The Internet and World Wide Web have propelled the popularity of online social networking to the point where it has become a global phenomenon. A number of different social networking websites exist today which are quite popular. A large and still growing percentage of Internet users worldwide are registered users of, and regularly utilize, one or more of these social networking websites. In fact, Internet users taken as a whole now spend more time on social networking websites than on any other type of website. Due to the popularity of online social networking, a typical registered user of a typical social networking website expands the size of their online social network on a regular basis.
This Summary is provided to introduce a selection of concepts, in a simplified form, that are further described hereafter in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Social newsfeed triage technique embodiments described herein generally involve triaging a social newsfeed being delivered to a user. In an exemplary embodiment a personalized model is established which predicts the importance to the user of data elements within a current social newsfeed being delivered to the user. The personalized model is established based on implicit actions the user takes in response to receiving previous social newsfeeds. The personalized model is then used to triage the data elements within the current social newsfeed.
The specific features, aspects, and advantages of the social newsfeed triage (SNT) technique embodiments described herein will become better understood with regard to the following description, appended claims, and accompanying drawings where:
In the following description of social newsfeed triage (SNT) technique embodiments reference is made to the accompanying drawings which form a part hereof, and in which are shown, by way of illustration, specific embodiments in which the SNT technique can be practiced. It is understood that other embodiments can be utilized and structural changes can be made without departing from the scope of the SNT technique embodiments.
The term “registered user” is used herein to refer to an Internet user (and the like) who has an account on a given social networking application. As is appreciated in the art of online social networking, the account of a registered user can include a personal profile, and can also include privacy settings. The personal profile of a registered user generally includes various types of information about the user such as one or more photos of the user, the personal interests of the user, contact information for the user, the user's birthday, and the like. The term “online friend” is used herein to refer to a first registered user of a social networking application who is part of (i.e., a member of) the online social network of a second registered user of the social networking application. Accordingly, in the art of online social networking the first registered user is known as an online friend of the second registered user.
The online friends of a given registered user can have various types of personal relationships with the user. By way of example but not limitation, a given online friend of the user can be a family member, or schoolmate, or work colleague, or personal friend of the user. Additionally, an online friend of a registered user may have no personal relationship with the user at all, but rather may be someone who is interested in “following” the user (as is often the case when the user is a celebrity or the like); this particular type of online friend is sometimes referred to as an “online follower.” The mechanisms by which one registered user becomes an online friend (i.e., is added to the online social network) of another registered user, or one registered user is “de-friended” (also known as being “unfriended”) by another registered user, are well understood and thus need not be described in more detail. The privacy settings of a registered user generally allow the user to specify which information from their personal profile can be shared automatically with their online friends.
A large and still growing percentage of Internet users worldwide regularly utilize one or more social networking applications. Generally speaking, a given social networking application provides registered users thereof with a prescribed set of services that allow the users to automatically exchange online information content (hereafter simply referred to as “content”) with each of their online friends. More particularly, each registered user of a social networking application can post various types of content that they want their online friends to be aware of. As will be described in more detail hereafter, the application stores the posted content and then automatically delivers it to each online friend of the user in the form of a social newsfeed. The user can utilize this content posting mechanism to inform their online friends of their current “status” (i.e., their current thoughts and feelings, current whereabouts, current activities, and the like), among other things. The content posted by a given registered user can include many different types of data and can be in many different forms. Exemplary types of data include text, images, audio and video, among others, as well as links (such as URLs (uniform resource locators) and the like) to any of these data types. Exemplary forms of data include a message, a blog entry, a photo, a graphical rendering, an audio recording, a video recording, a podcast, a classified ad, and a virtual gift, among others.
Generally speaking and as appreciated in the arts of the Internet and World Wide Web, a newsfeed is an online feed (i.e., an encapsulated online data stream) that includes one or more data elements which can be aggregated from different sources. As is appreciated in the art of online social networking, a conventional social networking application routinely (i.e., at a prescribed interval) checks the account of each online friend of a given registered user for new content the online friend has posted, changes the online friend has made to their personal profile, and upcoming events that are specified within the account that the registered user may be interested in (such as the online friend's birthday, among other events). The application then aggregates any such new content, personal profile changes and upcoming events that it finds in each online friend's account. The application then delivers the aggregated content/changes/events to the registered user in the form of a social newsfeed which is generally displayed on the home page of the user whenever they login to their account on the application. Each content item, personal profile change and upcoming event that is included in the social newsfeed is referred to hereafter as a “newsfeed data element.” Newsfeed data elements are ordinarily delivered to the user by the application in reverse chronological order.
As is further appreciated in the art of online social networking, when a given registered user of a social networking application logs into their account and views the social newsfeed being delivered to them, they can post their own content (such as a comment, among other things) in response to viewing any data element within the newsfeed. As such, the social newsfeed delivered to a given registered user can and generally does include “conversations” that are taking place between the various members of the user's social network. Additionally, upon viewing a given data element that is included within the social newsfeed, if the user finds the data element to be newsworthy, or useful, or interesting, or relevant, or any combination thereof, they can inform the application of this fact by selecting a “Like” button that the application can display within the data element.
As is yet further appreciated in the art of online social networking, due to the aforementioned popularity of online social networking, registered users of a social networking application generally expand the size of their social network (i.e., increase the number of online friends they have) on a regular basis. Consequently, the number of newsfeed data elements the users regularly receive can grow exponentially.
Generally speaking, the SNT technique embodiments described herein involve triaging a social newsfeed that is being delivered to a registered user (hereafter simply referred to as a “user”) of a given social networking application. This triaging can be accomplished in various ways which will be described in more detail hereafter. It is noted that the SNT technique embodiments are operational with any social networking application including, but not limited to, Facebook, Twitter and LinkedIn.
The SNT technique embodiments described herein are advantageous for a variety of reasons including, but not limited to, the following. The SNT technique embodiments sort and prioritize the data elements within the social newsfeed that is being delivered to the user, thus reducing the quantity and enhancing the quality of the newsfeed data elements that are delivered to the user at any given point in time. In other words, the SNT technique embodiments deliver to the user just the newsfeed data elements that are predicted to have a high degree of importance to the user (e.g., the data elements that they find to be newsworthy, or useful, or interesting, or relevant, or any combination thereof). The SNT technique embodiments hide from the user the newsfeed data elements that are predicted to have a low degree of importance to the user. Thus, the SNT technique embodiments serve to optimize the user's experience when they are viewing the social newsfeed. This optimizes the users' satisfaction with investing their time and effort in online social networking activities, which in turn enhances the financial and social networking success of the social networking application.
Generally speaking, the SNT technique embodiments described herein can establish two different types of personalized models, namely a personalized model that is a statistical model (herein referred to as a “statistical personalized model”) and a personalized model that is a rule-based decision tree model (herein referred to as a “decision tree personalized model”). This section provides a more detailed description of various ways of establishing both of these types of personalized models.
In one embodiment of the SNT technique described herein the aforementioned “other users” (whose explicit actions are used to train the baseline statistical model) can simply be all of the users of the social networking application. Other embodiments of the SNT technique are also possible where the other users can be a subset of the application users who are similar to the particular user in one or more prescribed ways. By way of example but not limitation, the other users can be users who generate newsfeed data elements having one or more words or word phrases in common with newsfeed data elements generated by the particular user. Such word or word-phrase commonality can be an indication that the other users share a common interest with the particular user. As is appreciated in the art of language modeling, n-grams are an exemplary method of measuring word or word-phrase commonality. The other users can also be users who have one or more online friends in common with the particular user. The other users can also be users who have a pattern of explicit actions in common (e.g., share a common behavior pattern) with the particular user, where these actions are in response to viewing a social newsfeed. Various patterns of explicit actions can be measured to determine such a commonality. One exemplary pattern of explicit actions that can be measured is the frequency by which a given user posts their own content (such as a comment, among other things) in response to viewing their social newsfeed. Another exemplary pattern of explicit actions that can be measured is the types of links a given user selects in response to viewing their social newsfeed. Yet another exemplary pattern of explicit actions that can be measured is the types of newsfeed data elements a given user requests more detail about in response to viewing their social newsfeed.
The implicit actions the particular user may take in response to a given social newsfeed being delivered to the user generally include implicit data element relevance feedback signals which are provided by the user. These feedback signals provide implicit evidence that the particular user found a particular newsfeed data element they viewed to have a high degree of importance to themself. Examples of these feedback signals include, but are not limited to, the particular user commenting on a particular social newsfeed data element that they view, the particular user selecting the aforementioned “Like” button that the social networking application displays within a particular social newsfeed data element that they view, the particular user selecting a link that is displayed within a particular social newsfeed data element, and the particular user forwarding a particular social newsfeed data element to another user.
In one embodiment of the SNT technique described herein the baseline statistical model is a conventional Facebook EdgeRank model. In another embodiment of the SNT technique the baseline statistical model is a conventional learned social newsfeed content and online friend importance model.
Referring again to
One example of a personalized rule for filtering newsfeed data elements, among various possible examples, is the following: “Upon my receiving a newsfeed data element posted by ‘Bob Smith’, classify the data element as unimportant unless it includes the text ‘TOPIC: ME’ or ‘twitter’ or ‘facebook’.” Another example of a personalized rule is the following: “Upon my receiving a newsfeed data element posted by ‘Bob Smith’, classify the data element as unimportant unless it includes the text ‘science’ and it is sent just to me and not anyone else.”
It is noted that once a personalized model for a particular user is initially established (using any of the SNT technique embodiments described herein), the personalized model will generally be successively updated using any implicit actions the user may take in response to future social newsfeeds being delivered to the user. Additionally, since the user is able to, at will, explicitly inspect and customize the newsfeed data element filtering rules associated with the decision tree personalized model, the user can adapt the filtering rules as the user's social newsfeed interests change. Thus, the personalized model for each user generally becomes more accurate as the user continues to utilize the social networking application.
This section provides a more detailed description of various ways in which the aforementioned personalized model can be used to triage the data elements within the current social newsfeed that is being delivered to the particular user.
Generally speaking, as opposed to the newsfeed data elements being delivered to the user by in reverse chronological order as described heretofore, the SNT technique embodiments described herein can sort (e.g., rank order) the newsfeed data elements in various ways. More particularly, in one embodiment of the SNT technique the data elements within the current social newsfeed are sorted according to their importance to the particular user as predicted by the personalized model. In other words, newsfeed data elements which the personalized model predicts to have the highest degree of importance to the particular user are delivered to the user first, and those which the personalized model predicts to have the lowest degree of importance to the user are delivered to the user last. In another embodiment of the SNT technique the data elements are sorted according to their importance to the particular user, as predicted by the personalized model, along a prescribed dimension of the personalized model. In yet another embodiment of the SNT technique the data elements are sorted according to their importance to the particular user, as predicted by the personalized model, along a combination of two or more different prescribed dimensions of the personalized model. Such prescribed dimensions map to the implicit actions the particular user takes in response to receiving previous social newsfeeds. Examples of these prescribed dimensions include, but are not limited to, shareability (sort the data elements by the prediction of how likely the particular user is to share them with their online friends), comment-worthiness (sort the data elements by the predicted worthiness to the particular user of comments they may include) and link-interestingness (sort the data elements by the predicted interestingness to the particular user of links they may include).
Generally speaking, the SNT technique embodiments described herein can also filter the newsfeed data elements in various ways. In other words, newsfeed data elements which the personalized model predicts to be unimportant to the particular user (e.g., data elements which the personalized model predicts to have a degree of importance to the particular user that is below a prescribed threshold) can be filtered out of the current social newsfeed in various ways. More particularly, in one embodiment of the SNT technique described herein data elements that the personalized model predicts to be unimportant to the particular user are removed from the current social newsfeed. In another embodiment of the SNT technique data elements that the personalized model predicts to be unimportant to the particular user along a prescribed dimension of the personalized model are removed from the current social newsfeed. In yet another embodiment of the SNT technique data elements that the personalized model predicts to be unimportant to the particular user along a combination of two or more different prescribed dimensions of the personalized model are removed from the current social newsfeed. Examples of such prescribed dimensions are the same as those provided heretofore. It will be appreciated that in each of these embodiments the filtered set of newsfeed data elements are generally delivered to the particular user in reverse chronological order. It will also be appreciated that data elements which are removed from the current social newsfeed can be either deleted or stored in a prescribed place (such as a “folder,” and the like).
As is appreciated in the art of document summarization, various methods exist for automatically summarizing the textual content of either a single document or a plurality of documents. One particular example of such a document summarization method, among various possible examples, is the conventional statistical summarization method which is well understood in the art of document summarization. Another particular example of such a document summarization method is the conventional extractive summarization method which extracts particular text (such as word, phrases and the like) from a prescribed collection of documents, and then assembles the extracted text into a summarization of the documents without adding any new text. SNT technique embodiments will now be described which employ these document summarization methods to triage a social newsfeed being delivered to a particular user by generating a personalized summary of the newsfeed based on summarization parameters that are specified by the particular user.
Generally speaking, the summarization engine can implement a variety of document summarization methods. More particularly, in one embodiment of the SNT technique described herein the summarization engine implements the aforementioned conventional extractive summarization method. One particular example of such an extractive summarization method, among various possible examples, is the conventional Pythy summarizer. In another embodiment of the SNT technique the summarization engine implements the aforementioned conventional statistical summarization method.
The personalized summary of the identified data elements that is generated by the summarization engine is structured in a hierarchical manner such that it can be presented to the particular user in increasing levels of detail. In other words, the particular user can choose to see increasingly detailed levels of information about particular content in the personalized summary that they are interested in by selecting such content. By way of example but not limitation, consider a scenario where the particular user is interested in finding out what their online friends from high school have been up to since graduation. Upon the particular user specifying this group of online users and specifying the period of time from graduation to present, the following personalized summary of the particular user's social newsfeed is displayed to the particular user: “John Smith and Mary Clark got married. Joe Blank changed his job. Your wife commented on posts made by Suzie Lee.” To see more detailed information about the marriage, the particular user can select this item in the personalized summary, upon which the following information is displayed to the particular user: “John Smith married Mary Clark on Oct. 17, 2010 in Billings, Mont . . . Your wife commented on their honeymoon pictures here.” The particular user can then select the hyperlink associated with the word “here” in order to see his wife's comments on the honeymoon pictures.
While the SNT technique has been described by specific reference to embodiments thereof, it is understood that variations and modifications thereof can be made without departing from the true spirit and scope of the SNT technique. By way of example but not limitation, in the case where the user's client computing device includes a video camera which is generally aimed at the user's face, the video camera can capture a video stream of the user's face and the client can process the video stream to track where on the client's display device the user's eyes are gazing at each point in time. Whenever the user's eyes dwell on a particular spot on the display device for a period of time, the client can compute this period of time. Such eye gaze dwell information can then be used as another one of the implicit data element relevance feedback signals which are provided by the user. Additionally, these signals can also include the user's acceptance or rejection of particular events or particular friend requests. Furthermore, in addition to the Rules Wizard utility being used by the user to explicitly inspect and customize the default set of rules for filtering newsfeed data elements, the user can also use this utility to specify one or more particular actions to be automatically taken and the circumstances under which they are to be taken. By way of example but not limitation, the user may specify that all links which they forward to other users be archived.
It is also noted that any or all of the aforementioned embodiments can be used in any combination desired to form additional hybrid embodiments. Although the SNT technique embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described heretofore. Rather, the specific features and acts described heretofore are disclosed as example forms of implementing the claims.
This section provides a brief, general description of a suitable computing system environment in which portions of the SNT technique embodiments described herein can be implemented. These SNT technique embodiments are operational with numerous general purpose or special purpose computing system environments or configurations. Exemplary well known computing systems, environments, and/or configurations that can be suitable include, but are not limited to, personal computers (PCs), server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the aforementioned systems or devices, and the like.
As exemplified in
As exemplified in
As exemplified in
As exemplified in
As exemplified in
Referring again to