Claims
- 1. A flat damping laminate adapted to be compression loaded in a direction perpendicular to the flat direction, the laminate comprised to a continuous center portion formed from a first elastomer material having a first allowable shear strain, and a peripheral portion encompassing said center portion, said peripheral portion formed from a second elastomer material having a second allowable shear strain, wherein the second allowable shear strain is greater than the first allowable shear strain, wherein said center portion and said peripheral portion are joined to form a continuous laminate, and wherein the second allowable shear strain is equal to or greater than the shear strain in the peripheral portion caused by the compression load.
- 2. The damping laminate according to claim 1, wherein said center portion is circular, said peripheral portion is annular, said center portion and said peripheral portion are concentric, and said center portion and said peripheral portion are joined to form a diametrically continuous laminate.
- 3. The damping laminate according to claim 1, wherein said center portion and said peripheral portion have equal thickness.
- 4. The damping laminate according to claim 1, wherein said center portion has a first shear modulus, said peripheral portion has a second shear modulus, and wherein said first shear modulus and said second shear modulus are substantially the same.
- 5. A snubber-bearing having alternate planar laminates of elastomer and non-extensible material, said laminates of elastomer extending between adjacent layers of non-extensible material and adapted to be compression loaded in a direction perpendicular to the planar direction, the compression caused by adjacent layers of non-extensible material compressing the laminate of elastomer therebetween, said laminates of elastomer being comprised of a continuous center portion formed from a first elastomer material having a first allowable shear strain and a peripheral portion encompassing said center portion, said peripheral portion formed from a second elastomer material having a second allowable shear strain, the second allowable shear strain being greater than the first allowable shear strain, wherein said center portion and sald peripheral portion are joined to form a continuous laminate, and wherein the second allowable shear strain is equal to or greater than the shear strain in the peripheral portion caused by the compression load.
- 6. The snubber-bearing according to claim 5, wherein said center portion is circular, said peripheral portion is annular, said center portion and said peripheral portion are concentric, and said center portion and said peripheral portion are joined to form a diametrically continuous laminate.
- 7. The snubber-bearing according to claim 5, wherein said center portion and said peripheral portion have equal thickness.
- 8. The snubber-bearing according to claim 5, wherein said center portion has a first shear modulus, said peripheral portion has a second shear modulus, and wherein said first shear modulus and said second shear modulus are substantially the same.
- 9. A helicopter rotor having a hub member and a blade assembly mounted on said hub member, said blade assembly including a flexible spar mounted on and extending radially from said hub member, a blade connected to said spar, said blade being comprised of an airfoil portion at a radially outer end and a torque tube at a radially inner end, said torque tube being in spaced relation to and enveloping said spar, and a snubber set disposed at a radially inner end of said torque tube, said snubber set being comprised of an upper snubber portion extending between an upper surface of said spar and said torque tube and a lower snubber portion extending between a lower surface of said spar and said torque tube, each of said snubber portions comprising an inner race, an intermediate race, a preload plate, and alternate planar laminates of elastomer and non-extensible material, said laminates of elastomer extending between adjacent layers of non-extensible material and adapted to be compression loaded in a direction perpendicular to the planar direction, the compression caused by adjacent layers of non-extensible material compressing the laminate of elastomer therebetween, said laminates of elastomer being comprised of a continuous center portion formed from a first elastomer material having a first allowable shear strain and a peripheral portion encompassing said center portion, said peripheral portion formed from a second elastomer material having a second allowable shear strain, wherein the second allowable shear strain is greater than the first allowable shear strain, wherein said center portion and said peripheral portion are joined to from a continuous laminate, and wherein the second allowable shear strain is equal to or greater than the shear strain in the peripheral portion caused by the compression load.
- 10. The helicopter rotor according to claim 9, wherein said center portion is circular, said peripheral portion is annular, said center portion and said peripheral portion are concentric, and said center portion and said peripheral portion are joined to form a diametrically continuous laminate.
- 11. The helicopter rotor according to claim 9, wherein said center portion and said peripheral portion have equal thickness.
- 12. The helicopter rotor according to claim 9, wherein said center portion has a first shear modulus, said peripheral portion has a second shear modulus, and wherein said first shear modulus and said second shear modulus are substantially the same.
Parent Case Info
This is a request for filing a continuation application under 37 CFR 1.62 of prior pending application Ser. No. 07/628,269 filed on Dec. 17, 1990, now abandoned.
US Referenced Citations (10)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2399570 |
Mar 1979 |
FRX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
628269 |
Dec 1990 |
|