RNA content of samples transfected with pMock control plasmid and/or with a construct containing the promoter lacking the transcribed region (p21A-1 construct) were essentially stable showing a very low basal level of 21A expression in untransfected HeLa cells (FIG. 3 E-H). All the PCR products were analyzed in their dissociation curve showing a single characteristic pick (at 78/79° C.) in p21A/p21A2-transfected samples significantly reduced in pMOCK/p21A-1. On the contrary the cells transfected with the two control plasmids (pMock/p21A-1) showed a dissociation pattern characteristic of an eterogeneous population of molecules (FIG. 30). Again these results confirmed an active synthesis of the exogenous 21A ncRNA transcript in p21A/p21A-2-transfected samples that was strongly reduced at a very low endogenous basal level in the samples lacking the transcript region (pMOCK/p21A-1). As a consequence of 21A very active transcription the level of CENP-F mRNA (as determined by Real-Time RT-PCR) was significantly decreased in p21A/p21A-2-transfected cells while no major CENPF mRNA variations were observed in pMOCK/p21A-1-transfected cells (FIG. 3A-D). Altogether these results evidenced an inverse correlation between 21A transcription and CENPF expression. Therefore, considering the high homology level between 21A transcript and three CENPF hnRNA intronic portions and in the light of the above results (obtained either at protein level as well as at RNA level) we suggest a mechanism of antisense inhibition of CENP-F mRNA maturation by the 21A transcript.


21A Overexpression Specifically Inhibits Cell Proliferation in Humans


Given the central role of CENP F in mitosis we tested the effect of ectopic 21A expression on cell proliferation. By measuring [3H]-thymidine incorporation we evidenced a dramatic arrest of cell proliferation after 48 hours in 21A-transfected cells. Again, the effect was specifically associated to the downstream 21A transcribed region (p21A/p21A-2 constructs) while transfection of the MIR-containing upstream moiety (p21A-1 construct) did not alter cell proliferation (FIG. 4A). Although at the present state we cannot exclude a contribution to this effect by Alus from other loci, this experiment evidence an inverse correlation of 21A transcription and cell proliferation that is in accord with the inhibition of CENPF synthesis here demonstrated.


To further support the antisense role of 21A we transfected Hela cells with a construct expressing the transcript in antisense configuration (here referred to as pAnti-21A) thus quenching the activity of the endogenous 21A molecules. Results showed an increased cell proliferation 24/48 hours after transfection. Similar results were obtained when a 21A-specific siRNA expressing construct was transfected in HeLa cells while the negative control sample (cells transfected with an unrelated chicken-specific siRNA) maintained a cell proliferation rate similar to that of pMock-transfected cells (FIG. 4B). In both the experiments an increased CENP-F synthesis was detected together with the concomitant 21A-RNA decrease in Anti/si21A-transfected cells, as evidenced by Real-Time RT PCR (FIG. 4 C,D). As shown in these experiments CENPF modulation and 21A RNA decrease were analyzed only at 0, 24, 48 hours after transfection rather then at 0, 24, 48 and 72 hours as in the previous experiments. In fact, the proliferation increase that follows to 21A downregulation brings in advance the cells at overconfluence so that the effect that we would measure on CENPF synthesis at 72 hours after transfection would be strongly biased by this technical limitation.


These data suggest that the decreased amount of 21A transcript consequent to its siRNA-mediated silencing, as well as its suppression by antisense technology specifically increase CENP-F synthesis thus keeping in line with the proposed role of 21A as CENP-F regulatory co-gene. In addition, it has to be considered that the increased proliferation rate here observed supports the idea of a widespread regulatory action of 21A that may control at post-transcriptional level the expression of several target genes similarly to what has been proposed for miRNAs [27].


The 21A Regulatory Effect is Human-Specific


Considering that a 21A-driven cell proliferation inhibition is expected to be primate specific (Alu sequences were not found in other mammalian orders) we tested for its eventual occurrence in mouse. In fact, this would keep in line with an unspecific effect of 21A on cell proliferation may be due to the activation of a more general biological process such as most likely the interferon response (an antiviral cell reaction shared by all mammals) rather then a specific multilocus 21A regulatory action. As expected results showed that after transfection of p21A, p21A-1, p21A-2 and pMock the murine fibroblast NIH 3T3 cells did not show any proliferation decrease as assessed by [3H]-thymidine incorporation (FIG. 5). Therefore the 21A specie-specificity of action together with its inability to cause an unspecific cell reaction that leads to a proliferative blockade in mice further strengthen a 21A-specific (perhaps multilocus) regulatory role.


21A is a Key Factor of Cell Proliferation Control


As demonstrated by transfection experiments 21A overexpression is inversely correlated to cell proliferation. According with this finding its expression is very low in fully proliferating HeLa cells. Therefore in order to further demonstrate the inverse correlation between the endogenous 21A expression and cell proliferation we analyzed by quantitative Real Time RT-PCR its transcription level in different cell types with various proliferation potential. Results showed that three immortalized/fully proliferating cell lines here analyzed (HeLa as cervical adenocarcinoma; 293T as renal epithelial adenovirus transformed cells; LAN5 as neuroblastoma) the level of 21A transcription was very low if compared to the unproliferating/resting PBL cells (such as peripheral blood lymphocytes) in which a 276-fold increased 21A transcription was evidenced. I the same experiment, according with an inverse correlation between endogenous 21A transcription and the cell proliferation rate, the 21A RNA level in primary skin fibroblasts (whose proliferation rate is significantly lower than that of the tumor cell lines here analyzed) showed a 23-fold increased if compared to 393T cells and a very low expression level if compared to the resting/unproliferating PBL (FIG. 6). Again the dissociation curve analysis of 21A amplification product showed in PBL a pick at 78-79° C. characteristic of a single specific molecular specie that resembled the one obtained in 21A/21A-2 transfected cells (where the amount of 21A transcripts was strongly increased) although a slight shoulder, most likely due to a cross-amplification of other very similar transcripts, revealed a detectable endogenous Alu transcription background (FIG. 6). Altogether these results evidence a very active 21A transcription in PBL/resting cells that furtherly strengthen the idea of 21A as a novel key factor of cell proliferation control.


In order to check if the endogenous 21A over expression in unproliferating cells was related to a widespread increased RNA polymerase III activity rather then a 21A-specific activation we measured by Real Time RT-PCR the 5s rRNA expression level in the same samples. The results showed no direct correlation between 5s rRNA expression and the cell proliferation rate variations evidencing that the 21A over expression in resting cells was the consequence of a 21A-specific transcription activation rather then a more wide, unspecific increase of Pol III activity (FIG. 6). Altogether these results suggest an unexpectedly specific expression regulation of 21A promoter (related to the cell proliferation state) that needs to be investigated in detail.


CONCLUSIONS

We here propose that the non-coding fraction of the human genome includes a larger than expected number of ncRNA genes controlled by DSE and PSE promoter elements. Due to their promoter structure, a number of these genes is likely to be transcribed by Pol III. We refer to them as co-genes since they could specifically co-act with a protein-coding Pol II gene. Given the very high sequence homology between Pol III and Pol II transcript pairs and in the light of the results we have obtained investigating the regulatory activity of 21A transcription unit, we propose that a large part of these novel elements may act as antisense inhibitors of protein translation and/or mRNA maturation although some of them (those whose homology with the Pol II target gene is in sense configuration) could play a role in gene expression regulation with different mechanisms. Altogether these findings provide evidence for the existence of a ncRNA gene set associated to PSE/DSE-containing promoters, whose products co-act with a corresponding set of protein-coding targets.


In conclusion, this study provides i) a collection of novel non-coding transcripts to be investigated for their potential regulatory action with respect to Pol II target genes ii) a novel source of PSE-dependent promoters useful for the identification of common regulatory regions specific for this type of promoters, iii) a novel class of molecules involved in the RNA gene expression regulatory mechanisms iiii) a novel transcript (21A) whose intriguing role in tumor cell proliferation control would need to be investigated in detail in the context of cancer studies.


REFERENCES



  • 1. Reis E M, Nakaya H I, Louro R, Canavez F C, Flatschart A V et al. (2004) Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23(39):6684-92.

  • 2. Yelin R, Dahary D, Sorek R, Levanon E Y, Goldstein O et al. (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol. 21(4):379-86.

  • 3. Dahary D, Elroy-Stein O, Sorek R (2005) Naturally occurring antisense: transcriptional leakage or real overlap? Genome Res. 15(3):364-8.

  • 4. Mattick J S (2004) RNA regulation: a new genetics? Nat Rev Genet. 5(4):316-23.

  • 5. John S. Mattick and Igor V. Makunin. Non-coding RNA. Human Molecular Genetics, 2006, Vol. 15, Review.

  • 6. Ambros V. (2004) The functions of animal microRNAs. Nature 431(7006):350-5.

  • 7. Lee Y, Kim M, Han J, Yeom K H, Lee S et al. MicroRNA genes are transcribed by RNA polymerase II. (2004) EMBO J. 23(20):4051-60.

  • 8. Carninci P, Kasukawa T, Katayama S, Gough J, Frith M C, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309(5740): 1559-63.

  • 9. Levanon K, Eisenberg E, Rechavi G, Levanon E Y. Letter from the editor: Adenosine-to-inosine RNA editing in Alu repeats in the human genome. EMBO Rep. 2005 September; 6(9):831-5. Review.

  • 10. Rotem Sorek, Gil Ast and Dan Graur. (2002) Alu-Containing Exons are Alternatively Spliced. 12: 1060-1067 Genome Res.,

  • 11. Am J Hum Genet. 2006 July; 79(1):41-53. Epub 2006 May 3. Human Genomic Deletions Mediated by Recombination between Alu Elements. Sen S K, Han K, Wang J, Lee J, Wang H, Callinan P A, Dyer M, Cordaux R, Liang P, Batzer M A.

  • 12. Biochem Biophys Res Commun. 2000 Aug. 11; 274(3):641-8. The 3′ UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Stuart J J, Egry L A, Wong G H, Kaspar R L.

  • 13. Liu W M, Chu W M, Choudary P V, Schmid C W. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 1995 May 25; 23(10):1758-65.

  • 14. Smalheiser N R, Torvik V I. Alu elements within human mRNAs are probable microRNA targets. Trends Genet. 2006 Aug. 14.

  • 15. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Dev. 16(20):2593-620.

  • 16. Myslinski E, Ame J C, Krol A, Carbon P (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res. 29(12):2502-9.

  • 17. Lobo S M, Ifill S, Hernandez N. cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 siRNA promoters. Nucleic Acids Res. 1990 May 25; 18(10):2891-9.

  • 18. Mattaj I W, Dathan N A, Parry H D, Carbon P, Krol A. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell. 1988 Nov. 4; 55(3):435-42. Parry H D, Tebb G, Mattaj I W. The Xenopus U2 gene PSE is a single, compact, element required for transcription initiation and 3′ end formation. Nucleic Acids Res. 1989 May 25; 17(10):3633-44.

  • 19. Cozzarelli N R, Gerrard S P, Schlissel M, Brown D D, Bogenhagen D F. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell. 1983 October; 34(3):829-35.

  • 20. Braglia P, Percudani R, Dieci G. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem. 2005 May 20; 280(20):19551-62. Epub 2005 Mar. 22.

  • 21. D. H. Mathews, J. Sabina, M. Zuker & D. H. Turner. Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure J. Mol. Biol. 288, 911-940 (1999).

  • 22. A. F. A. Smit, R. Hubley & P. Green RepeatMasker on the internet at RepeatMasker dot org).

  • 23. Liao H, Winkfein R J, Mack G, Rattner J B, Yen T J (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol. 130(3):507-18.

  • 24. Gilbert N, Labuda D (1999) CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. Proc Natl Acad Sci USA. 96(6):2869-74.

  • 25. EMBO J. 1983; 2(5):691-696. The Alu family repeat promoter has a tRNA-like bipartite structure. Paolella G, Lucero M A, Murphy M H, Baralle F E.

  • 26. Wu L, Pan J, Thoroddsen V, Wysong D R, Blackman R K et al. (2003) Novel small-molecule inhibitors of RNA polymerase III, Eukaryot Cell. 2(2):256-64.

  • 27. Krek A, Grun D, Poy M N, Wolf R, Rosenberg L (2005) Combinatorial microRNA target predictions. Nat Genet. 37(5):495-500.


Claims
  • 1. An isolated nucleic acid molecule that consists of a sequence selected from the group consisting of SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82, SEQ ID NO: 83 and SEQ ID NO: 84.
  • 2. The isolated nucleic acid according to claim 1 that consists of a sequence selected from the group consisting of SEQ ID NO: 54, SEQ ID NO: 57, SEQ ID NO: 71, SEQ ID NO: 78 and SEQ ID NO: 83.
  • 3. The isolated nucleic acid according to claim 1 that consists of the sequence of SEQ ID NO: 71.
  • 4. The isolated nucleic acid according to claim 1 that consists of the sequence of SEQ ID NO: 54.
  • 5. The isolated nucleic acid according to claim 1 that consists of the sequence of SEQ ID NO: 57.
  • 6. An expression vector comprising the isolated nucleic acid of claim 1.
  • 7. An array for the detection of specific nucleic acid sequences containing a repertoire of nucleic acids according to claim 1.
  • 8. An isolated nucleic acid sequence that comprises a promoter sequence, and the isolated nucleic acid of claim 1.
  • 9. A vector comprising the isolated nucleic acid according to claim 1, capable of expressing or silencing an RNA polymerase II transcribed specific nucleotide sequence.
Priority Claims (1)
Number Date Country Kind
RM2005A0475 Sep 2005 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IT2006/000664 9/19/2006 WO 00 9/8/2008
Publishing Document Publishing Date Country Kind
WO2007/034527 3/29/2007 WO A
US Referenced Citations (2)
Number Name Date Kind
20030235833 Suwa et al. Dec 2003 A1
20040098761 Trick et al. May 2004 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2004067779 Aug 2004 WO
Non-Patent Literature Citations (5)
Entry
Sulston et al. Genome Res. 8, 1097-1108, 1998.
U.S. Appl. No. 12/066,829, result # 4, sequence search result for SEQ ID No. 62 for dated Oct. 12, 2010, pp. 1-11.
Birren et al. Homo sapiens chromosome, clone RP11-318C2, complete sequence, GenBank No. AC026894, retrieved from NCBI: Genbank on Jan. 21, 2011, dated Aug. 2002, pp. 1-50.
Wen et al. Homo sapien chromosome 8 cline RPI-316L14 map 8q24.2, complete sequence, pp. 1-40, Genbank [online] Bethesda, MD USA: United States National Library of Medicine [retrieved on Jan. 23, 2012]. Retrieved from: GenBank, Accession No. AF187000).
Sequence alignment SEQ ID No. 57 and AF18700 dated Jul. 6, 2011, retrieved on Jan. 23, 2012 from SCORE, pp. 19-30.
Related Publications (1)
Number Date Country
20090023674 A1 Jan 2009 US