This patent application disclosure document (hereinafter “description” and/or “descriptions”) describes inventive aspects directed at various novel innovations (hereinafter “innovation,” “innovations,” and/or “innovation(s)”) and contains material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the patent disclosure document by anyone as it appears in published Patent Office file/records, but otherwise reserve all rights.
The present inventions are directed generally to apparatuses, methods, and systems for payment processing, and more particularly, to SOCIAL NETWORK PAYMENT AUTHENTICATION APPARATUSES, METHODS AND SYSTEMS (“SNPA”).
Consumers often use card-based transactions (e.g., credit, debit, prepaid cards, etc.) to obtain products and services. Some debit cards utilize a pin to authenticate transactions.
The accompanying appendices and/or drawings illustrate various non-limiting, example, inventive aspects in accordance with the present disclosure:
The leading number of each reference number within the drawings indicates the figure in which that reference number is introduced and/or detailed. As such, a detailed discussion of reference number 101 would be found and/or introduced in
The SOCIAL NETWORK PAYMENT AUTHENTICATION APPARATUSES, METHODS AND SYSTEMS (hereinafter “SNPA”) transform social networking user login inputs, via SNPA components, into notifications of authenticated purchase transactions.
In some implementations, using the user's input, the client may generate an enrollment request, e.g., 212, and provide the enrollment request, e.g., 213, to the pay network server. For example, the client may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) POST message including data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) POST message including an XML-formatted enrollment request for the pay network server:
In some implementations, the pay network server may obtain the enrollment request from the client, and extract the user's payment detail (e.g., XML data) from the enrollment request. For example, the pay network server may utilize a parser such as the example parsers described below in the discussion with reference to
In some implementations, the pay network server may redirect the client to a social network server by providing a HTTP(S) REDIRECT 300 message, similar to the example below:
In some implementations, the pay network server may provide payment information extracted from the card authorization request to the social network server as part of a social network authentication enrollment request, e.g., 217. For example, the pay network server may provide a HTTP(S) POST message to the social network server, similar to the example below:
In some implementations, the social network server may provide a social network login request, e.g., 218, to the client. For example, the social network server may provide a HTML input form to the client. In some embodiments, the social network login request, e.g., 218, may be customized using the Graduated Security Seasoning (“GSS”) component described herein, e.g.,
Upon receiving notification of enrollment from the social network server, the pay network server may generate, e.g., 225, a user enrollment data record, and store the enrollment data record in a pay network database, e.g., 226, to complete enrollment. In some implementations, the enrollment data record may include the information from the enrollment notification 224.
In some implementations, using the user's checkout input, the client may generate a checkout request, e.g., 412, and provide the checkout request, e.g., 413, to the merchant server. For example, the client may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) POST message including the product details for the merchant server in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) POST message including an XML-formatted checkout request for the merchant server:
In some implementations, the merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to
In response to obtaining the product data, the merchant server may generate, e.g., 416a, a card authorization request according to the product data. For example, the merchant server may generate a HTTP(S) POST message including the product order details for a pay network server, e.g., 406, in the form of XML-formatted data. Below is an example HTTP(S) POST message including an XML-formatted card authorization request for the pay network server:
In some implementations, the pay network server may process the transaction so as to transfer funds for the purchase into an account stored on an acquirer of the merchant. For example, the acquirer may be a financial institution maintaining an account of the merchant. For example, the proceeds of transactions processed by the merchant may be deposited into an account maintained by at a server of the acquirer.
In some implementations, the pay network server may determine whether the user has enrolled in social network authenticated payment. For example, the pay network server may query a database, e.g., pay network database 407, for user enrollment data. For example, the server may utilize PHP/SQL commands similar to the example provided above to query the pay network database. In some implementations, the database may provide the user enrollment data, e.g., 419. The user enrollment data may include a flag indicating whether the user is enrolled or not, as well as instructions, data, login URL, login API call template and/or the like for facilitating social network authentication. For example, in some implementations, the pay network server may redirect the client to a social network server by providing a HTTP(S) REDIRECT 300 message, similar to the example below:
In some implementations, the pay network server may provide payment information extracted from the card authorization request to the social network server as part of a social network authentication request, e.g., 420. For example, the pay network server may provide a HTTP(S) POST message to the social network server, similar to the example below:
In some implementations, the social network server may provide a social network login request, e.g., 421, to the client. For example, the social network server may provide a HTML input/login form to the client. In some embodiments, the social network login request, e.g., 421, may be customized using the Graduated Security Seasoning (“GSS”) component described herein, e.g.,
With reference to
In response to obtaining the issuer server query, e.g., 429, the pay network database may provide, e.g., 430, the requested issuer server data to the pay network server. In some implementations, the pay network server may utilize the issuer server data to generate authorization request(s), e.g., 431, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the card authorization request(s), e.g., 432a-n, to the issuer server(s), e.g., 408a-n. In some implementations, the authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. For example, the pay network server may provide a HTTP(S) POST message including an XML-formatted authorization request similar to the example listing provided below:
In some implementations, an issuer server may parse the authorization request(s), and based on the request details may query a database, e.g., user profile database 409a-n, for data associated with an account linked to the user. For example, the issuer server may issue PHP/SQL commands similar to the example provided below:
In some implementations, on obtaining the user data, e.g., 433a-n, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 434a-n. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide an authorization response, e.g., 436a-n, to the pay network server. For example, the issuer server(s) may provide a HTTP(S) POST message similar to the examples above. In some implementations, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, see e.g., 437-438, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message 438 to the merchant/client and requesting the user to provide new payment options), and re-attempt authorization for the purchase transaction. In some implementations, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.
In some implementations, the pay network server may obtain the authorization message including a notification of successful authorization, see e.g., 437, 440, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, the pay network server may generate a transaction data record, e.g., 439, from the authorization request and/or authorization response, and store the details of the transaction and authorization relating to the transaction in a transactions database. For example, the pay network server may issue PHP/SQL commands similar to the example listing below to store the transaction data in a database:
With reference to
In some implementations, the server may also generate a purchase receipt, e.g., 441, and provide the purchase receipt to the client, e.g., 443. The client may render and display, e.g., 444, the purchase receipt for the user.
With reference to
In some implementations, the issuer server may generate a payment command, e.g., 458. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 459, to a database storing the user's account information, e.g., user profile database 409. The issuer server may provide a funds transfer message, e.g., 460, to the pay network server, which may forward, e.g., 461, the funds transfer message to the acquirer server. An example HTTP(S) POST funds transfer message is provided below:
In some implementations, the acquirer server may parse the funds transfer message, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant, e.g., 462.
In some implementations, the pay network server may determine whether the user has enrolled in social network authenticated payment, e.g., 509. For example, the pay network server may query a database, e.g., 507, for user enrollment data. In some implementations, the database may provide the user enrollment data, e.g., 508. The user enrollment data may include a flag indicating whether the user is enrolled or not, as well as instructions, data, login URL, login API call template and/or the like for facilitating social network authentication. In some implementations, the pay network server may provide payment information extracted from the card authorization request to the social network server as part of a social network authentication request, e.g., 510. In some implementations, the social network server may provide a social network login request, e.g., 511, to the client. For example, the social network server may provide a HTML input form to the client. The client may display, e.g., 512, the login form for the user. In some implementations, the user may provide login input into the client, e.g., 513, and the client may generate a social network login response for the social network server. In some implementations, the social network server may authenticate the login credentials of the user. For example, if the login was not successful, the social network server may request the user to provide login credentials until the user successfully logs into the social network. Upon authenticating the user, the social network server may query a database, e.g., 515, for a user profile of the user including stored payment account information. The database may provide the user profile data, e.g., 516. The social network server may compare the payment account information stored in the social network to the payment account information provided to the social network server by the pay network server, e.g., 517. The social network server may determine whether the information in the social network and the request from the pay network server match each other. Based on the comparison, the social network server may generate an authentication response and provide the response to the pay network server. If the information from the two sources do not match, e.g., 518, option “No,” the pay network server may generate a “transaction terminated” message, e.g., 519, and provide it to the merchant server and/or client.
With reference to
In some implementations, an issuer server may parse the authorization request(s), and based on the request details may query a user profile database for data associated with an account linked to the user. In some implementations, on obtaining the user data, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 524-527. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide an authorization response, e.g., 528, to the pay network server. In some implementations, if at least one issuer server determines, e.g., 529, that the user cannot pay for the transaction using the funds available in the account, see e.g., 530, option “No,” the pay network server may request payment options again from the user (see e.g., 531, option “No,” by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some implementations, if the number of failed authorization attempts exceeds a threshold, see, e.g., 531, option “Yes,” the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client, e.g., 532.
With reference to
With reference to
In some implementations, the issuer server may generate a payment command, e.g., 557-558. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 558, to a database storing the user's account information, e.g., user profile database. The issuer server may provide a funds transfer message, e.g., 560, to the pay network server, which may forward the funds transfer message to the acquirer server. In some implementations, the acquirer server may parse the funds transfer message, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. With reference to
With reference to
Alternative and/or complementary user interfaces are also contemplated including: desktop applications, plug-ins to existing applications, stand alone mobile applications, web based applications (e.g., applications with web objects/frames, HTML 5 applications/wrappers, web pages, etc.), and/or the like.
In some embodiments, the GSS may perform security checks before authorizing a transaction using an account from the user's virtual wallet. For example, the GSS may assess transaction risks associated with authorizing the transaction to be completed. For example, the GSS may identify one or more transaction risk types, and associated risk scores to each of the transaction risk types. Examples of risk types include, without limitation: user fraud, merchant fraud, insufficient account funds, product return, television advertisement scams, product recall, account hacks, wire fraud, mail fraud, spyware/malware invading transaction privacy, etc. The GSS may require specific security protocols to be adopted depending on the transaction risk types. In some embodiments, the GSS may determine a risk score associated with each risk type, and modify the security protocols followed to authorize the transaction depending on the risk scores. For example, the GSS may determine a risk score for each risk type based on factors such as, without limitation: the type of the current transaction (e.g., user enrollment into a new request, purchase transaction, modifying user wallet settings, modifying privacy settings, accessing personal information), current user transaction request details, historical (including recent/real-time) user virtual wallet activity, historical fraud reporting data (e.g., including parameters correlated to fraudulent activity), responses to secure authentication requests, etc.
In some embodiments, the GSS may categorize risks associated with a type of transaction risk into graduated levels. According to the graduated level of the risk type, the GSS may appropriately escalate (or de-escalate, as the case may be) the security protocol(s) required to mitigate the risk. For example, where a transaction risk type is at a higher risk level, the GSS may escalate the security protocol required to authorize the transaction to a more secure protocol, which in some scenarios may come with additional attendant burden on the entity (e.g., a user) required to engage in the security protocol.
With reference to
In some embodiments, the selection of a security protocol may be dependent on the amount of burden (e.g., amount of time, amount of user input, amount of attention that needs to be paid, etc.) imposed on the entity (e.g., a user) enagaged in the security protocol. For example, if a risk can be mitigated by either of two sets of protocols, and one set imposes a lesser burden on the entity engaged in the security protocol than the other, then the first set may be chosen in some embodiments. Similarly, in some embodiments, the security protocol that imposes the least burden on a human (e.g., a user) may be chosen, even if it means that the burden imposed on a device (e.g., the user's smartphone) may be higher. For example, the GSS may choose security protocols that can mitigate the risk while minimizing the intrusion into the user's experience, or minimizing the amount of attention the user needs to pay to the security protocol.
With reference to
Accordingly, in some embodiments of the GSS, authentication of a transaction can be done separately from authorization/payment, in any environment (e.g., electronic commerce, mobile payments, person-to-person, etc.). In some embodiments, authentication may be integrated into the authorization flow, e.g., as illustrated in
In some embodiments, the GSS may attempt to allocate the transaction risks associated with the current transaction request to one or more entities involved in the current transaction (e.g., user, merchant, issuer, acquirer, payment service processor, payment network, etc.). For example, the GSS may provide an offer to one or more of the entities to assume (a portion of) the risk type associated with the transaction, e.g., 719. For example, the GSS may offer a discount, rewards, incentive, bonus, future payout, reduced transaction fees, etc., in exchange for the entity assuming the risk specified in the offer. If any of the entities accept the offer to assume (a portion of) the risk type, then the GSS may recalculate the risk score associated with the risk type. If the risk score is acceptable, see 721, (e.g., lower than a maximum allowable risk threshold value for the risk type for the current transaction), then the GSS may authorize the transaction (assuming no other transaction risks are present that need to be mitigated). If the risk score is not at an acceptably low level, then the GSS may select a set of security protocols for the entities involved in the transaction to engage in before authorizing the transaction, e.g., 722. For example, the GSS may utilize a component such as the example graduated security escalation (“GSE”) component of
In some embodiments, the pay gateway server may obtain the user wallet activity record from the device, and may parse the user wallet activity record to extract the data field and their associated values. The pay gateway server may store, e.g., 815, the extracted fields and data values in a pay gateway database, e.g., 804b. For example, the pay gateway server may issue hypertext preprocessor/structured query language (“PHP/SQL”) commands to store the data to a database table (such as
The pay gateway server may query a database, e.g., 1004b, for the fraud report form, e.g., 1013-1014, and may provide the fraud report form, e.g., 1015, to the client. For example, the pay gateway server may provide a HTML input form to the client. The client may display, e.g., 1016, the fraud report form for the user. In some implementations, the user may provide fraud report form input into the client, e.g., 1017, and the client may generate a fraud report data response, e.g., 1018, for the pay gateway server. The pay gateway server may parse the fraud report data response and extract the data fields and their associated values, and generate a record for storage, e.g., 1019, in a database.
In the example of
Accordingly, with reference to
With reference to
In some embodiments, upon identifying a list of entities who may be able to bear the risk type, e.g., 1313, the GSS may generate transaction risk allocation offers for the identified entities, e.g., 1314. The GSS may provide the offers and obtain the responses from the solicited entities, e.g., 1315. If the risk is accepted in its entirety (or to an amount sufficient for the GSS to continue the transaction), e.g., 1316, option “Yes,” the GSS may move on to the next transaction risk to mitigate (see 1327).
If the transaction risk is not assumed to a sufficient degree (e.g., as compared to a pre-defined maximum acceptable risk threshold value for the risk type in the current transaction, and stored in a database) by any of the solicited entities, e.g., 1316, option “No,” the GSS may identify entities that can provide security data to mitigate risk. For example, a mobile merchant can provide seller digital certificate credentials to assure the GSS that the mobile merchant may be trusted in the transaction, and can be traced should any problems arise from the transaction in the future. As another example, a user suspected of being fraudulent may be asked to engage in any of the security protocols listed in
The GSS may generate security data requests for the identified entities, e.g., 1321, and obtain security data from the entities, e.g., 1322. Using the security data, the GSS may calculate an updated risk score for the transaction risk type, e.g., 1323. For example, the GSS may utilize a component such as the example Transaction Risk Assessment (“TRA”) component of
In some embodiments, the merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to
In some embodiments, in response to obtaining the product data, the merchant server may generate, e.g., 1416, checkout data to provide for the PoS client. In some embodiments, such checkout data, e.g., 1417, may be embodied, in part, in a HyperText Markup Language (“HTML”) page including data for display, such as product detail, product pricing, total pricing, tax information, shipping information, offers, discounts, rewards, value-added service information, etc., and input fields to provide payment information to process the purchase transaction, such as account holder name, account number, billing address, shipping address, tip amount, etc. In some embodiments, the checkout data may be embodied, in part, in a Quick Response (“QR”) code image that the PoS client can display, so that the user may capture the QR code using a user's device to obtain merchant and/or product data for generating a purchase transaction processing request. In some embodiments, a user alert mechanism may be built into the checkout data. For example, the merchant server may embed a URL specific to the transaction into the checkout data. In some embodiments, the alerts URL may further be embedded into optional level 3 data in card authorization requests, such as those discussed further below with reference to
Upon obtaining the checkout data, e.g., 1417, the PoS client may render and display, e.g., 918, the checkout data for the user.
In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 1614, to a point-of-sale (“PoS”) client, e.g., 1602. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. For example, the PoS client may obtain, as transaction authorization input 1614, track 1 data from the user's plastic card (e.g., credit card, debit card, prepaid card, charge card, etc.), such as the example track 1 data provided below:
In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client. An example listing of transaction authorization input 1614, substantially in the form of XML-formatted data, is provided below:
In some embodiments, the PoS client may generate a card authorization request, e.g., 1615, using the obtained transaction authorization input from the user wallet device, and/or product/checkout data (see, e.g.,
In some embodiments, the card authorization request generated by the user device may include a minimum of information required to process the purchase transaction. For example, this may improve the efficiency of communicating the purchase transaction request, and may also advantageously improve the privacy protections provided to the user and/or merchant. For example, in some embodiments, the card authorization request may include at least a session ID for the user's shopping session with the merchant. The session ID may be utilized by any component and/or entity having the appropriate access authority to access a secure site on the merchant server to obtain alerts, reminders, and/or other data about the transaction(s) within that shopping session between the user and the merchant. In some embodiments, the PoS client may provide the generated card authorization request to the merchant server, e.g., 1616. The merchant server may forward the card authorization request to a pay gateway server, e.g., 1604a, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., merchant/acquirer database 1603b, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 1618. The merchant server may forward the card authorization request to the pay gateway server using the provided address, e.g., 1619. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more services associated with purchase transaction authorization. For example, the pay gateway server may invoke components for fraud prevention, loyalty and/or rewards, and/or other services for which the user-merchant combination is authorized. The pay gateway server may forward the card authorization request to a pay network server, e.g., 1605a, for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the pay gateway server may query a database, e.g., pay gateway database 1604b, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the pay gateway server may issue PHP/SQL commands to query a database table (such as
In response, the payment gateway database may provide the requested payment network address, e.g., 1622. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 1623.
With reference to
In some embodiments, the pay network server may generate a query, e.g., 1624, for issuer server(s) corresponding to the user-selected payment options. For example, the user's account may be linked to one or more issuer financial institutions (“issuers”), such as banking institutions, which issued the account(s) for the user. For example, such accounts may include, but not be limited to: credit card, debit card, prepaid card, checking, savings, money market, certificates of deposit, stored (cash) value accounts and/or the like. Issuer server(s), e.g., 1606a, of the issuer(s) may maintain details of the user's account(s). In some embodiments, a database, e.g., pay network database 1605b, may store details of the issuer server(s) associated with the issuer(s). In some embodiments, the pay network server may query a database, e.g., pay network database 1605b, for a network address of the issuer(s) server(s), for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In response to obtaining the issuer server query, e.g., 1624, the pay network database may provide, e.g., 1625, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 1626, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. An example listing of a funds authorization request 1626, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:
In some embodiments, an issuer server may parse the authorization request(s), and based on the request details may query a database, e.g., user profile database 1606b, for data associated with an account linked to the user. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In some embodiments, on obtaining the user account(s) data, e.g., 1628, the issuer server may determine whether the user can pay for the transaction using funds available in the account, 1629. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 1630, to the pay network server. For example, the issuer server(s) may provide a HTTP(S) POST message similar to the examples above. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.
In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 1631, the pay network server may invoke a component to provide value-add services for the user.
In some embodiments, the pay network server may generate a transaction data record from the authorization request and/or authorization response, and store the details of the transaction and authorization relating to the transaction in a transactions database. For example, the pay network server may issue PHP/SQL commands to store the data to a database table (such as
In some embodiments, the pay network server may forward a transaction authorization response, e.g., 1632, to the user wallet device, PoS client, and/or merchant server. The merchant may obtain the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction. The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 1633, and store the XML data file, e.g., 1634, in a database, e.g., merchant database 904. For example, a batch XML data file may be structured similar to the example XML data structure template provided below:
In some embodiments, the server may also generate a purchase receipt, e.g., 1633, and provide the purchase receipt to the client, e.g., 1635. The client may render and display, e.g., 1636, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.
In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 1704, to a point-of-sale (“PoS”) client. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client.
In some embodiments, the PoS client may obtain the transaction authorization input, and parse the input to extract payment information from the transaction authorization input, e.g., 1705. For example, the PoS client may utilize a parser, such as the example parsers provided below in the discussion with reference to
In some embodiments, the PoS client may provide the generated card authorization request to the merchant server. The merchant server may forward the card authorization request to a pay gateway server, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., 1708, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 1710. The merchant server may forward the card authorization request to the pay gateway server using the provided address. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more service associated with purchase transaction authorization, e.g., 1711. For example, the pay gateway server may invoke components for fraud prevention (see e.g., VerifyChat,
The pay gateway server may forward the card authorization request to a pay network server for payment processing, e.g., 1714. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the pay gateway server may query a database, e.g., 1712, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the payment gateway database may provide the requested payment network address, e.g., 1713. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 1714.
With reference to
In response to obtaining the issuer server query, the pay network database may provide, e.g., 1716, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 1717, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. In some embodiments, an issuer server may parse the authorization request(s), e.g., 1718, and based on the request details may query a database, e.g., 1219, for data associated with an account linked to the user.
In some embodiments, on obtaining the user account(s) data, e.g., 1720, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 1721. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 1722, to the pay network server. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.
In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 1723, the pay network server may invoke a component to provide value-add services for the user, e.g., 1723.
In some embodiments, the pay network server may forward a transaction authorization response to the user wallet device, PoS client, and/or merchant server. The merchant may parse, e.g., 1724, the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction, e.g., 1725, option “Yes.” The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 1726, and store the XML data file, e.g., 1727, in a database. In some embodiments, the server may also generate a purchase receipt, e.g., 1728, and provide the purchase receipt to the client. The client may render and display, e.g., 1729, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.
With reference to
In some embodiments, the issuer server may generate a payment command, e.g., 1827. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 1827, to a database storing the user's account information, e.g., user profile database 1806b. The issuer server may provide an individual payment confirmation, e.g., 1828, to the pay network server, which may forward, e.g., 1829, the funds transfer message to the acquirer server. An example listing of an individual payment confirmation 1828, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:
In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 1830, an acquirer database 1807b for payment ledger and/or merchant account data, e.g., 1831. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 1832. The acquirer server may then store, e.g., 1833, the updated payment ledger and/or merchant account data to the acquire database.
The pay network server may parse the batch payment request obtained from the acquirer server, and extract the transaction data for each transaction stored in the batch payment request, e.g., 1908. The pay network server may store the transaction data, e.g., 1909, for each transaction in a pay network database. In some embodiments, the pay network server may invoke a component, e.g., 1910, to provide analytics based on the transactions of the merchant for whom purchase transaction are being cleared.
With reference to
In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 1919, an acquirer database for payment ledger and/or merchant account data, e.g., 1920. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 1921. The acquirer server may then store, e.g., 1922, the updated payment ledger and/or merchant account data to the acquire database.
In one embodiment, for example, a user may select the option current items 2115, as shown in the left most user interface of
With reference to
With reference to
In one implementation, a user may select Joe P. for payment. Joe P., as shown in the user interface, has an email icon 2117g next to his name indicating that Joe P. accepts payment via email. When his name is selected, the user interface may display his contact information such as email, phone, etc. If a user wishes to make a payment to Joe P. by a method other than email, the user may add another transfer mode 2117j to his contact information and make a payment transfer. With reference to
With reference to
With reference to
With reference to
In one implementation, the user may combine funds from multiple sources to pay for the transaction. The amount 2215 displayed on the user interface may provide an indication of the amount of total funds covered so far by the selected forms of payment (e.g., Discover card and rewards points). The user may choose another form of payment or adjust the amount to be debited from one or more forms of payment until the amount 2215 matches the amount payable 2214. Once the amounts to be debited from one or more forms of payment are finalized by the user, payment authorization may begin.
In one implementation, the user may select a secure authorization of the transaction by selecting the cloak button 2222 to effectively cloak or anonymize some (e.g., pre-configured) or all identifying information such that when the user selects pay button 2221, the transaction authorization is conducted in a secure and anonymous manner. In another implementation, the user may select the pay button 2221 which may use standard authorization techniques for transaction processing. In yet another implementation, when the user selects the social button 2223, a message regarding the transaction may be communicated to one of more social networks (set up by the user) which may post or announce the purchase transaction in a social forum such as a wall post or a tweet. In one implementation, the user may select a social payment processing option 2223. The indicator 2224 may show the authorizing and sending social share data in progress.
In another implementation, a restricted payment mode 2225 may be activated for certain purchase activities such as prescription purchases. The mode may be activated in accordance with rules defined by issuers, insurers, merchants, payment processor and/or other entities to facilitate processing of specialized goods and services. In this mode, the user may scroll down the list of forms of payments 2226 under the funds tab to select specialized accounts such as a flexible spending account (FSA) 2227, health savings account (HAS), and/or the like and amounts to be debited to the selected accounts. In one implementation, such restricted payment mode 2225 processing may disable social sharing of purchase information.
In one embodiment, the wallet mobile application may facilitate importing of funds via the import funds user interface 2228. For example, a user who is unemployed may obtain unemployment benefit fund 2229 via the wallet mobile application. In one implementation, the entity providing the funds may also configure rules for using the fund as shown by the processing indicator message 2230. The wallet may read and apply the rules prior, and may reject any purchases with the unemployment funds that fail to meet the criteria set by the rules. Example criteria may include, for example, merchant category code (MCC), time of transaction, location of transaction, and/or the like. As an example, a transaction with a grocery merchant having MCC 5411 may be approved, while a transaction with a bar merchant having an MCC 5813 may be refused.
With reference to
Similarly, when a German user operates a wallet in Germany, the mobile wallet application user interface may be dynamically updated to reflect the country of operation 2232 and the currency 2234. In a further implementation, the wallet application may rearrange the order in which different forms of payment 2236 are listed based on their acceptance level in that country. Of course, the order of these forms of payments may be modified by the user to suit his or her own preferences.
With reference to
With reference to
With reference to
With reference to
In one implementation, the user may select a transaction, for example transaction 2315, to view the details of the transaction. For example, the user may view the details of the items associated with the transaction and the amounts 2316 of each item. In a further implementation, the user may select the show option 2317 to view actions 2318 that the user may take in regards to the transaction or the items in the transaction. For example, the user may add a photo to the transaction (e.g., a picture of the user and the iPad the user bought). In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.
The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 2319 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 2320 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 2321. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
In one embodiment, the history mode may also include facilities for exporting receipts. The export receipts pop up 2322 may provide a number of options for exporting the receipts of transactions in the history. For example, a user may use one or more of the options 2325, which include save (to local mobile memory, to server, to a cloud account, and/or the like), print to a printer, fax, email, and/or the like. The user may utilize his or her address book 2323 to look up email or fax number for exporting. The user may also specify format options 2324 for exporting receipts. Example format options may include, without limitation, text files (.doc, .txt, .rtf, iif, etc.), spreadsheet (.csv, .xls, etc.), image files (.jpg, .tff, .png, etc.), portable document format (.pdf), postscript (.ps), and/or the like. The user may then click or tap the export button 2327 to initiate export of receipts.
With reference to
As shown, the user may enter a search term (e.g., bills) in the search bar 2121. The user may then identify in the tab 2422 the receipt 2423 the user wants to reallocate. Alternatively, the user may directly snap a picture of a barcode on a receipt, and the snap mode may generate and display a receipt 2423 using information from the barcode. The user may now reallocate 2425. In some implementations, the user may also dispute the transaction 2424 or archive the receipt 2426.
In one implementation, when the reallocate button 2425 is selected, the wallet application may perform optical character recognition (OCR) of the receipt. Each of the items in the receipt may then be examined to identify one or more items which could be charged to which payment device or account for tax or other benefits such as cash back, reward points, etc. In this example, there is a tax benefit if the prescription medication charged to the user's Visa card is charged to the user's FSA. The wallet application may then perform the reallocation as the back end. The reallocation process may include the wallet contacting the payment processor to credit the amount of the prescription medication to the Visa card and debit the same amount to the user's FSA account. In an alternate implementation, the payment processor (e.g., Visa or MasterCard) may obtain and OCR the receipt, identify items and payment accounts for reallocation and perform the reallocation. In one implementation, the wallet application may request the user to confirm reallocation of charges for the selected items to another payment account. The receipt 2427 may be generated after the completion of the reallocation process. As discussed, the receipt shows that some charges have been moved from the Visa account to the FSA.
With reference to
In one implementation, the user may decide to pay with default 2434. The wallet application may then use the user's default method of payment, in this example the wallet, to complete the purchase transaction. Upon completion of the transaction, a receipt may be automatically generated for proof of purchase. The user interface may also be updated to provide other options for handling a completed transaction. Example options include social 2437 to share purchase information with others, reallocate 2438 as discussed with regard to
With reference to
In one implementation, after the offer or coupon 2446 is applied, the user may have the option to find qualifying merchants and/or products using find, the user may go to the wallet using 2448, and the user may also save the offer or coupon 2446 for later use.
With reference to
For example, a user may go to doctor's office and desire to pay the co-pay for doctor's appointment. In addition to basic transactional information such as account number and name, the app may provide the user the ability to select to transfer medical records, health information, which may be provided to the medical provider, insurance company, as well as the transaction processor to reconcile payments between the parties. In some implementations, the records may be sent in a Health Insurance Portability and Accountability Act (HIPAA)-compliant data format and encrypted, and only the recipients who are authorized to view such records may have appropriate decryption keys to decrypt and view the private user information.
With reference to
In some implementations, the GSS may utilize a text challenge procedure to verify the authenticity of the user, e.g., 2625. For example, the GSS may communicate with the user via text chat, SMS messages, electronic mail, Facebook® messages, Twitter™ tweets, and/or the like. The GSS may pose a challenge question, e.g., 2626, for the user. The app may provide a user input interface element(s) (e.g., virtual keyboard 2628) to answer the challenge question posed by the GSS. In some implementations, the challenge question may be randomly selected by the GSS automatically; in some implementations, a customer service representative may manually communicate with the user. In some implementations, the user may not have initiated the transaction, e.g., the transaction is fraudulent. In such implementations, the user may cancel the text challenge. The GSS may cancel the transaction, and/or initiate fraud investigation on behalf of the user.
Typically, users, e.g., 2833a, which may be people and/or other systems, may engage information technology systems (e.g., computers) to facilitate information processing. In turn, computers employ processors to process information; such processors 2803 may be referred to as central processing units (CPU). One form of processor is referred to as a microprocessor. CPUs use communicative circuits to pass binary encoded signals acting as instructions to enable various operations. These instructions may be operational and/or data instructions containing and/or referencing other instructions and data in various processor accessible and operable areas of memory 2829 (e.g., registers, cache memory, random access memory, etc.). Such communicative instructions may be stored and/or transmitted in batches (e.g., batches of instructions) as programs and/or data components to facilitate desired operations. These stored instruction codes, e.g., programs, may engage the CPU circuit components and other motherboard and/or system components to perform desired operations. One type of program is a computer operating system, which, may be executed by CPU on a computer; the operating system enables and facilitates users to access and operate computer information technology and resources. Some resources that may be employed in information technology systems include: input and output mechanisms through which data may pass into and out of a computer; memory storage into which data may be saved; and processors by which information may be processed. These information technology systems may be used to collect data for later retrieval, analysis, and manipulation, which may be facilitated through a database program. These information technology systems provide interfaces that allow users to access and operate various system components.
In one embodiment, the SNPA controller 2801 may be connected to and/or communicate with entities such as, but not limited to: one or more users from user input devices 2811; peripheral devices 2812; an optional cryptographic processor device 2828; and/or a communications network 2813. For example, the SNPA controller 2801 may be connected to and/or communicate with users, e.g., 2833a, operating client device(s), e.g., 2833b, including, but not limited to, personal computer(s), server(s) and/or various mobile device(s) including, but not limited to, cellular telephone(s), smartphone(s) (e.g., iPhone, Blackberry®, Android OS-based phones etc.), tablet computer(s) (e.g., Apple iPad™, HP Slate™, Motorola Xoom™, etc.), eBook reader(s) (e.g., Amazon Kindle™, Barnes and Noble's Nook™ eReader, etc.), laptop computer(s), notebook(s), netbook(s), gaming console(s) (e.g., XBOX Live™, Nintendo® DS, Sony PlayStation® Portable, etc.), portable scanner(s) and/or the like.
Networks are commonly thought to comprise the interconnection and interoperation of clients, servers, and intermediary nodes in a graph topology. It should be noted that the term “server” as used throughout this application refers generally to a computer, other device, program, or combination thereof that processes and responds to the requests of remote users across a communications network. Servers serve their information to requesting “clients.” The term “client” as used herein refers generally to a computer, program, other device, user and/or combination thereof that is capable of processing and making requests and obtaining and processing any responses from servers across a communications network. A computer, other device, program, or combination thereof that facilitates, processes information and requests, and/or furthers the passage of information from a source user to a destination user is commonly referred to as a “node.” Networks are generally thought to facilitate the transfer of information from source points to destinations. A node specifically tasked with furthering the passage of information from a source to a destination is commonly called a “router.” There are many forms of networks such as Local Area Networks (LANs), Pico networks, Wide Area Networks (WANs), Wireless Networks (WLANs), etc. For example, the Internet is generally accepted as being an interconnection of a multitude of networks whereby remote clients and servers may access and interoperate with one another.
The SNPA controller 2801 may be based on computer systems that may comprise, but are not limited to, components such as: a computer systemization 2802 connected to memory 2829.
A computer systemization 2802 may comprise a clock 2830, central processing unit (“CPU(s)” and/or “processor(s)” (these terms are used interchangeable throughout the disclosure unless noted to the contrary)) 2803, a memory 2829 (e.g., a read only memory (ROM) 2806, a random access memory (RAM) 2805, etc.), and/or an interface bus 2807, and most frequently, although not necessarily, are all interconnected and/or communicating through a system bus 2804 on one or more (mother)board(s) 2802 having conductive and/or otherwise transportive circuit pathways through which instructions (e.g., binary encoded signals) may travel to effect communications, operations, storage, etc. Optionally, the computer systemization may be connected to an internal power source 2886; e.g., optionally the power source may be internal. Optionally, a cryptographic processor 2826 and/or transceivers (e.g., ICs) 2874 may be connected to the system bus. In another embodiment, the cryptographic processor and/or transceivers may be connected as either internal and/or external peripheral devices 2812 via the interface bus I/O. In turn, the transceivers may be connected to antenna(s) 2875, thereby effectuating wireless transmission and reception of various communication and/or sensor protocols; for example the antenna(s) may connect to: a Texas Instruments WiLink WL1283 transceiver chip (e.g., providing 802.11n, Bluetooth 3.0, FM, global positioning system (GPS) (thereby allowing SNPA controller to determine its location)); Broadcom BCM4329FKUBG transceiver chip (e.g., providing 802.11n, Bluetooth 2.1+EDR, FM, etc.); a Broadcom BCM4750IUB8 receiver chip (e.g., GPS); an Infineon Technologies X-Gold 618-PMB9800 (e.g., providing 2G/3G HSDPA/HSUPA communications); and/or the like. The system clock typically has a crystal oscillator and generates a base signal through the computer systemization's circuit pathways. The clock is typically coupled to the system bus and various clock multipliers that will increase or decrease the base operating frequency for other components interconnected in the computer systemization. The clock and various components in a computer systemization drive signals embodying information throughout the system. Such transmission and reception of instructions embodying information throughout a computer systemization may be commonly referred to as communications. These communicative instructions may further be transmitted, received, and the cause of return and/or reply communications beyond the instant computer systemization to: communications networks, input devices, other computer systemizations, peripheral devices, and/or the like. Of course, any of the above components may be connected directly to one another, connected to the CPU, and/or organized in numerous variations employed as exemplified by various computer systems.
The CPU comprises at least one high-speed data processor adequate to execute program components for executing user and/or system-generated requests. Often, the processors themselves will incorporate various specialized processing units, such as, but not limited to: integrated system (bus) controllers, memory management control units, floating point units, and even specialized processing sub-units like graphics processing units, digital signal processing units, and/or the like. Additionally, processors may include internal fast access addressable memory, and be capable of mapping and addressing memory 2829 beyond the processor itself; internal memory may include, but is not limited to: fast registers, various levels of cache memory (e.g., level 1, 2, 3, etc.), RAM, etc. The processor may access this memory through the use of a memory address space that is accessible via instruction address, which the processor can construct and decode allowing it to access a circuit path to a specific memory address space having a memory state. The CPU may be a microprocessor such as: AMD's Athlon, Duron and/or Opteron; ARM's application, embedded and secure processors; IBM and/or Motorola's DragonBall and PowerPC; IBM's and Sony's Cell processor; Intel's Celeron, Core (2) Duo, Itanium, Pentium, Xeon, and/or XScale; and/or the like processor(s). The CPU interacts with memory through instruction passing through conductive and/or transportive conduits (e.g., (printed) electronic and/or optic circuits) to execute stored instructions (i.e., program code) according to conventional data processing techniques. Such instruction passing facilitates communication within the SNPA controller and beyond through various interfaces. Should processing requirements dictate a greater amount speed and/or capacity, distributed processors (e.g., Distributed SNPA), mainframe, multi-core, parallel, and/or super-computer architectures may similarly be employed. Alternatively, should deployment requirements dictate greater portability, smaller Personal Digital Assistants (PDAs) may be employed.
Depending on the particular implementation, features of the SNPA may be achieved by implementing a microcontroller such as CAST's R8051XC2 microcontroller; Intel's MCS 51 (i.e., 8051 microcontroller); and/or the like. Also, to implement certain features of the SNPA, some feature implementations may rely on embedded components, such as: Application-Specific Integrated Circuit (“ASIC”), Digital Signal Processing (“DSP”), Field Programmable Gate Array (“FPGA”), and/or the like embedded technology. For example, any of the SNPA component collection (distributed or otherwise) and/or features may be implemented via the microprocessor and/or via embedded components; e.g., via ASIC, coprocessor, DSP, FPGA, and/or the like. Alternately, some implementations of the SNPA may be implemented with embedded components that are configured and used to achieve a variety of features or signal processing.
Depending on the particular implementation, the embedded components may include software solutions, hardware solutions, and/or some combination of both hardware/software solutions. For example, SNPA features discussed herein may be achieved through implementing FPGAs, which are a semiconductor devices containing programmable logic components called “logic blocks”, and programmable interconnects, such as the high performance FPGA Virtex series and/or the low cost Spartan series manufactured by Xilinx. Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any of the SNPA features. A hierarchy of programmable interconnects allow logic blocks to be interconnected as needed by the SNPA system designer/administrator, somewhat like a one-chip programmable breadboard. An FPGA's logic blocks can be programmed to perform the function of basic logic gates such as AND, and XOR, or more complex combinational functions such as decoders or simple mathematical functions. In most FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or more complete blocks of memory. In some circumstances, the SNPA may be developed on regular FPGAs and then migrated into a fixed version that more resembles ASIC implementations. Alternate or coordinating implementations may migrate SNPA controller features to a final ASIC instead of or in addition to FPGAs. Depending on the implementation all of the aforementioned embedded components and microprocessors may be considered the “CPU” and/or “processor” for the SNPA.
The power source 2886 may be of any standard form for powering small electronic circuit board devices such as the following power cells: alkaline, lithium hydride, lithium ion, lithium polymer, nickel cadmium, solar cells, and/or the like. Other types of AC or DC power sources may be used as well. In the case of solar cells, in one embodiment, the case provides an aperture through which the solar cell may capture photonic energy. The power cell 2886 is connected to at least one of the interconnected subsequent components of the SNPA thereby providing an electric current to all subsequent components. In one example, the power source 2886 is connected to the system bus component 2804. In an alternative embodiment, an outside power source 2886 is provided through a connection across the I/O 2808 interface. For example, a USB and/or IEEE 1394 connection carries both data and power across the connection and is therefore a suitable source of power.
Interface bus(ses) 2807 may accept, connect, and/or communicate to a number of interface adapters, conventionally although not necessarily in the form of adapter cards, such as but not limited to: input output interfaces (I/O) 2808, storage interfaces 2809, network interfaces 2810, and/or the like. Optionally, cryptographic processor interfaces 2827 similarly may be connected to the interface bus. The interface bus provides for the communications of interface adapters with one another as well as with other components of the computer systemization. Interface adapters are adapted for a compatible interface bus. Interface adapters conventionally connect to the interface bus via a slot architecture. Conventional slot architectures may be employed, such as, but not limited to: Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and/or the like.
Storage interfaces 2809 may accept, communicate, and/or connect to a number of storage devices such as, but not limited to: storage devices 2814, removable disc devices, and/or the like. Storage interfaces may employ connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, fiber channel, Small Computer Systems Interface (SCSI), Universal Serial Bus (USB), and/or the like.
Network interfaces 2810 may accept, communicate, and/or connect to a communications network 2813. Through a communications network 2813, the SNPA controller is accessible through remote clients 2833b (e.g., computers with web browsers) by users 2833a. Network interfaces may employ connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin, twisted pair 10/100/1000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like. Should processing requirements dictate a greater amount speed and/or capacity, distributed network controllers (e.g., Distributed SNPA), architectures may similarly be employed to pool, load balance, and/or otherwise increase the communicative bandwidth required by the SNPA controller. A communications network may be any one and/or the combination of the following: a direct interconnection; the Internet; a Local Area Network (LAN); a Metropolitan Area Network (MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection; a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not limited to a Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like. A network interface may be regarded as a specialized form of an input output interface. Further, multiple network interfaces 2810 may be used to engage with various communications network types 2813. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and/or unicast networks.
Input Output interfaces (I/O) 2808 may accept, communicate, and/or connect to user input devices 2811, peripheral devices 2812, cryptographic processor devices 2828, and/or the like. I/O may employ connection protocols such as, but not limited to: audio: analog, digital, monaural, RCA, stereo, and/or the like; data: Apple Desktop Bus (ADB), IEEE 1394a-b, serial, universal serial bus (USB); infrared; joystick; keyboard; midi; optical; PC AT; PS/2; parallel; radio; video interface: Apple Desktop Connector (ADC), BNC, coaxial, component, composite, digital, Digital Visual Interface (DVI), high-definition multimedia interface (HDMI), RCA, RF antennae, S-Video, VGA, and/or the like; wireless transceivers: 802.11a/b/g/n/x; Bluetooth; cellular (e.g., code division multiple access (CDMA), high speed packet access (HSPA(+)), high-speed downlink packet access (HSDPA), global system for mobile communications (GSM), long term evolution (LTE), WiMax, etc.); and/or the like. One typical output device may include a video display, which typically comprises a Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD) based monitor with an interface (e.g., DVI circuitry and cable) that accepts signals from a video interface, may be used. The video interface composites information generated by a computer systemization and generates video signals based on the composited information in a video memory frame. Another output device is a television set, which accepts signals from a video interface. Typically, the video interface provides the composited video information through a video connection interface that accepts a video display interface (e.g., an RCA composite video connector accepting an RCA composite video cable; a DVI connector accepting a DVI display cable, etc.).
User input devices 2811 often are a type of peripheral device 2812 (see below) and may include: card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors (e.g., accelerometers, ambient light, GPS, gyroscopes, proximity, etc.), styluses, and/or the like.
Peripheral devices 2812 may be connected and/or communicate to I/O and/or other facilities of the like such as network interfaces, storage interfaces, directly to the interface bus, system bus, the CPU, and/or the like. Peripheral devices may be external, internal and/or part of the SNPA controller. Peripheral devices may include: antenna, audio devices (e.g., line-in, line-out, microphone input, speakers, etc.), cameras (e.g., still, video, webcam, etc.), dongles (e.g., for copy protection, ensuring secure transactions with a digital signature, and/or the like), external processors (for added capabilities; e.g., crypto devices 2828), force-feedback devices (e.g., vibrating motors), network interfaces, printers, scanners, storage devices, transceivers (e.g., cellular, GPS, etc.), video devices (e.g., goggles, monitors, etc.), video sources, visors, and/or the like. Peripheral devices often include types of input devices (e.g., cameras).
It should be noted that although user input devices and peripheral devices may be employed, the SNPA controller may be embodied as an embedded, dedicated, and/or monitor-less (i.e., headless) device, wherein access would be provided over a network interface connection.
Cryptographic units such as, but not limited to, microcontrollers, processors 2826, interfaces 2827, and/or devices 2828 may be attached, and/or communicate with the SNPA controller. A MC68HC16 microcontroller, manufactured by Motorola Inc., may be used for and/or within cryptographic units. The MC68HC16 microcontroller utilizes a 16-bit multiply-and-accumulate instruction in the 16 MHz configuration and requires less than one second to perform a 512-bit RSA private key operation. Cryptographic units support the authentication of communications from interacting agents, as well as allowing for anonymous transactions. Cryptographic units may also be configured as part of CPU. Equivalent microcontrollers and/or processors may also be used. Other commercially available specialized cryptographic processors include: the Broadcom's CryptoNetX and other Security Processors; nCipher's nShield, SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' 40 MHz Roadrunner 184; Sun's Cryptographic Accelerators (e.g., Accelerator 6000 PCIe Board, Accelerator 500 Daughtercard); Via Nano Processor (e.g., L2100, L2200, U2400) line, which is capable of performing 500+MB/s of cryptographic instructions; VLSI Technology's 33 MHz 6868; and/or the like.
Generally, any mechanization and/or embodiment allowing a processor to affect the storage and/or retrieval of information is regarded as memory 2829. However, memory is a fungible technology and resource, thus, any number of memory embodiments may be employed in lieu of or in concert with one another. It is to be understood that the SNPA controller and/or a computer systemization may employ various forms of memory 2829. For example, a computer systemization may be configured wherein the functionality of on-chip CPU memory (e.g., registers), RAM, ROM, and any other storage devices are provided by a paper punch tape or paper punch card mechanism; of course such an embodiment would result in an extremely slow rate of operation. In a typical configuration, memory 2829 will include ROM 2806, RAM 2805, and a storage device 2814. A storage device 2814 may be any conventional computer system storage. Storage devices may include a drum; a (fixed and/or removable) magnetic disk drive; a magneto-optical drive; an optical drive (i.e., Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD DVD R/RW etc.); an array of devices (e.g., Redundant Array of Independent Disks (RAID)); solid state memory devices (USB memory, solid state drives (SSD), etc.); other processor-readable storage mediums; and/or other devices of the like. Thus, a computer systemization generally requires and makes use of memory.
The memory 2829 may contain a collection of program and/or database components and/or data such as, but not limited to: operating system component(s) 2815 (operating system); information server component(s) 2816 (information server); user interface component(s) 2817 (user interface); Web browser component(s) 2818 (Web browser); database(s) 2819; mail server component(s) 2821; mail client component(s) 2822; cryptographic server component(s) 2820 (cryptographic server); the SNPA component(s) 2835; and/or the like (i.e., collectively a component collection). These components may be stored and accessed from the storage devices and/or from storage devices accessible through an interface bus. Although non-conventional program components such as those in the component collection, typically, are stored in a local storage device 2814, they may also be loaded and/or stored in memory such as: peripheral devices, RAM, remote storage facilities through a communications network, ROM, various forms of memory, and/or the like.
The operating system component 2815 is an executable program component facilitating the operation of the SNPA controller. Typically, the operating system facilitates access of I/O, network interfaces, peripheral devices, storage devices, and/or the like. The operating system may be a highly fault tolerant, scalable, and secure system such as: Apple Macintosh OS X (Server); AT&T Plan 9; Be OS; Unix and Unix-like system distributions (such as AT&T's UNIX; Berkley Software Distribution (BSD) variations such as FreeBSD, NetBSD, OpenBSD, and/or the like; Linux distributions such as Red Hat, Ubuntu, and/or the like); and/or the like operating systems. However, more limited and/or less secure operating systems also may be employed such as Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft Windows 2000/2003/3.1/95/98/CE/Millenium/NT/Vista/XP (Server), Palm OS, and/or the like. An operating system may communicate to and/or with other components in a component collection, including itself, and/or the like. Most frequently, the operating system communicates with other program components, user interfaces, and/or the like. For example, the operating system may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. The operating system, once executed by the CPU, may enable the interaction with communications networks, data, I/O, peripheral devices, program components, memory, user input devices, and/or the like. The operating system may provide communications protocols that allow the SNPA controller to communicate with other entities through a communications network 2813. Various communication protocols may be used by the SNPA controller as a subcarrier transport mechanism for interaction, such as, but not limited to: multicast, TCP/IP, UDP, unicast, and/or the like.
An information server component 2816 is a stored program component that is executed by a CPU. The information server may be a conventional Internet information server such as, but not limited to Apache Software Foundation's Apache, Microsoft's Internet Information Server, and/or the like. The information server may allow for the execution of program components through facilities such as Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, Common Gateway Interface (CGI) scripts, dynamic (D) hypertext markup language (HTML), FLASH, Java, JavaScript, Practical Extraction Report Language (PERL), Hypertext Pre-Processor (PHP), pipes, Python, wireless application protocol (WAP), WebObjects, and/or the like. The information server may support secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), messaging protocols (e.g., America Online (AOL) Instant Messenger (AIM), Application Exchange (APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network (MSN) Messenger Service, Presence and Instant Messaging Protocol (PRIM), Internet Engineering Task Force's (IETF's) Session Initiation Protocol (SIP), SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), open XML-based Extensible Messaging and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile Alliance's (OMA's) Instant Messaging and Presence Service (IMPS)), Yahoo! Instant Messenger Service, and/or the like. The information server provides results in the form of Web pages to Web browsers, and allows for the manipulated generation of the Web pages through interaction with other program components. After a Domain Name System (DNS) resolution portion of an HTTP request is resolved to a particular information server, the information server resolves requests for information at specified locations on the SNPA controller based on the remainder of the HTTP request. For example, a request such as http://123.124.125.126/myInformation.html might have the IP portion of the request “123.124.125.126” resolved by a DNS server to an information server at that IP address; that information server might in turn further parse the http request for the “/myInformation.html” portion of the request and resolve it to a location in memory containing the information “myInformation.html.” Additionally, other information serving protocols may be employed across various ports, e.g., FTP communications across port 21, and/or the like. An information server may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the information server communicates with the SNPA database 2819, operating systems, other program components, user interfaces, Web browsers, and/or the like.
Access to the SNPA database may be achieved through a number of database bridge mechanisms such as through scripting languages as enumerated below (e.g., CGI) and through inter-application communication channels as enumerated below (e.g., CORBA, WebObjects, etc.). Any data requests through a Web browser are parsed through the bridge mechanism into appropriate grammars as required by the SNPA. In one embodiment, the information server would provide a Web form accessible by a Web browser. Entries made into supplied fields in the Web form are tagged as having been entered into the particular fields, and parsed as such. The entered terms are then passed along with the field tags, which act to instruct the parser to generate queries directed to appropriate tables and/or fields. In one embodiment, the parser may generate queries in standard SQL by instantiating a search string with the proper join/select commands based on the tagged text entries, wherein the resulting command is provided over the bridge mechanism to the SNPA as a query. Upon generating query results from the query, the results are passed over the bridge mechanism, and may be parsed for formatting and generation of a new results Web page by the bridge mechanism. Such a new results Web page is then provided to the information server, which may supply it to the requesting Web browser.
Also, an information server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
Computer interfaces in some respects are similar to automobile operation interfaces. Automobile operation interface elements such as steering wheels, gearshifts, and speedometers facilitate the access, operation, and display of automobile resources, and status. Computer interaction interface elements such as check boxes, cursors, menus, scrollers, and windows (collectively and commonly referred to as widgets) similarly facilitate the access, capabilities, operation, and display of data and computer hardware and operating system resources, and status. Operation interfaces are commonly called user interfaces. Graphical user interfaces (GUIs) such as the Apple Macintosh Operating System's Aqua, IBM's OS/2, Microsoft's Windows 2000/2003/3.1/95/98/CE/Millenium/NT/XP/Vista/7 (i.e., Aero), Unix's X-Windows (e.g., which may include additional Unix graphic interface libraries and layers such as K Desktop Environment (KDE), mythTV and GNU Network Object Model Environment (GNOME)), web interface libraries (e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, etc. interface libraries such as, but not limited to, Dojo, jQuery(UI), MooTools, Prototype, script.aculo.us, SWFObject, Yahoo! User Interface, any of which may be used and) provide a baseline and means of accessing and displaying information graphically to users.
A user interface component 2817 is a stored program component that is executed by a CPU. The user interface may be a conventional graphic user interface as provided by, with, and/or atop operating systems and/or operating environments such as already discussed. The user interface may allow for the display, execution, interaction, manipulation, and/or operation of program components and/or system facilities through textual and/or graphical facilities. The user interface provides a facility through which users may affect, interact, and/or operate a computer system. A user interface may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the user interface communicates with operating systems, other program components, and/or the like. The user interface may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
A Web browser component 2818 is a stored program component that is executed by a CPU. The Web browser may be a conventional hypertext viewing application such as Microsoft Internet Explorer or Netscape Navigator. Secure Web browsing may be supplied with 128 bit (or greater) encryption by way of HTTPS, SSL, and/or the like. Web browsers allowing for the execution of program components through facilities such as ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, web browser plug-in APIs (e.g., FireFox, Safari Plug-in, and/or the like APIs), and/or the like. Web browsers and like information access tools may be integrated into PDAs, cellular telephones, and/or other mobile devices. A Web browser may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the Web browser communicates with information servers, operating systems, integrated program components (e.g., plug-ins), and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. Of course, in place of a Web browser and information server, a combined application may be developed to perform similar functions of both. The combined application would similarly affect the obtaining and the provision of information to users, user agents, and/or the like from the SNPA enabled nodes. The combined application may be nugatory on systems employing standard Web browsers.
A mail server component 2821 is a stored program component that is executed by a CPU 2803. The mail server may be a conventional Internet mail server such as, but not limited to sendmail, Microsoft Exchange, and/or the like. The mail server may allow for the execution of program components through facilities such as ASP, ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, CGI scripts, Java, JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or the like. The mail server may support communications protocols such as, but not limited to: Internet message access protocol (IMAP), Messaging Application Programming Interface (MAPI)/Microsoft Exchange, post office protocol (POP3), simple mail transfer protocol (SMTP), and/or the like. The mail server can route, forward, and process incoming and outgoing mail messages that have been sent, relayed and/or otherwise traversing through and/or to the SNPA.
Access to the SNPA mail may be achieved through a number of APIs offered by the individual Web server components and/or the operating system.
Also, a mail server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.
A mail client component 2822 is a stored program component that is executed by a CPU 2803. The mail client may be a conventional mail viewing application such as Apple Mail, Microsoft Entourage, Microsoft Outlook, Microsoft Outlook Express, Mozilla, Thunderbird, and/or the like. Mail clients may support a number of transfer protocols, such as: IMAP, Microsoft Exchange, POP3, SMTP, and/or the like. A mail client may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the mail client communicates with mail servers, operating systems, other mail clients, and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses. Generally, the mail client provides a facility to compose and transmit electronic mail messages.
A cryptographic server component 2820 is a stored program component that is executed by a CPU 2803, cryptographic processor 2826, cryptographic processor interface 2827, cryptographic processor device 2828, and/or the like. Cryptographic processor interfaces will allow for expedition of encryption and/or decryption requests by the cryptographic component; however, the cryptographic component, alternatively, may run on a conventional CPU. The cryptographic component allows for the encryption and/or decryption of provided data. The cryptographic component allows for both symmetric and asymmetric (e.g., Pretty Good Protection (PGP)) encryption and/or decryption. The cryptographic component may employ cryptographic techniques such as, but not limited to: digital certificates (e.g., X.509 authentication framework), digital signatures, dual signatures, enveloping, password access protection, public key management, and/or the like. The cryptographic component will facilitate numerous (encryption and/or decryption) security protocols such as, but not limited to: checksum, Data Encryption Standard (DES), Elliptical Curve Encryption (ECC), International Data Encryption Algorithm (IDEA), Message Digest 5 (MD5, which is a one way hash function), passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an Internet encryption and authentication system that uses an algorithm developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman), Secure Hash Algorithm (SHA), Secure Socket Layer (SSL), Secure Hypertext Transfer Protocol (HTTPS), and/or the like. Employing such encryption security protocols, the SNPA may encrypt all incoming and/or outgoing communications and may serve as node within a virtual private network (VPN) with a wider communications network. The cryptographic component facilitates the process of “security authorization” whereby access to a resource is inhibited by a security protocol wherein the cryptographic component effects authorized access to the secured resource. In addition, the cryptographic component may provide unique identifiers of content, e.g., employing and MD5 hash to obtain a unique signature for an digital audio file. A cryptographic component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. The cryptographic component supports encryption schemes allowing for the secure transmission of information across a communications network to enable the SNPA component to engage in secure transactions if so desired. The cryptographic component facilitates the secure accessing of resources on the SNPA and facilitates the access of secured resources on remote systems; i.e., it may act as a client and/or server of secured resources. Most frequently, the cryptographic component communicates with information servers, operating systems, other program components, and/or the like. The cryptographic component may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
The SNPA database component 2819 may be embodied in a database and its stored data. The database is a stored program component, which is executed by the CPU; the stored program component portion configuring the CPU to process the stored data. The database may be a conventional, fault tolerant, relational, scalable, secure database such as Oracle or Sybase. Relational databases are an extension of a flat file. Relational databases consist of a series of related tables. The tables are interconnected via a key field. Use of the key field allows the combination of the tables by indexing against the key field; i.e., the key fields act as dimensional pivot points for combining information from various tables. Relationships generally identify links maintained between tables by matching primary keys. Primary keys represent fields that uniquely identify the rows of a table in a relational database. More precisely, they uniquely identify rows of a table on the “one” side of a one-to-many relationship.
Alternatively, the SNPA database may be implemented using various standard data-structures, such as an array, hash, (linked) list, struct, structured text file (e.g., XML), table, and/or the like. Such data-structures may be stored in memory and/or in (structured) files. In another alternative, an object-oriented database may be used, such as Frontier, ObjectStore, Poet, Zope, and/or the like. Object databases can include a number of object collections that are grouped and/or linked together by common attributes; they may be related to other object collections by some common attributes. Object-oriented databases perform similarly to relational databases with the exception that objects are not just pieces of data but may have other types of functionality encapsulated within a given object. If the SNPA database is implemented as a data-structure, the use of the SNPA database 2819 may be integrated into another component such as the SNPA component 2835. Also, the database may be implemented as a mix of data structures, objects, and relational structures. Databases may be consolidated and/or distributed in countless variations through standard data processing techniques. Portions of databases, e.g., tables, may be exported and/or imported and thus decentralized and/or integrated.
In one embodiment, the database component 2819 includes several tables 2819a-u. A Users table 2819a may include fields such as, but not limited to: user_id, ssn, dob, first_name, last_name, age, state, address_firstline, address_secondline, zipcode, devices_list, contact_info, contact_type, alt_contact_info, alt_contact_type, and/or the like. The Users table may support and/or track multiple entity accounts on a SNPA. A Devices table 2819b may include fields such as, but not limited to: device_ID, device_name, device_IP, device_GPS, device_MAC, device_serial, device_ECID, device_UDID, device_browser, device_type, device_model, device_version, device_OS, device_apps_list, device_securekey, wallet_app installed_flag, and/or the like. An Apps table 2819c may include fields such as, but not limited to: app_ID, app_name, app_type, app_dependencies, app_access_code, user_pin, and/or the like. An Accounts table 2819d may include fields such as, but not limited to: account_number, account_security_code, account_name, issuer_acquirer_flag, issuer_name, acquirer_name, account_address, routing_number, access_API_call, linked_wallets_list, and/or the like. A Merchants table 2819e may include fields such as, but not limited to: merchant_id, merchant_name, merchant_address, store_id, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Issuers table 2819f may include fields such as, but not limited to: issuer_id, issuer_name, issuer_address, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Acquirers table 2819g may include fields such as, but not limited to: account_firstname, account_lastname, account_type, account_num, account balance_list, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress_line1, shippingaddress_line2, shipping_zipcode, shipping_state, and/or the like. A Pay Gateways table 2819h may include fields such as, but not limited to: gateway_ID, gateway_IP, gateway_MAC, gateway_secure_key, gateway_access_list, gateway API_call_list, gateway services_list, and/or the like. A Shop Sessions table 2819i may include fields such as, but not limited to: user_id, session_id, alerts_URL, timestamp, expiry_lapse, merchant_id, store_id, device_type, device_ID, device_IP, device_MAC, device_browser, device_serial, device_ECID, device_model, device_OS, wallet_app_installed, total_cost, cart_ID_list, product_params_list, social_flag, social_message, social_networks_list, coupon_lists, accounts_list, CVV2_lists, charge_ratio_list, charge_priority_list, value_exchange_symbols_list, bill_address, ship_address, cloak_flag, pay_mode, alerts_rules_list, and/or the like. A Transactions table 2819j may include fields such as, but not limited to: order_id, user_id, timestamp, transaction_cost, purchase_details_list, num_products, products_list, product_type, product_params_list, product_title, product_summary, quantity, user_id, client_id, client_ip, client_type, client_model, operating_system, os_version, app_installed_flag, user_id, account_firstname, account_lastname, account_type, account_num, account_priority account_ratio, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress_line1, shippingaddress_line2, shipping_zipcode, shipping_state, merchant_id, merchant_name, merchant_auth_key, and/or the like. A Batches table 2819k may include fields such as, but not limited to: batch_id, transaction_id_list, timestamp_list, cleared_flag_list, clearance_trigger_settings, and/or the like. A Ledgers table 2819l may include fields such as, but not limited to: request_id, timestamp, deposit_amount, batch_id, transaction_id, clear_flag, deposit_account, transaction_summary, payor_name, payor_account, and/or the like. A Products table 2819m may include fields such as, but not limited to: product_ID, product_title, product_attributes_list, product_price, tax_info_list, related_products_list, offers_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. An Offers table 2819n may include fields such as, but not limited to: offer_ID, offer_title, offer_attributes_list, offer_price, offer_expiry, related_products_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. A Behavior Data table 28190 may include fields such as, but not limited to: user_id, timestamp, activity_type, activity_location, activity_attribute_list, activity_attribute_values_list, and/or the like. An Analytics table 2819p may include fields such as, but not limited to: report_id, user_id, report_type, report_algorithm_id, report_destination_address, and/or the like. A Fraud Reports table 2819q may include fields such as, but not limited to: report_id, user_id, session_id, merchant_id, fraud_type, fraud_description, products_list, transaction_cost, timestamp, contact_info, and/or the like. A Risk Rules table 2819r may include fields such as, but not limited to: rule_id, risk_type, transaction_type, rule_elements, rule_inputs, rule_processing, rule_outputs, rule_threshold, geo_scope, last_updated, and/or the like. An Escalation Rules table 2819s may include fields such as, but not limited to: rule_id, risk_type, transaction_type, entity_type, rule_elements, rule_inputs, rule_processing, rule_outputs, rule_thresholds_list, geo_scope, last_updated, and/or the like. A Clients table 2819t may include fields such as, but not limited to: user_id, client_id, client_ip, client_type, client_model, operating_system, os_version, app_installed_flag, and/or the like. A Payment Ledgers table 2819u may include fields such as, but not limited to: request_id, timestamp, deposit_amount, batch_id, transaction_id, clear_flag, deposit_account, transaction_summary, payor_name, payor_account, and/or the like.
In one embodiment, the SNPA database may interact with other database systems. For example, employing a distributed database system, queries and data access by search SNPA component may treat the combination of the SNPA database, an integrated data security layer database as a single database entity.
In one embodiment, user programs may contain various user interface primitives, which may serve to update the SNPA. Also, various accounts may require custom database tables depending upon the environments and the types of clients the SNPA may need to serve. It should be noted that any unique fields may be designated as a key field throughout. In an alternative embodiment, these tables have been decentralized into their own databases and their respective database controllers (i.e., individual database controllers for each of the above tables). Employing standard data processing techniques, one may further distribute the databases over several computer systemizations and/or storage devices. Similarly, configurations of the decentralized database controllers may be varied by consolidating and/or distributing the various database components 2819a-u. The SNPA may be configured to keep track of various settings, inputs, and parameters via database controllers.
The SNPA database may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the SNPA database communicates with the SNPA component, other program components, and/or the like. The database may contain, retain, and provide information regarding other nodes and data.
The SNPA component 2835 is a stored program component that is executed by a CPU. In one embodiment, the SNPA component incorporates any and/or all combinations of the aspects of the SNPA discussed in the previous figures. As such, the SNPA affects accessing, obtaining and the provision of information, services, transactions, and/or the like across various communications networks. The features and embodiments of the SNPA discussed herein increase network efficiency by reducing data transfer requirements the use of more efficient data structures and mechanisms for their transfer and storage. As a consequence, more data may be transferred in less time, and latencies with regard to transactions, are also reduced. In many cases, such reduction in storage, transfer time, bandwidth requirements, latencies, etc., will reduce the capacity and structural infrastructure requirements to support the SNPA's features and facilities, and in many cases reduce the costs, energy consumption/requirements, and extend the life of SNPA's underlying infrastructure; this has the added benefit of making the SNPA more reliable. For example, in some embodiments, the SNPA may be configured to allow a merchant to process payment requests without the need for additional authentication infrastructure, thereby reducing resource outlay, network traffic and overhead. Also, by reducing the duplication of such authentication infrastructure, such consolidated authentication infrastructure may employ more robust network connections and server resources, thereby optimizing transaction response time, reducing latency, and load balancing network traffic to a more dedicated consolidated infrastructure. In other embodiments, the SNPA may allow a merchant, in a transaction where a user is unknown, to receive sufficient authentication to process a transaction on behalf of a user. In doing so, the SNPA may allow the merchant to avoid manual processes such as telephoning the user to verify identity before processing a transaction. Similarly, many of the features and mechanisms are designed to be easier for users to use and access, thereby broadening the audience that may enjoy/employ and exploit the feature sets of the SNPA; such ease of use also helps to increase the reliability of the SNPA. In addition, the feature sets include heightened security as noted via the Cryptographic components 2820, 2826, 2828 and throughout, making access to the features and data more reliable and secure.
The SNPA component transforms enroll input 211, social network request template 215, login input 220, checkout input 411, product data 415, user enrollment data 419, login input 423, issuer server data 430, user data 434a-n, batch data 440, issuer server data 448, and/or the like via UPC 2841, PTA 2842, UWAR 2844, FDR 2845, SRA 2846, TRA 2847, GSPE 2848, SNAPE 2849, SNAE 2849, and/or GSS 2850 components, into outputs authentication data record 223, enrollment notification 224, enrollment data record 226, enrollment confirmation 227, card authorization request 428, authorization response 436a-n, authorization fail message 438, authorization success message 440, batch append data 442, purchase receipt 443, funds transfer message 453-54, and/or the like.
The SNPA component enabling access of information between nodes may be developed by employing standard development tools and languages such as, but not limited to: Apache components, Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C# and/or .NET, database adapters, CGI scripts, Java, JavaScript, mapping tools, procedural and object oriented development tools, PERL, PHP, Python, shell scripts, SQL commands, web application server extensions, web development environments and libraries (e.g., Microsoft's ActiveX; Adobe AIR, FLEX & FLASH; AJAX; (D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.us; Simple Object Access Protocol (SOAP); SWFObject; Yahoo! User Interface; and/or the like), WebObjects, and/or the like. In one embodiment, the SNPA server employs a cryptographic server to encrypt and decrypt communications. The SNPA component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the SNPA component communicates with the SNPA database, operating systems, other program components, and/or the like. The SNPA may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
The structure and/or operation of any of the SNPA node controller components may be combined, consolidated, and/or distributed in any number of ways to facilitate development and/or deployment. Similarly, the component collection may be combined in any number of ways to facilitate deployment and/or development. To accomplish this, one may integrate the components into a common code base or in a facility that can dynamically load the components on demand in an integrated fashion.
The component collection may be consolidated and/or distributed in countless variations through standard data processing and/or development techniques. Multiple instances of any one of the program components in the program component collection may be instantiated on a single node, and/or across numerous nodes to improve performance through load-balancing and/or data-processing techniques. Furthermore, single instances may also be distributed across multiple controllers and/or storage devices; e.g., databases. All program component instances and controllers working in concert may do so through standard data processing communication techniques.
The configuration of the SNPA controller will depend on the context of system deployment. Factors such as, but not limited to, the budget, capacity, location, and/or use of the underlying hardware resources may affect deployment requirements and configuration. Regardless of if the configuration results in more consolidated and/or integrated program components, results in a more distributed series of program components, and/or results in some combination between a consolidated and distributed configuration, data may be communicated, obtained, and/or provided. Instances of components consolidated into a common code base from the program component collection may communicate, obtain, and/or provide data. This may be accomplished through intra-application data processing communication techniques such as, but not limited to: data referencing (e.g., pointers), internal messaging, object instance variable communication, shared memory space, variable passing, and/or the like.
If component collection components are discrete, separate, and/or external to one another, then communicating, obtaining, and/or providing data with and/or to other component components may be accomplished through inter-application data processing communication techniques such as, but not limited to: Application Program Interfaces (API) information passage; (distributed) Component Object Model ((D)COM), (Distributed) Object Linking and Embedding ((D)OLE), and/or the like), Common Object Request Broker Architecture (CORBA), Jini local and remote application program interfaces, JavaScript Object Notation (JSON), Remote Method Invocation (RMI), SOAP, process pipes, shared files, and/or the like. Messages sent between discrete component components for inter-application communication or within memory spaces of a singular component for intra-application communication may be facilitated through the creation and parsing of a grammar. A grammar may be developed by using development tools such as lex, yacc, XML, and/or the like, which allow for grammar generation and parsing capabilities, which in turn may form the basis of communication messages within and between components.
For example, a grammar may be arranged to recognize the tokens of an HTTP post command, e.g.:
where Value1 is discerned as being a parameter because “http://” is part of the grammar syntax, and what follows is considered part of the post value. Similarly, with such a grammar, a variable “Value1” may be inserted into an “http://” post command and then sent. The grammar syntax itself may be presented as structured data that is interpreted and/or otherwise used to generate the parsing mechanism (e.g., a syntax description text file as processed by lex, yacc, etc.). Also, once the parsing mechanism is generated and/or instantiated, it itself may process and/or parse structured data such as, but not limited to: character (e.g., tab) delineated text, HTML, structured text streams, XML, and/or the like structured data. In another embodiment, inter-application data processing protocols themselves may have integrated and/or readily available parsers (e.g., JSON, SOAP, and/or like parsers) that may be employed to parse (e.g., communications) data. Further, the parsing grammar may be used beyond message parsing, but may also be used to parse: databases, data collections, data stores, structured data, and/or the like. Again, the desired configuration will depend upon the context, environment, and requirements of system deployment.
For example, in some implementations, the SNPA controller may be executing a PHP script implementing a Secure Sockets Layer (“SSL”) socket server via the information server, which listens to incoming communications on a server port to which a client may send data, e.g., data encoded in JSON format. Upon identifying an incoming communication, the PHP script may read the incoming message from the client device, parse the received JSON-encoded text data to extract information from the JSON-encoded text data into PHP script variables, and store the data (e.g., client identifying information, etc.) and/or extracted information in a relational database accessible using the Structured Query Language (“SQL”). An exemplary listing, written substantially in the form of PHP/SQL commands, to accept JSON-encoded input data from a client device via a SSL connection, parse the data to extract variables, and store the data to a database, is provided below:
Also, the following resources may be used to provide example embodiments regarding SOAP parser implementation:
and other parser implementations:
all of which are hereby expressly incorporated by reference.
In order to address various issues and advance the art, the entirety of this application for SOCIAL NETWORK PAYMENT AUTHENTICATION APPARATUSES, METHODS AND SYSTEMS (including the Cover Page, Title, Headings, Field, Background, Summary, Brief Description of the Drawings, Detailed Description, Claims, Abstract, Figures, Appendices and/or otherwise) shows by way of illustration various embodiments in which the claimed inventions may be practiced. The advantages and features of the application are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed principles. It should be understood that they are not representative of all claimed inventions. As such, certain aspects of the disclosure have not been discussed herein. That alternate embodiments may not have been presented for a specific portion of the invention or that further undescribed alternate embodiments may be available for a portion is not to be considered a disclaimer of those alternate embodiments. It will be appreciated that many of those undescribed embodiments incorporate the same principles of the invention and others are equivalent. Thus, it is to be understood that other embodiments may be utilized and functional, logical, organizational, structural and/or topological modifications may be made without departing from the scope and/or spirit of the disclosure. As such, all examples and/or embodiments are deemed to be non-limiting throughout this disclosure. Also, no inference should be drawn regarding those embodiments discussed herein relative to those not discussed herein other than it is as such for purposes of reducing space and repetition. For instance, it is to be understood that the logical and/or topological structure of any combination of any program components (a component collection), other components and/or any present feature sets as described in the figures and/or throughout are not limited to a fixed operating order and/or arrangement, but rather, any disclosed order is exemplary and all equivalents, regardless of order, are contemplated by the disclosure. Furthermore, it is to be understood that such features are not limited to serial execution, but rather, any number of threads, processes, services, servers, and/or the like that may execute asynchronously, concurrently, in parallel, simultaneously, synchronously, and/or the like are contemplated by the disclosure. As such, some of these features may be mutually contradictory, in that they cannot be simultaneously present in a single embodiment. Similarly, some features are applicable to one aspect of the invention, and inapplicable to others. In addition, the disclosure includes other inventions not presently claimed. Applicant reserves all rights in those presently unclaimed inventions including the right to claim such inventions, file additional applications, continuations, continuations in part, divisions, and/or the like thereof. As such, it should be understood that advantages, embodiments, examples, functional, features, logical, organizational, structural, topological, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims. It is to be understood that, depending on the particular needs and/or characteristics of a SNPA individual and/or enterprise user, database configuration and/or relational model, data type, data transmission and/or network framework, syntax structure, and/or the like, various embodiments of the SNPA may be implemented that enable a great deal of flexibility and customization. For example, aspects of the SNPA may be adapted for any systems for secure access, fraud detection, identity verification, and/or the like. While various embodiments and discussions of the SNPA have been directed to payment processing, however, it is to be understood that the embodiments described herein may be readily configured and/or customized for a wide variety of other applications and/or implementations.
This application is a non-provisional of and claims priority under 35 USC §119 to: U.S. provisional patent application Ser. No. 61/539,571 filed Sep. 27, 2011, entitled “SOCIAL NETWORK PAYMENT AUTHENTICATION APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. P-42196PRV|20270-158PV, U.S. provisional patent application Ser. No. 61/569,371 filed Dec. 12, 2011, entitled “WALLET VERIFICATION APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. 13US03|20270-179PV2; U.S. provisional patent application Ser. No. 61/566,969 filed Dec. 5, 2011, entitled “DYNAMIC NETWORK ANALYTICS SYSTEM”; and U.S. provisional patent application Ser. No. 61/563,941 filed Nov. 28, 2011, entitled “WALLET VERIFICATION APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. 13US01|20270-179PV. This application is a continuation-in-part of and claims priority under 35 USC §120 to: U.S. patent application Ser. No. 13/434,818 filed Mar. 29, 2012, entitled “GRADUATED SECURITY SEASONING APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. 233US01|20270-230US, which in turn claims priority to U.S. provisional patent application No. 61/469,063 filed Mar. 29, 2011, entitled “WALLET TRANSACTION AUTHENTICATION APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. P-42167PRV|20270-144PV2. The entire contents of the aforementioned applications are expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61539571 | Sep 2011 | US | |
61569371 | Dec 2011 | US | |
61566969 | Dec 2011 | US | |
61563941 | Nov 2011 | US | |
61469063 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13434818 | Mar 2012 | US |
Child | 13629288 | US |