Social graph based co-location of network users

Information

  • Patent Grant
  • 10223397
  • Patent Number
    10,223,397
  • Date Filed
    Friday, March 13, 2015
    9 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
User activity in a communication network is monitored to obtain social graph data for each user. This social graph data is used to cluster the users into groups of users that interact with each other regularly. The groups are analyzed to generate a profile for each group with respect to a set of relevant data points. The profiles can be based on identifying group social graph data that is related to a data point (e.g., user activity level) that is being used to provision network server resources. The profile for each group is then compared to corresponding data associated with a plurality of servers providing network services to the users. Each group is then assigned to one or more of the servers that best matches the profile of the group. Servers may be added to the network by comparing data regarding a proposed new server to existing group profiles.
Description
TECHNICAL FIELD

The subject matter disclosed herein generally relates to provisioning network server resources for generating and distributing electronic messages. More specifically, the present disclosure describes systems and methods for grouping network users based on social graph data (e.g., a social graph is a graph that depicts the relations of network users) and profiling the groups in order to efficiently match the groups to the available network server resources.


BACKGROUND

Workload forecasting and capacity planning are fundamental in provisioning of web services and applications. It is common for workload parameters to be analyzed “after the fact”, for example, to compensate for workload levels already being experienced by a particular web server. As a result, such a workload analysis of a system does not provide any insight into the level or location of activity that a network system is likely to experience in the future. However, forecasting user activity patterns is crucial for efficiently deploying and organizing network server resources. Knowledge regarding the relationships between network users can also be used in devising ways to handle the activity patterns that a network system is likely to experience in the future.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which:



FIG. 1 is a block diagram showing a network system configured to transmit messages over a network consistent with some embodiments.



FIG. 2 is a block diagram illustrating an example of a network environment including a server operating a system for allocating network resources for processing and storing messages among users of client devices, consistent with some embodiments.



FIG. 3 is a block diagram showing some of the functional components or modules that make up the user grouping module, in accordance with an example embodiment.



FIG. 4 is a block diagram illustrating an example grouping of network users for co-location on servers providing network resources.



FIG. 5 is a flow diagram illustrating one example embodiment of an operation of the user grouping module.



FIG. 6 is a flow diagram illustrating one example embodiment of an operation of the group profiling module and the user co-location module.



FIG. 7 is a diagrammatic representation of machine, in the example form of a computer system, within which a set of instructions may be executed to cause the machine to perform one or more of the methodologies discussed herein.



FIG. 8 is a block diagram illustrating a mobile device, according to an example embodiment.





DETAILED DESCRIPTION

Although the present disclosure is described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


A network system (e.g., a messaging system) may provision network server resources, via geographic location and/or logical organization, in order to take advantage of social graph data of network users. The embodiments described herein provide systems and methods for analyzing the activities of network users to obtain social graph data, grouping the users based on the social graph data and provisioning network server resources based on matching server resources to groups of users. These embodiments will be described in relation to mobile wireless communication devices, hereafter referred to as client devices, for sending and receiving electronic messages such as text, images or video and associated servers for receiving and forwarding messages to and from the client devices. It will be appreciated by those skilled in the art, however, that this description is not intended to limit the scope of the described embodiments to the communication devices described below or to a specific form of electronic message. The methods and systems described herein may be applied to any appropriate communication or data processing device and to any appropriate electronic communication format.


Overview

Users of a network, individuals and organizations, may be analyzed as nodes on a social graph. Interdependencies between the users, called ties, can be based on many factors such as frequency of communications and the like. The information from such a social graph may be used for workload forecasting and network capacity planning.



FIG. 1 is a block diagram showing a network system 100 configured to transmit data over a network 105 (e.g., the Internet) consistent with some embodiments, in an embodiment, network servers 120A, 120B and 120C provides network resources for use by client devices. The client device may be a mobile device 115A or a more static device 130A (e.g., desktop computer) of a user 110A of network 105. The network activity of the users (e.g., 110A) may be monitored and used to generate social graph data associated with each of the users respectively. The social graph data may then be used to cluster the users into groups of tightly connected users, e.g., users with many ties among themselves. Once the groups are identified, data associated with each group is analyzed to obtain a profile for the group, This profile may then be used to match a group to a network server (e.g., 120B) for the most optimal provisioning of network resources.


As mentioned above, the first step is to obtain network activity data for a plurality of network users (110A, 110B, etc.) and generate social graph data associated with each user. It is noted that social graph information regarding network users may also be obtained in other ways, for example from other networks, from partners or via purchases. The social graph data is then used to cluster the users into groups based on, for example, a measure of connectivity between the users. The connectivity may be measured according to how strong the ties between each pair of users are with regard to a selected measurement, such as number of communications transmitted between the user pair. The users (110A, 110B, etc.) may then be clustered using a clustering algorithm which identifies groups of users that are likely to communicate with each other more often over a future period of time. Data associated with these groups of users is then analyzed to obtain group profiles that will be used to match the groups with available network server resources (e.g., 120A, 120B, 120C, etc.) for efficient provisioning.


In some embodiments, the particular connectivity measure used to perform the clustering may be selected to exploit the available social graph data. Depending on the subset of social graph data used, different clustering results can be obtained. For example, users (e.g., 110A, 110B, etc.) can be clustered according to the level of communication between them, the level of similarity of their navigation patterns (e.g., often visit many of the same websites), the level of similarity of their user profiles (e.g., a location of the user), the level of similarity of their user contacts, etc. Each of these clustering measures may result in different groupings of users and can be combined as needed to further cluster the network users. The particular measures used for the clustering may be selected based on which are most important for logically organizing network users into groups for provisioning network server resources in a particular implementation.


In an embodiment, the clustering is performed according to a communication level between pairs of users like 110A and 110B. For this purpose, the number of messages sent between their respective client devices (e.g., 115A and 115B) per a given time period (e.g., per hour, minute, etc.) may be used as the measure from the social graph data for clustering the network users into groups. The clustering may be performed using time series data values (e.g., a sequence of data points, typically consisting of successive measurements made over a time interval) for the selected measurement, or a function of these time series data values for the selected measurement. Once the measurements (e.g., communication level) of social graph data are used to perform the clustering, data associated with the resulting user groups may then be analyzed to obtain group profiles which may be compared to relevant data points used to locate and organize network server resources (e.g., 120A, 120B, 120C, etc.). For example, relevant data points for placing a server may be based on the server's capabilities (e.g., hardware and/or software) and a user group profile that includes values/data with respect to these relevant data points for all of the users associated with the user group may be compared to the server's capabilities to determine if the server should be assigned to the users associated with the group profile. In other words, only servers having sufficient capabilities are assigned to the users associated with this group profile.


In an embodiment, profiling of a user group involves first determining the relevant data points, from the social graph data, upon which the user group profiles will be based. In some embodiments, a location of a user (e.g., 110A), an activity level of a user or a server asset often utilized by a user may be used as the relevant data points to generate the user group profiles for the identified groups of users. In generating the profile for a group, different types of analyses may be performed on the social graph data of the users of a group. Generating a group profile for a group of users may be based on identifying values/data for each of the users, where the values/data are related to any of the relevant data points being used to locate and organize network server resources (e.g., server 120A, 120B, 120C . . . ). For example, user network activity may be monitored to identify values/data that are the most similar to the set of social graph values/data for the users of the group (e.g., the mode), where the values/data of the set are related to any of the relevant data points.


In an embodiment, the profile for a group is generated by simply averaging the values with respect to relevant data points for all the users of a user group. However since an outlying (e.g., with respect to the averaged data points) user (e.g., 110A) of the group may have an associated value for the averaged data point that is far from the group average, the clustering of groups described above may be performed so that it minimizes the maximum difference of values associated with all of the users in a group with respect to the average value of the relevant data points for provisioning network server resources. Furthermore, different profiles may be generated for different recurring time periods, such as day of the week, week of the month, month of the year, etc.


In an embodiment, the profile of each user group may be compared to corresponding data associated with the plurality of servers (e.g., 120A, 120B, 120C, etc.) for the purpose of assigning each user group to at least one of the plurality of servers based on the comparison. For example, if the users (e.g., 110A, 110B, etc.) of a group are located within a specified geographic area then the group might be assigned to access network resources via a server that is closest to the said geographic area. In other examples, the user groups may be assigned to servers based on matching the group to a server based on other relevant data points.


In embodiments, the comparison of user group profiles to corresponding server data includes at least one of: comparing a geographic location associated with the users of a group to a geographic location of a server, of application server(s) 218, as noted above; comparing an activity level (e.g., average number of send/receive actions) associated with the users of a group to a capacity of a server so that the server is able to provision network services to the group without overloading; or comparing a server asset utilized by users of a group to assets available at a server so that user requested assets are available at the server to which a user group is assigned.


System Architecture



FIG. 2 is a network diagram depicting a network system 200 having a client-server architecture configured for exchanging data over a network, according to one embodiment. For example, the network system 200 may be a messaging system where clients may communicate and exchange data within the network system 200. The data may pertain to various functions (e.g., sending and receiving text, photo and video communications) and aspects (e.g., publication of blogs and websites) associated with the network system 200 and its users. Although illustrated herein as client-server architecture, other embodiments may include other network architectures, such as peer-to-peer or distributed network environments.


A data exchange platform 202, in an example, includes a user grouping module 220 and a user co-location module 222, and may provide server-side functionality via a network 204 (e.g., the Internet) to one or more client devices. Although described as residing on a server (e.g., application server(s) 218) in some embodiments, in other embodiments some or all of the functions of user grouping module 220 and a user co-location module 222 may be provided by a client device. The one or more clients may include users (e.g., 110A and 110B) that use the network system 200 to exchange data over the network 204. These operations may include transmitting, receiving (communicating), and processing data to, from, and regarding content and users of the network system 200. The data may include, but is not limited to, content and user data such as user profiles, messaging content, messaging attributes, client device information, and geolocation information, among others.


In various embodiments, the data exchanges within the network system 200 may be dependent upon user-selected functions available through one or more client or user interfaces (UIs). The UIs may be associated with a client machine, such as client devices 210, 212 using a programmatic client 206, such as a client application. The programmatic client 206 may be in communication with the user grouping module 220 and a user co-location module 222 at least one of application server(s) 218. The client devices 210, 212 may comprise mobile devices with wireless communication components and applications for sending specific types of electronic messages over network 204 (e.g., messaging application 207).


Turning specifically to the user grouping module 220 and a user co-location module 222, an application program interface (API) server 214 is coupled to, and provides programmatic interface to one or more application server(s) 218 that host the user grouping module 220 and a user co-location module 222. The application server(s) 218 are, in turn, shown to be coupled to one or more database(s) 224, 226 and 228 for storing and/or accessing network data.


The API server 214 communicates and receives data pertaining to messages, among other things, via various user input tools. For example, the API server 214 may send and receive data to and from an application (e.g., via the programmatic client 206) running on another client machine (e.g., client devices 210, 212 or a third party server).


In one example embodiment, the user grouping module 220 provides monitoring mechanisms for users of the client devices 210 and 212 in order to obtain user activity data. The application server(s) 218 can access and view the user activity data from, for example, the activity and behavior database 228.


Application server(s) 218 provide network resources for use by client devices, such as client devices 210 and 212. Each of the client devices 210 and 212 may be a mobile device (e.g., like 115A) or a more static device (e.g., like 130A) of a user (e.g., like 110A) of network 204. The network activity of the users (e.g., 110A) may be monitored via the user grouping module 220 and used to generate social graph data associated with each of the users of the client devices 210 and 212 respectively. The social graph data may then be stored in social graph database 226 and accessed for use in clustering the users of data exchange platform 202 into groups of tightly connected users, e.g., users with many social ties among themselves. Once the groups are identified, data associated with each group is analyzed to obtain a profile for the group. This profile may then be used to match a group to a network server, from application server(s) 218, for the improved provisioning of network resources.


The activities of client devices 210 and 212 may be monitored, for example, via a messaging application 207 residing on each of the devices. The activities of client devices 210 and 212 may also be monitored via application server(s) 218 which may record any user interaction with the application server(s) 218. The network activity data for a plurality of network users (e.g., 110A, 110B, etc.), which may be stored in activity and behavior database 228, is used to generate social graph data associated with each user of a client device such as client device 210. It is noted that social graph information regarding network users may also be obtained in other ways, for example from other networks, from partners or via purchase. It is also noted that user profile data stored in profile database 224 (e.g., names, addresses, phone numbers, affiliations, etc.) may also be used to generate the social graph data.


The social graph data, which may be stored in social graph database 226, is then used by user grouping module 220 to cluster the users into groups based on, for example, a measure of connectivity between the users. The connectivity may be measured according to how strong the ties between each pair of users are with regard to a selected measurement, such as number of communications transmitted between the user pair. It is noted that user profile data stored in profile database 224 may also be used to aid in clustering the users into logical user groups. The users (e.g., 110A, 110B, etc.) may then be clustered using a clustering algorithm which identifies groups of users that are, for example, likely to communicate with each other more often over a future period of time. Data associated with these groups of users is then analyzed to obtain user group profiles that will be used to match the user groups with available network server resources, such as application server(s) 218, for efficient provisioning of network resources.


The particular connectivity measure used to perform the clustering may be selected to exploit the available social graph data. Depending on the subset of social graph data used, different clustering results can be obtained. For example, users (e.g., 110A, 110B, etc.) can be clustered according to: the level of communication between them (so that users that often message each other might be grouped); the level of similarity of their navigation patterns (so that users that often visit the same websites might be grouped (e.g., from social graph database 226)); the level of similarity of their user profiles (so that users that list similar addresses or jobs on their profiles might be grouped (e.g., from profile database 224)); the level of similarity of their user contacts (so that users with substantially overlapping sets of contacts might be grouped), etc. Each of these clustering measures will result in different groupings of users and can be combined as needed to further cluster the network users. The particular measures used for the clustering may be selected, for example, based on which are most important (e.g., activity level) for logically organizing network users into groups for the provisioning of network server resources in a particular implementation.


The clustering of users into user groups may be performed according to a measure of the level of communication between pairs of users like 110A and 1101. For this purpose, the number of messages sent between their respective client devices (e.g., 210 and 212) per hour may be used as the measure from the social graph data for clustering the network users into groups. The clustering may be performed using the time series data values for the selected measurement (e.g. a number of messages sent between a user pair), or a function of these time series data values for the selected measurement (e.g., derivatives of the values). Once the measurements (e.g., inter-user communication level) of social graph data are used to perform the clustering, the resulting user groups are analyzed to obtain group profiles with regard to relevant data points (e.g., geographic location) used to locate and organize network server resources such as application server(s) 218.


The profiling of a user group, via the user grouping module 220, involves first determining the relevant data points (e.g., user location, user job, user network communication levels, user website navigation patterns, user server asset utilization, etc., from the social graph data, upon which the user group profiles will be based. It is noted that user profile data, stored in profile database 224, for the users of a user group may also be used to generate the user group profile. The relevant data points may be selected based on their respective importance in determining how to deploy and apportion network server resources such as application server(s) 218. In some embodiments, a location of a user (e.g., 110A), an activity level of a user and/or a server asset often utilized by a user may be used as the relevant data points to generate the user group profiles for the identified groups of users. In generating the profile for a group, different types of analyses may be performed on the social graph data (e.g., in social graph database 226) associated with the users of a group. Generating a group profile for a group of users may be based on identifying values/data for each of the users, where the values/data are related to any of the relevant data points being used to locate and organize network server resources (e.g., application server(s) 218). For example, user network activity may be monitored to identify values/data that are the most similar to the set of social graph values/data for the users of the group (e.g., the mode), where the values/data of the set are related to any of the relevant data points.


The profile for a group may also be generated by simply averaging the values with respect to the relevant data points for all the users (e.g., 110A and 110B) of a user group. However since an outlying (e.g., with respect to the averaged data points) user (e.g., 110A) of the group may have an associated value for an averaged data point that is far from the group average, the clustering of groups described above may be performed so that it minimizes the maximum difference of values associated with all of the users in a group with respect to the average value of the relevant data points for provisioning network server resources. Furthermore, different user group profiles may be generated for different recurring time periods, such as day of the week, week of the month, month of the year, etc.


The profile of each user group may then be compared, by the user co-location module 222, to corresponding data associated with the application server(s) 218 for the purpose of assigning (for the provision of network resources) each user group to at least one of the application server(s) 218 based on the comparison. For example, if the users (e.g., 110A and 110B) of a group are located within a specified geographic area, then the group might be assigned to access network resources via a server, of application server(s) 218, that is closest to the said specified geographic area. In other examples, the user groups may be assigned to servers, of application server(s) 218, based on matching the user group to a server based on other relevant data points.


The comparison of user group profiles to corresponding server data, of application server(s) 218, includes at least one of: comparing a geographic location associated with the users (e.g., 110A and 110B) of a group to a geographic location of a server as noted above; comparing an activity level (e.g., average send/receive) associated with the users of a group to a capacity of a server so that the server is able to provision network services to the group without overloading; or comparing a server asset utilized by users of a group to assets available at a server so that user requested assets are certain to be available at the server to which a user group is assigned for requesting network resources.


User Grouping and Profiling



FIG. 3 is a block diagram 300 showing some of the functional components or modules that make up the user grouping module 220, in accordance with an example embodiment. As shown in FIG. 3, the social graph database 226 is accessed by the user grouping module 220 so as to cluster the users into groups based on, for example, a measure of connectivity between the users. The grouping engine 302 of user grouping module 220 may be programmed via a configuration file 304 to measure user connectivity according to how strong the social graph ties between each pair of users (e.g., 110A and 110B) are with regard to a specified measurement, such as number of communications transmitted between the user pair. It is noted that user profile data stored in profile database 224 may also be used to aid grouping engine 302 in clustering the users into logical user groups. The users may then be clustered by grouping engine 302 using a clustering algorithm which identifies groups of users that are, for example, likely to communicate with each other more often over a future period of time. Data associated with these groups of users (e.g., in databases 224, 226 or 228) is then analyzed by group profiling module 306 to obtain user group profiles (which may be stored in profile database 224) that will be used to match the user groups with available network server resources, such as application server(s) 218, for efficient provisioning of network resources.


The particular connectivity measure used to perform the clustering by grouping engine 302 may be specified via configuration file 304 so as to exploit the available social graph data and so as to facilitate provisioning of network server resources such as application server(s) 218. Depending on the subset of social graph data used, different clustering results can be obtained. For example, users (e.g., 110A and 110B) can be clustered according to the level of communication between them as noted above, the level of similarity of their navigation patterns (e.g., from social graph database 226), the level of similarity of their user profiles (e.g., from profile database 224), the level of similarity of their user contacts, or according to other such measures. Each of these clustering measures will result in different groupings of users and can be combined as needed to further cluster the network users.


The clustering of users into user groups may be performed by grouping engine 302 according to a measure of the level of communication between pairs of users like 110A and 110B. For this purpose, the number of messages sent between their respective client devices (e.g., 210 and 212) per hour may be used (e.g., as recorded via messaging application 207) for the measure from the social graph data for clustering the network users into groups. Once the measurements (e.g., inter-user communication level) of social graph data are used to perform the clustering by grouping engine 302, data associated with the resulting user groups is analyzed by group profiling module 306 to obtain group profiles with regard to relevant data points (e.g., geographic location) used to locate and organize network server resources such as application server(s) 218.


The profiling of a user group, via the group profiling module 306, involves first determining the relevant data points, from the social graph data, upon which the user group profiles will be based, This information may be specified via the configuration file 304. It is noted that user profile data in profile database 224 may also be used by the group profiling module 306 to generate the user group profile. The relevant data points may be specified based on their respective importance in determining how to deploy and apportion network server resources such as application server(s) 218. In some embodiments, a location of a user (e.g., 110A), an activity level of a user and/or a server asset often utilized by a user may be used as the relevant data points to generate the user group profiles for the identified groups of users. In generating the profile for a group, different types of analyses may be performed, by grouping module 306, on the social graph data (e.g., in social graph database 226) associated with the users of a group. Generating a group profile for a group of users may be based on identifying values/data for each of the users, where the values/data are related to any of the relevant data points being used to locate and organize network server resources (e.g., application server(s) 218). For example, user network activity may be monitored to identify values/data that are the most similar to the set of social graph values/data for the users of the group (e.g., the mode), where the values/data of the set are related to any of the relevant data points.


In another example, the profile for a group may be generated by group profiling module 302 by simply averaging the values with respect to the relevant data points for all the users (e.g., 110A and 110B) of a user group. However since an outlying (e.g., with respect to the averaged data points) user (e.g., 110A) of the group may have an associated value for an averaged data point that is far from the group average, the clustering of groups described above may be performed by group profiling module 302 so that it minimizes the maximum difference of values associated with all of the users in a group with respect to the average value of the relevant data points for provisioning network server resources. Furthermore, different user group profiles may be generated by group profiling module 302 for different recurring time periods, such as day of the week, week of the month, month of the year, or other such recurring time periods.


As illustrated in the example of FIG. 3, the group profiling module 306 includes a data point retrieval module 308 and a data point derivation module 310. The data point retrieval module 308 of the group profiling module 306 may retrieve various user social graph (or user profile) data points from social graph database 226 (or profile database 224), such that these retrieved data points may be used to determine the similarity of any two users of data exchange platform 202 with respect to relevant data points for provisioning network server resources such as application server(s) 218 (e.g., geographic location). These social graph (or user profile) data points retrieved from social graph database 26 and/or profile database 224 may then also be used by the data point derivation module 310 to derive further profile data points. For example, the data point derivation module 310 may derive certain group profile data points (e.g., location) based on the data extracted by the data point retrieval module 308 (e.g., telephone number).


In addition to retrieving and/or deriving various user group profile data points, the group profiling module 306 may include logic to normalize or standardize certain user group profile data points. For instance, in some examples, a group profile will include data regarding a common job held by a group of users in the form of a profile “job title” data point. However, because job titles may vary from one company to the next and from one industry to the next, job titles may need to be normalized or standardized. For example, the simple job title, “analyst” may have very different meanings in different industries. By normalizing and/or standardizing the job titles and then providing the standardized and/or normalized job title for the user group profile, the user co-location module may make meaningful comparisons to corresponding server data (e.g., does a server provide resources accessed by users with the job title), and thereby provide network server resources such as application server(s) 218 according to the comparison.


User Co-Location



FIG. 4 is a block diagram 400 illustrating an example grouping of network users, according to group profiles 402, for co-location on servers (e.g., application server(s) 218) providing network resources. The profiles (402A-402D) of each user group is compared, by the user co-location module 222, to corresponding data associated with the application server(s) 218 for the purpose of assigning (for the provision of network resources) each user group to at least one of the application server(s) 218 based on the comparison. For example, if a group profile 402A indicates that the users of a group are located within a specified geographic area at field 404, then the group might be assigned by the user co-location module 222 to access network resources via a server of application server(s) 218 that is closest to the said specified geographic area. If a group profile 402B indicates that a group of users has already been assigned to one of the application server(s) 218 at field 410, then the group will be ignored by the user co-location module 222 when determining the allocation and provisioning of network server resources. In other example embodiments, the user groups may be assigned by co-location module 222, to servers of application server(s) 218, based on matching the user group to a server based on other relevant data points.


The comparison of user group profiles to corresponding server data, of application server(s) 218, may include one of: comparing a geographic location associated with the users (e.g., 110A and 110B) of a group (e.g., field 404) to a geographic location of a server as noted above; comparing an activity level (e.g., field 406) associated with the users of a group to a capacity of a server so that the server is able to provision network services to the group without overloading; or comparing a server asset utilized by users of a group (e.g., field 408) to assets available at a server so that user requested assets are certain to be available at the server to which a user group is assigned for requesting network resources.


Methods



FIG. 5 is a flow diagram 500 illustrating one example embodiment of an operation of the user grouping module 220. At operation 502, the network activity of a plurality of network users is monitored. The user activities may be monitored, for example, via a messaging application (e.g., messaging application 207) residing on client devices of the users. The user activities may also be monitored via network servers (e.g., application server(s) 218) which may record any user interaction with the network servers. The network activity data for the plurality of network users may be stored in user activity database (e.g., activity and behavior database 228). At operation 504, the monitored user activity is used to generate social graph data for each network user. The user social graph data may include data regarding interdependencies between the users that are based on many factors such as frequency of communications.


At operation 506, a connectivity measure is calculated for each pair of users based on the generated social graph data. The particular connectivity measure may be selected to exploit the available social graph data. For example, the social graph data of a pair of network users (e.g., 110A, 110B, etc.) can be examined in regard to a measure of the level of communication between the pair of users, the level of similarity of the pair's navigation patterns, or the level of similarity of the pair's user contacts, etc. Each of these measures will result in different groupings of users and can be combined as needed to further group the network users. Finally at operation 508, the network users are clustered into groups based on the connectivity measures for calculated for each pair of users. If the clustering is performed according to a communication level between pairs of users like 110A and 110B, the number of messages sent between them per hour may be used as the measure from the social graph data for clustering the network users into groups. Once the measurements (e.g., communication level) of social graph data are used to perform the clustering, data associated with the resulting user groups may then be analyzed to obtain group profiles as explained below with respect to FIG. 6.



FIG. 6 is a flow diagram 600 illustrating one example embodiment of an operation of the group profiling module 306 and the user co-location module 222. At operation 602, data associated with the user groups may be analyzed with respect to a set of relevant data points. In some embodiments, a location of a user (e.g., 110A), an activity level of a user or a server asset often utilized by a user may be analyzed as the relevant data points that will then be used to generate the user profiles for the identified groups of users. Different types of analyses may be performed on the social graph data (or user profile data) associated with the users of a group. For example, in certain embodiments, an average of certain values (e.g., a number of messages sent) may be calculated. At operation 604, a group profile for each of the groups may be generated based on the analysis of the user groups. For example, a group profile for a group may be based on identifying values/data with respect to each of the relevant data points, wherein the identified values/data are the most similar to the associated values/data with respect to each of the relevant data points for all of the members of the group.


At operation 606, each group profile may be compared to corresponding data associated with the plurality of servers, such as application server(s) 218. For example, if the data associated with the users of a group indicates that the users are located within a specified geographic area then the group might be assigned to access network resources via a server of application server(s) 218 that is closest to that geographic area. In other examples, the user groups may be assigned to servers based on matching the group to a server based on other relevant data points. Finally at operation 608, each user group may be assigned to at least one of the application server(s) 218 based on the comparison. For example, a user group may be assigned to a server based on comparing a geographic location associated with the users of a group to a geographic location of a server as noted above; comparing an activity level (e.g., average send/receive) associated with the users of a group to a capacity of a server so that the server is able to provision network services to the group without overloading; or comparing a server asset utilized by users of a group to assets available at a server so that user requested assets are available at the server to which a user group is assigned.


Modules, Components and Logic


Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied (1) on a non-transitory machine-readable medium or (2) in a transmission signal) or hardware-implemented modules. A hardware-implemented module is a tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client, or server computer system) or one or more processors may be configured by software (e.g., an application or application portion) as a hardware-implemented module that operates to perform certain operations as described herein.


In various embodiments, a hardware-implemented module may be implemented mechanically or electronically. For example, a hardware-implemented module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware-implemented module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware-implemented module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the term “hardware-implemented module” should be understood to encompass a tangible entity, be that an entity that is physically, constructed, permanently configured (e.g., hardwired), or temporarily or transitorily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware-implemented modules are temporarily configured (e.g., programmed), each of the hardware-implemented modules need not be configured or instantiated at any one instance in time. For example, where the hardware-implemented modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respectively different hardware-implemented modules at different times. Software may, accordingly, configure a processor, for example, to constitute a particular hardware-implemented module at one instance of time and to constitute a different hardware-implemented module at a different instance of time.


Hardware-implemented modules can provide information to, and receive information from, other hardware-implemented modules. Accordingly, the described hardware-implemented modules may be regarded as being communicatively coupled. Where multiples of such hardware-implemented modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses that connect the hardware-implemented modules). In embodiments in which multiple hardware-implemented modules are configured or instantiated at different times, communications between such hardware-implemented modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware-implemented modules have access. For example, one hardware-implemented module may perform an operation, and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware-implemented module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware-implemented modules may also initiate communications with input or output devices, and can operate on a resource.


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.


Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment, or a server farm), while in other embodiments the processors may be distributed across a number of locations.


The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via the network 104 (e.g., the Internet) and via one or more appropriate interfaces (e.g., APIs).


Electronic Apparatus and System


Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, or software, or in combinations of them. Example embodiments may be implemented using a computer program product (e.g., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers).


A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.


In example embodiments, operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry (e.g., an FPGA or an ASIC).


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In embodiments deploying a programmable computing system, it will be appreciated that both hardware and software architectures merit consideration. Specifically, it will be appreciated that the choice of whether to implement certain functionality in permanently configured hardware (e.g., an ASIC), in temporarily configured hardware (e.g., a combination of software and a programmable processor), or in a combination of permanently and temporarily configured hardware may be a design choice. Below are set out hardware (e.g., machine) and software architectures that may be deployed in various example embodiments.


Example Computer System



FIG. 7 shows a diagrammatic representation of a machine in the example form of a machine or computer system 700 within which a set of instructions 724 may be executed causing the machine to perform any one or more of the methodologies discussed herein. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions 724 (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions 724 to perform any one or more of the methodologies discussed herein.


The example computer system 700 includes a processor 702 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), a main memory 704, and a static memory 706, which communicate with each other via a bus 708. The computer system 700 may further include a video display unit 710 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system 700 also includes an alphanumeric input device 712 (e.g., a keyboard), a UI navigation device 714 (e.g., a mouse), a drive unit 716, a signal generation device 718 (e.g., a speaker), and a network interface device 720.


The drive unit 716 includes a computer-readable medium 722 on which is stored one or more sets of data structures and instructions 724 (e.g., software) embodying or used by any one or more of the methodologies or functions described herein. The instructions 724 may also reside, completely or at least partially, within the main memory 704 or within the processor 702 during execution thereof by the computer system 700, with the main memory 704 and the processor 702 also constituting machine-readable photo.


The instructions 724 may further be transmitted or received over a network 726 via the network interface device 720 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).


While the computer-readable medium 722 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple photo (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 724. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions 724 for execution by the machine that cause the machine to perform any one or more of the methodologies of the present disclosure, or that is capable of storing, encoding, or carrying data structures used by or associated with such a set of instructions 724. The term “computer-readable medium” shall, accordingly, be taken to include, but not be limited to, solid-state memories, optical photo, and magnetic photo.


Furthermore, the machine-readable medium is non-transitory in that it does not embody a propagating signal. However, labeling the tangible machine-readable medium “non-transitory” should not be construed to mean that the medium is incapable of movement—the medium should be considered as being transportable from one physical location to another. Additionally, since the machine-readable medium is tangible, the medium may be considered to be a machine-readable device.


Example Mobile Device



FIG. 8 is a block diagram illustrating a mobile device 800, according to an example embodiment. The mobile device 800 may include a processor 802. The processor 802 may be any of a variety of different types of commercially available processors 802 suitable for mobile devices 800 (for example, an XScale architecture microprocessor, a microprocessor without interlocked pipeline stages (MIPS) architecture processor, or another type of processor 802). A memory 804, such as a random access memory (RAM), a flash memory, or another type of memory, is typically accessible to the processor 802. The memory 804 may be adapted to store an operating system (OS) 806, as well as applications 808, such as a mobile location enabled application that may provide location-based services (LBSs) to a user. The processor 802 may be coupled, either directly or via appropriate hardware, to a display 810 and to one or more input/output (I/O) devices 812, such as a keypad, a touch panel sensor, a microphone, and the like. Similarly, in some embodiments, the processor 802 may be coupled to a transceiver 814 that interfaces with an antenna 816. The transceiver 814 may be configured to both transmit and receive cellular network signals, wireless data signals, or other types of signals via the antenna 816, depending on the nature of the mobile device 800. Further, in some configurations, a GPS receiver 818 may also make use of the antenna 816 to receive GPS signals.


Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present invention. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present invention as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.


Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method comprising: monitoring, using one or more processors, network activity of a plurality of users of a communication network;generating social graph data for each user in the plurality of users based on the monitored network activity;calculating a connectivity measure between each pair of users in the plurality of users based on the social graph data, the connectivity measure comprising a level of communication between users in each pair of users, wherein the level of communication includes a frequency of communication between the users in each pair of users;identifying a geographic area associated with each of the plurality of users;clustering the plurality of users into a plurality of groups based on the connectivity measures between each pair of users and based on the geographic area associated with each of the plurality of users; andselecting a plurality of servers to be assigned to the plurality of groups, respectively, wherein selecting a first server included in the plurality of servers to be associated to a first group included in the plurality of groups includes: selecting the first server that is at least one of: within the geographic area associated with the first group, having a capacity to support an activity level associated with the users in the first group, or having assets available that are utilized by the users in the first group, andcausing mobile devices associated with the users in the first group to access network resources from the first server.
  • 2. The method of claim 1, wherein the connectivity measure comprises one or more of: a level of similarity of navigation patterns between each pair of users, a level of similarity of user profiles between each pair of users, and a level of similarity of user contacts between each pair of users.
  • 3. The method of claim 1, further comprising: comparing one or more of activity level data and asset utilization data for each of the plurality of groups to corresponding one or more of activity level and asset utilization data associated with each of the plurality of servers.
  • 4. The method of claim 3, wherein the one or more of the activity level data and asset utilization data for each of the plurality of groups is an average of the one or more of the activity level data and asset utilization data for users included in each of the plurality of groups.
  • 5. A system comprising: a processor; andmemory coupled to the processor and storing instructions that, when executed by the processor, cause the system to:monitor network activity of a plurality of users of a communication network;generate social graph data for each of the users based on the monitored activity;calculate a connectivity measure between each pair of users in the plurality of users based on the social graph data, the connectivity measure comprising a level of communication between users in each pair of users, wherein the level of communication includes a frequency of communication between the users in each pair of users;identify a geographic area associated with each of the plurality of users;cluster the plurality of users into a plurality of groups based on the connectivity measures between each pair of users and based on the geographic area associated with each of the plurality of users; andselect a plurality of servers to be assigned to the plurality of groups, respectively, wherein to select a first server included in the plurality of servers to be associated to a first group included in the plurality of groups includes to: select the first server that is at least one of: within the geographic area associated with the first group, having a capacity to support an activity level associated with the users in the first group, or having assets available that are utilized by the users in the first group, andto cause mobile devices associated with the users in the first group to access network resources from the first server.
  • 6. The system of claim 5, wherein the connectivity measure comprises one or more of: a level of similarity of navigation patterns between each pair of users, a level of similarity of user profiles between each pair of users, and a level of similarity of user contacts between each pair of users.
  • 7. The system of claim 5, wherein the memory further stores instructions for causing the system to: compare one or more of activity level data and asset utilization data for each of the plurality of groups to corresponding activity level and asset utilization data associated with each of the plurality of servers.
  • 8. The system of claim 7, wherein the one or more of the activity level data and asset utilization data for each of the plurality of groups is an average of the one or more of the activity level data and asset utilization data for users included in each of the plurality of groups.
  • 9. A non-transitory computer-readable medium storing instructions that, when executed by a computer system, cause the computer system to perform operations comprising: monitoring network activity of a plurality of users of a communication network;generating social graph data for each user in the plurality of users based on the monitored activity;calculating a connectivity measure between each pair of users in the plurality of users based on the social graph data, the connectivity measure comprising a level of communication between users in each pair of users, wherein the level of communication includes a frequency of communication between the users in each pair of users;clustering the plurality of users into a plurality of groups based on the connectivity measures between each pair of users and based on a geographic area associated with each of the plurality of users; andselecting a plurality of servers to be assigned to the plurality of groups, respectively, wherein selecting a first server included in the plurality of servers to be associated to a first group included in the plurality of groups includes: selecting the first server that is at least one of: within the geographic area associated with the first group, having a capacity to support an activity level associated with the users in the first group, or having assets available that are utilized by the users in the first group, andcausing mobile devices associated with the users in the first group to access network resources from the first server.
  • 10. The computer-readable medium of claim 9, wherein the connectivity measure comprises one or more of: a level of similarity of navigation patterns between each pair of users, a level of similarity of user profiles between each pair of users, and a level of similarity of user contacts between each pair of users.
  • 11. The computer-readable medium of claim 10, the operations further comprising: comparing one or more of activity level data and asset utilization data for each of the plurality of groups to corresponding one or more of activity level and asset utilization data associated with each of the plurality of servers.
  • 12. The computer-readable medium of claim 11, wherein the one or more of the activity level data and asset utilization data for each of the plurality of groups is an average of the one or more of the activity level data and asset utilization data for users included in each of the plurality of groups.
US Referenced Citations (625)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6795858 Jain Sep 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7269426 Kokkonen et al. Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Bröndrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7508419 Toyama et al. Mar 2009 B2
7512649 Faybishenko et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
8001204 Burtner et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8606787 Asgekar Dec 2013 B1
8613089 Holloway et al. Dec 2013 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8892651 Goldman et al. Nov 2014 B1
8909679 Roote et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8972357 Shim et al. Mar 2015 B2
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9258459 Hartley Feb 2016 B2
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9710821 Heath Jul 2017 B2
9854219 Sehn Dec 2017 B2
20020047868 Miyazawa Apr 2002 A1
20020069279 Romero Jun 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040083307 Uysal Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040133626 Herrero Jul 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050246441 Chandrasekaran Nov 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060041939 Schwartzman Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080055395 Mock Mar 2008 A1
20080062141 Chandhri Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschweiler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080126529 Kim May 2008 A1
20080140650 Stackpole Jun 2008 A1
20080141281 Ramsey Jun 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080214210 Rasanen et al. Sep 2008 A1
20080222545 Lemay et al. Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090089710 Wood et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Van De Sluis Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100062794 Han Mar 2010 A1
20100076968 Boyns Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Parker May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Peterson et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20100312809 Calder et al. Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110016399 Yasrebi Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110207440 Ruuspakka Aug 2011 A1
20110208814 Bostrom et al. Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110212783 Dale Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110265011 Taylor et al. Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120150978 Monaco Jan 2012 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120071244 Gillo Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120165100 Lalancette et al. Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120266081 Kao Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120284296 Arifuddin Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120290643 Fok Ah Chuen Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120307096 Bray et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20120324027 Vaynblat et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130041916 Biesecker et al. Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130097237 Kothari et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130107752 Kadakia May 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140095516 Purdy Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140106763 Boldyrev Apr 2014 A1
20140113674 Joseph Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140143407 Zhang May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawaa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150222814 Li et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150339638 DeLuca Nov 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
Foreign Referenced Citations (34)
Number Date Country
2887596 Jul 2015 CA
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO 2010148326 Dec 2010 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO 2012166213 Dec 2012 WO
2013008238 Jan 2013 WO
WO-2013008238 Jan 2013 WO
WO-2013045753 Apr 2013 WO
2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
Non-Patent Literature Citations (21)
Entry
Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online]. Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/, (Dec. 12, 2005), 1 pg.
“A Whole New Story”, [Online]. Retrieved from the Internet: <https://www.snap.com/en-US/news/>, (2017), 13 pgs.
“Adding a watermark to your photos”, eBay, [Online]. Retrieved from the Internet:<URL:http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 2017), 4 pgs.
“BlogStomp”, [Online]. Retrieved from the Internet: <URL:http://stompsoftware.com/blogstomp>, (accessed May 24, 2017), 12 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, [Online]. Retrieved from the Internet: <http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, [Online]. Retrieved from the Internet: <URL;http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs.
“InstaPlace Photo App Tell the Whole Story”, [Online]. Retrieved from the Internet; <https://youtu.be/uF_gFkg1hBM>, (Nov. 8, 2013), 113 pgs.
“International Application Serical No. PCT/US 2015/037251, International Search Report dated Sep. 29, 2015”, 7 pgs.
“Introducing Snapchat Stories”, [Online]. Retrieved from the Internet:<https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.
“Macy's Believe-o-Magic”, {Online}. Retrieved from the Internet: <https://www.youtube.com/watch?v=xvzRXy3J0Z0>, (Nov. 7, 2011), 102 pgs.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 “Believe” Campaign”, [Online]. Retrieved from the Internet: <http://www.businesswire.com/news/home/20111102006759/en/Macy%E2%80%99s-Introduces-Augmented-Reality-Experience-Stores-Country>., (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, {Online}. Retrieved from the Internet: <https://www.youtube.com/watch?v=RWwQXi9RG0w>, (Nov. 8, 2011), 87 pgs.
“Starbucks Cup Magic for Valentine's Day”, {Online}. Retrieved from the Internet: <https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, [Online]. Retrieved from the Internet: <http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, [Online]. Retrieved from the Internet: URL<https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Janthong, Isaranu, “Android App Review Thailand”, [Online]. Retrieved from the Internet:<http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, [Online]. Retrieved from the Internet: <URL:http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic—Let's Merry”, {Online}. Retrieved from the Internet: <URL; http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide to the New Snapchat Filters and Big Fonts”, [Online]. Retrieved from the Internet:<https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, a Replay Function and for Whatever Reason, Time, Temperature and Speed Overlays”, [Online]. Retrieved from the Internet: <https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Tripathi, Rohit, “Watermark Images in PHP and Save File on Server”, [Online]. Retrieved from the Internet: <URL:http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server/, (Dec. 28, 2012), 4 pgs.