The present invention relates to a mold for making soap bars.
Applicant has previously proposed a method of producing aerated soap which does not invite defects such as chipping on removal from the mold thereby to provide soap bars with an excellent appearance (see JP-A-2002-121599). The method comprises cooling and solidifying molten soap poured into a mold until the soap surface temperature falls to 5° to 30° C., elevating the temperature of the solidified soap until the surface temperature becomes higher by 2° to 15° C. than the surface temperature at the end of the cooling, and removing the soap bar from the mold. The mold used in the method has a surface roughness Ra of 0.1 to 30 μm on its inner side.
The method allows for successful removal from the mold even though the soap is more liable to chipping than ordinary soap because of air bubbles. At mold opening, however, the solidified soap bar tends to fall without being secured to a split of the mold. The soap bar very easily breaks up if dropped, which results in contamination of the production equipment. A soap bar should therefore be held in a split without fail. Apart from that issue, which split a soap bar holds to when the mold is opened tends to differ from cycle to cycle. This means that the step of removal from the mold with a handling unit tends to be complicated, which can reduce the productivity.
It has been proposed to apply a coating providing different releasability to the recess of a split of a mold so that adhesion of soap may differ between splits (see JP-T-2001-525881). However, the coating gradually comes off with the number of shots, eventually resulting in no difference in adhesion. It is therefore necessary to apply the coating to the split periodically, which makes the molding operation complicated and increases the production cost.
The present invention provides a soap making split mold composed of a set of pieces, called splits, that are adapted to be assembled together to form a molding cavity in the inside of the split mold. One of the splits has a larger surface area in the recess thereof defining part of the cavity than any of the other splits has in their recess defining other part of the cavity. The ratio of the surface area of the recess of the first-mentioned split to that of any of the other splits ranges from 52:48 to 66:34.
The present invention also provides a soap making split mold composed of a set of splits that are adapted to be assembled together to form a molding cavity in the inside of the split mold. One of the splits has a higher surface roughness Ra in the recess thereof defining part of the cavity than any of the other splits has in their recess defining other part of the cavity. The difference of the surface roughness Ra between the recess of the first-mentioned split and that of any of the other splits is 0.1 to 30 μm.
The present invention also provides a method of producing a bar of soap including the steps of injecting molten soap under pressure into the cavity of the above-described mold, cooling and solidifying the molten soap under compression, opening the mold, and removing the solidified soap from the mold.
a),
The present invention relates to a split mold for making a soap bar that is designed to always hold a molded soap bar in a specific split thereof when opened.
The present invention will be described based on its preferred embodiments with reference to the accompanying drawings. The soap mold illustrated in
The second split 1B has a nozzle insert port 2B which pierces the second split 1B in the thickness direction on the periphery of the recess 11B. The diameter of the nozzle insert port 2B increases gradually from the parting face PL toward the back side of the second split 1B. The first split 1A has a half-columnar gate 2A engraved on part of its parting face PL. The gate 2A connects the recess 11A and the end face E of the first split 1A. A gate pin P whose contour is the same as the inner shape of the gate 2A is slidably inserted in the gate 2A. The gate pin P is made of metal, plastic, etc. The nozzle insert port 2B and the gate 2A are made in the respective splits in such a configuration that the gate 2A connects the nozzle insert port 2B and the cavity when the first and the second splits 1A and 1B are butted together on their parting faces PL. While not shown in the Figure, the second split 1B has an air vent on its parting face PL. While not shown, a passageway for cooling water circulation is provided in the blocks making the splits 1A and 1B.
As stated, the recess 11A of the first split 1A and the recess 11B of the second split 1B are asymmetrical, the former being bigger than the latter. Therefore, the surface area of the recess 11A of the first split 1A is larger than that of the recess 11B of the second split 1B.
As a result of study, the present inventors have found that, where the surface area of the recess 11A of the first split 1A is larger than that of the recess 11B of the second split 1B, a soap bar obtained by filling the cavity with molten soap and cooling the molten soap to solidify is always held in the first split 1A when the split mold is opened.
As the difference of surface area between the recess 11A of the first split 1A and the recess 11B of the second split 1B increases, the soap is more easily held in the recess 11A of the first split 1A. The present inventors have revealed, nevertheless, that the soap securely holds to the first split 1A with a small difference in surface area between the two recesses 11A and 11B. If the surface area of the recess 11A of the first split 1A is made excessively larger than that of the recess 11B of the second split 1B, the recess 11A of the first split 1A and the recess 11B of the second split 1B will noticeably differ in shape. Consequently, the obtained bar of soap is appreciable asymmetry and may have a poor appearance. An excessive difference in shape between the two splits can make molding difficult and make production of the mold complicated. Hence, the inventors have ascertained that a soap bar always holds to the first split 1A when the ratio of the surface area of the recess 11A of the first split 1A to that of the recess 11B of the second split 1B ranges from 52:48 to 66:34, preferably from 52:48 to 57:43. At that surface area ratio, the recesses 11A and 11B are not so greatly different in shape, that is, the asymmetry of the resulting soap bar is not appreciable.
In order for a soap bar to hold to the first split 1A more securely, the present inventors have found it advantageous that the surface roughness Ra of the recess 11B of the second split 1B is greater than that of the recess 11A of the first split 1A. As mentioned in JP-A-2002-121599 supra, a soap bar holds to a split having a reduced surface roughness Ra on the recess. Conversely, a soap bar holds to a split having an increased surface roughness Ra on the recess owing to the anchor effect. That is, which split a soap bar holds to varies depending on the surface roughness Ra of the splits. As a result of extensive investigation, the present inventors have confirmed that a soap bar clings to the first split 1A with a smaller surface roughness Ra more securely when the difference in surface roughness Ra between the recess 11A of the first split 1A and the recess 11B of the second split 1B preferably falls within a range of from 0.1 to 30 μm, more preferably from 0.2 to 20 μm.
In the present embodiment, the surface roughness Ra of the recess 11B of the second split 1B is made larger than that of the recess 11A of the first split 1A as follows. Both the inner surfaces of the recesses 11A and 11B of the first and the second splits 1A and 1B are mirror-finished to become small surface roughness regions having nearly equal small surface roughness. The bottom of the recess 11B of the second split 1B is then roughened to become a large surface roughness region. The surface roughening is carried out by, for example, sandblasting.
As illustrated in
In order for a soap bar to hold to the first split 1A more securely, it is preferred that the large surface roughness region of the recess 11B of the second split 1B be 30% or more, more preferably 50% or more, of the total surface area of the recess 11B. It is even more preferred that the entire surface of the recess 11B be the large surface roughness region.
In order for a soap bar to hold to the first split 1A more securely, it is preferred that the large surface roughness region of the recess 11B of the second split 1B have a surface roughness Ra of 0.2 to 30 μm, more preferably 0.4 to 20 μm. The small surface roughness region of the recess 11B of the second split 1B and the recess 11A of the first split 1A both preferably have a surface roughness Ra of 0.1 to 30 μm, more preferably 0.1 to 20 μm. The small surface roughness region in the recess 11B of the second split 1B and the recess 11A of the first split 1A do not always need to have the same surface roughness Ra. Taking the cost of producing the splits 1A and 1B into consideration, nevertheless, the splits 1A and 1B are ordinarily mirror-polished under the same conditions. In view of this, it is natural that the small surface roughness region in the recess 11B of the second split 1B and the recess 11A of the first split 1A should have nearly equal surface roughness Ra as mentioned above.
In order for a soap bar to hold to the first split 1A more securely, it is preferred that the ratio of the surface roughness Ra of the large surface roughness region in the recess 11B of the second split 1B to that in the recess 11A of the first split 1A be in a range of from 1.003 to 300, more preferably of from 1.01 to 100.
Surface roughness Ra is measured in accordance with JIS B0601 with, for example, SURFCOM 590A, a surface roughness meter available from Tokyo Seimitsu Co., Ltd.
The method of producing a soap bar using the mold shown in
The second split 1B is attached to the support plate 42 with its recess 11B facing the recess 11A of the first split 1A and with the nozzle insert port 2B facing horizontal direction. As is apparent from
The method of making a bar of aerated soap by the use of the apparatus shown in
The switchover valve 32 operates to shut the connection between the cylinder 33. and the circulation duct 36 and to connect the cylinder 33 and the injection nozzle 31 as illustrated in
After a predetermined amount of the molten soap is injected, the plug 35 is inserted in to shut the interconnection between the injection nozzle 31 and the cavity 11C, as shown in
The mold unit 4A is then withdrawn (moved to the right in
After solidification of the molten soap, the cylinder 44 operates to withdraw the piston 43 to separate the mold into the splits 1A and 1B as shown in
When to open the mold after solidification of molten soap by cooling is not particularly limited, but for ensuring that the soap is held in the first split 1A, it is recommended to open the mold earlier than after the solidification has completed in the inside of the soap, for example, after the outer surface has solidified while the inside has not.
Another embodiment of the present invention will be described by referring to
The splits 1A and 1B have their recesses 11A and 11B mirror-polished to provide respective small surface roughness regions, except that the bottom of the recess 11A of the first split 1A is roughened after the mirror polishing to become a large surface roughness region. That is, in the second embodiment, the recess 11A of the first split 1A has a larger surface roughness Ra than the recess 11B of the second split 1B.
The recess 11A of the first split 1A has a large surface roughness region and a small surface roughness region, whereas the recess 11B of the second split 1B has only a small surface roughness region. The surface roughness Ra of the small surface roughness region in the recess 11A of the first split 1A is nearly equal to that of the small surface roughness region of the recess 11B of the second split 1B.
As a result of study, the present inventors have found that, where the surface roughness Ra of the recess 11A of the first split 1A is larger than that of the recess 11B of the second split 1B, a soap bar obtained by filling the cavity with molten soap and cooling the molten soap to solidify is always held in the second split 1B when the split mold is opened.
As stated previously, a soap bar holds to a split having a reduced surface roughness Ra on the recess and, conversely, a soap bar holds to a split having an increased surface roughness Ra on the recess owing to the anchor effect. That is, which split a soap bar holds to varies depending on the surface roughness Ra of the splits. As a result of extensive investigation, the present inventors have confirmed that a soap bar always holds to the second split 1B with a smaller surface roughness Ra when the difference in surface roughness Ra between the recess 11A of the first split 1A and the recess 11B of the second split 1B falls within a range of from 0.1 to 30 μm, preferably from 0.2 to 20 μm.
As illustrated in
In order for a soap bar to hold to the second split 1B more securely, it is preferred that the large surface roughness region of the recess 11A of the first split 1A be 30% or more, more preferably 50% or more, of the total surface area of the recess 11A. It is even more preferred that the entire surface of the recess 11A be the large surface roughness region.
In order for a soap bar to hold to the second split 1B more securely, it is preferred that the large surface roughness region of the recess 11A of the first split 1A have a surface roughness Ra of 0.2 to 30 μm, more preferably 0.4 to 20 μm. The small surface roughness region in the recess 11A of the first split 1A and that in the recess 11B in the second split 1A both preferably have a surface roughness Ra of 0.1 to 30 μm, more preferably 0.1 to 20 μm. The small surface roughness region in the recess 11A of the first split 1A and that in the recess 11B of the second split 1B do not always need to have the same surface roughness Ra.
In order for a soap bar to hold to the second split 1B more securely, it is preferred that the ratio of the surface roughness Ra of the large surface roughness region in the recess 11A of the first split 1A to that in the recess 11B of the second split 1B be in a range of from 2 to 300, more preferably of from 4 to 200.
In the manufacture of soap bars using the apparatus illustrated in
The present invention is not limited to the foregoing embodiments. For example, while in the foregoing embodiments a set of two splits makes one split mold, a mold may be composed of three or more splits. In that case, it is preferred that one of the splits has a larger surface area in its recess than any of the other splits. Alternatively, it is preferred that one of the splits has a larger surface roughness in at least part of the recess thereof than any of the other splits and that the other splits have the same surface roughness in their recesses.
While in the embodiment shown in
While in the embodiments shown in
For the purpose of helping a soap bar hold to the first split and release from the second split, a slit or small hole open to the recess 11A of the first split 1A or the recess 11B of the second split 1B may be made to allow for air suction or air ejection therethrough. Similarly, in the embodiment shown in
While in the aforementioned embodiments the mold of the present invention is applied to the production of an aerated soap bar, which is categorized as compression molding, the mold of the invention is useful in the production of bubble-free soap bars. Nevertheless, the mold of the invention is especially suited for use in compression molding including production of aerated soap that largely shrinks on cooling.
The present invention will now be illustrated in greater detail with reference to Examples, but it should be understood that the invention is not construed as being limited thereto. Unless otherwise noted, all the parts are by weight.
Bars of aerated soap were made using the apparatus of
Molten soap having a great number of air bubbles dispersed therein was prepared from the following compounding ingredients in accordance with the process described in JP-A-11-43699 supra. Nitrogen gas was used for bubbling.
Bars of aerated soap were made using the prepared molten soap in accordance with the steps depicted in
Bars of aerated soap were made in the same manner as in Example 1-1 with the following exception. The first split to second split ratio of recess's surface area was 57:43. The recess of each split was mirror polished to form a small surface roughness region having a surface roughness Ra of 0.263 μm. The bottom of the recess of the second split was roughened by sandblasting to form a large surface roughness region having a surface roughness Ra of 0.463 μm. Five molding cycles were run. It was confirmed that the bar held to the first split in every molding cycle.
Bars of aerated soap were made in the same manner as in Example 1-1 with the following exception. The first split to second split ratio of recess's surface area was 66:34. The recess of each split was mirror polished to form a small surface roughness region having a surface roughness Ra of 0.263 μm. The bottom of the recess of the second split was roughened by sandblasting to form a large surface roughness region having a surface roughness Ra of 18.93 μm. Five molding cycles were run. It was confirmed that the bar held to the first split in every molding cycle.
Bars of aerated soap were made in the same manner as in Examples 1-1 to 1-3, except that the large surface roughness region was not formed in the second split. Five molding cycles were run per Example. It was confirmed that the bar held to the first split in every molding cycle.
Bars of aerated soap were made using the apparatus of
Molten soap having a great number of air bubbles dispersed therein was prepared from the following compounding ingredients in accordance with the process described in JP-A-11-43699 supra. Nitrogen gas was used for bubbling.
Aerated soap bars were made using the prepared molten soap in accordance with the steps depicted in
Bars of aerated soap were made in the same manner as in Example 2-1, except that the recess of each split was mirror polished to form a small surface roughness region having a surface roughness Ra of 0.263 μm and that the bottom of the recess of the first split was roughened by sandblasting to form a large surface roughness region having a surface roughness of 0.463 μm. Five molding cycles were run. It was confirmed that the bar held to the second split in every molding cycle.
Bars of aerated soap were made in the same manner as in Example 2-1, except that the recess of each split was mirror polished to form a small surface roughness region having a surface roughness Ra of 0.263 μm and that the bottom of the recess of the first split was roughened by sandblasting to form a large surface roughness region having a surface roughness of 18.93 μm. Five molding cycles were run. It was confirmed that the bar held to the second split in every molding cycle.
Bars of aerated soap were made in the same manner as in Example 1-1 with the following exception. The recess of the first split and the recess of the second split were symmetric to each other and had the same surface area. The large surface roughness region was not formed in the second split. When ten molding cycles were run, four bars out of ten held to the first split, and the other six bars held to the second split.
The split mold of the present invention always holds a molded bar of soap in its specific split when opened. Therefore, using the mold of the present invention allows for stable production of soap bars with high productivity. The mold of the present invention is especially suited to compression molding as in the production of aerated soap bars.
Number | Date | Country | Kind |
---|---|---|---|
2003-104582 | Apr 2003 | JP | national |
2003-104584 | Apr 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2004/004807 | 4/1/2004 | WO | 00 | 7/26/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/090087 | 10/21/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
174365 | Jackson | Mar 1876 | A |
2975485 | Wendt | Mar 1961 | A |
4178003 | Hobson | Dec 1979 | A |
4389365 | Kudriavetz | Jun 1983 | A |
5840351 | Inoue et al. | Nov 1998 | A |
7037885 | Shimada et al. | May 2006 | B2 |
7326379 | Hasegawa et al. | Feb 2008 | B2 |
Number | Date | Country |
---|---|---|
1 239 027 | Sep 2002 | EP |
8-127800 | May 1996 | JP |
11-34079 | Feb 1999 | JP |
11-043699 | Feb 1999 | JP |
2001-525881 | Dec 2001 | JP |
2002-121599 | Apr 2002 | JP |
2002-167597 | Jun 2002 | JP |
2002-167598 | Jun 2002 | JP |
2002-167599 | Jun 2002 | JP |
2003-129096 | May 2003 | JP |
2003-277798 | Oct 2003 | JP |
2003-277799 | Oct 2003 | JP |
2004-2717 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070132148 A1 | Jun 2007 | US |