The invention relates to electrical contacts, and more particularly to wire contacts for use with sealed connectors.
Currently electrical contacts or wire contacts are used to terminate a wire. Wire contacts require a strong mechanical means of attaching to the wire to create a permanent termination and a means to mate to a mating contact to form an electrical connection. For example, a wire contact may have a crimp end for terminating the wire and a male or female mating end for a mating contact. Some contacts have been developed from metal strips or pre-plated metal strips, which are stamped and then folded or formed into the appropriate shape. These contacts have a generally box shaped mating end for mating to a contact having a pin or blade type mating end. Contacts with a boxed shaped mating end have external size and shape requirements to fit into a cavity of a connector and an internal design for providing the mechanical and electrical connection means for receiving and holding the pin or blade contact of the mating contact. In current contacts having generally boxed shaped mating ends, a contact or compliant beam may be the means to receive and hold the mating pin contact.
However, known connectors typically contact and mate the pin or mating contact at up to two points. This can result in a lack of sufficient physical contact that reduces the reliability of the electrical connection and renders the connector susceptible to reduction or loss of connection. Further, vibration or other motion or movement may result in a loss of connection.
In addition, some known connectors have contact beams that have a high spring force, which decreases the ability to control the normal force applied by the contact beam, increasing the mating force of the connector, and increasing tolerance sensitivity. Other connector problems may arise from having the contact beam exposed to the mating pin, leaving the contact beam unprotected from damage from external factors.
What is needed is a system and/or method that satisfies one or more of these needs or provides other advantageous features. Other features and advantages will be made apparent from the present specification. The teachings disclosed extend to those embodiments that fall within the scope of the claims, regardless of whether they accomplish one or more of the aforementioned needs.
A first aspect of the present disclosure includes a socket contact having a mating portion, a crimp portion, and a transition region connecting the mating portion with the crimp portion. The mating portion includes a top wall and a bottom wall joined by two opposing sidewalls, wherein the top, bottom and two opposing sidewalls form a contact box open at, at least one end and configured to accept a pin contact. The contact box includes a first contact beam and a second contact beam. Each of the first contact beam and second contact beam includes a free end and a fixed end. The free end has a plurality of contact fingers. Each of the first contact beam and the second contact beam has a plurality of contact points.
Another aspect of the present disclosure includes an electrical connection system having a socket contact and a pin contact. The socket contact includes a mating portion, a crimp portion, and a transition region connecting the mating portion with the crimp portion. The mating portion includes a top wall and a bottom wall joined by two opposing sidewalls, wherein the top, bottom and two opposing sidewalls form a contact box open at, at least one end. The contact box includes a first contact beam and a second contact beam. Each of the first contact beam and second contact beam includes a free end and a fixed end. The free end has a plurality of contact fingers. Each of the first contact beam and the second contact beam has a plurality of contact points. A pin contact is inserted into the contact box and is in physical contact with each of the contact points.
One advantage of the present disclosure is reduced force requirement for connection of a mating pin.
Another advantage of the present disclosure is a connector that is resistant to vibration.
A further advantage of the present disclosure is the use of a plurality of contact points within the connection, increasing the reliability of the electrical connection.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, like reference numerals are used to refer to like elements throughout the application.
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the following description or illustrated in the figures. It should also be understood that the phraseology and terminology employed herein is for the purpose of description only and should not be regarded as limiting.
The contact 100 also includes angled front lead-in edges 129, 131 to provide a smooth lead-in at the top of the contact box 107 to further reduce seal damage. In the exemplary embodiment, contact box sidewalls 111, 113 include lead-in edges 129 and 131, respectively, at the front end of the contact box 107. Lead-in edges 129, 131 may be coined to provide additional protection against cutting or otherwise damaging the seal. A front aperture 133 is disposed above the front fold-over flap 128 and is generally defined by the walls 109, 111, 113, and 115 of the contact box 107. The front aperture 133 receives a mating contact pin 701 (
Referring to
As also shown in
As shown in FIGS. 3 and 5-6, the first contact beam 201 includes a divided portion made up of two contact fingers 301.
As shown in FIGS. 4 and 5-6, the second contact beam 211 includes divided portion made up of two contact fingers 401. The contact fingers 401 include finger contact points 210 along a surface thereof. The second contact beam 211 includes an inflexible fixed center contact point 209 near the front aperture 133 and one finger contact point 210 on each of two flexible contact fingers 401. The finger contact points 210 and second center contact point 209 are arranged and disposed along second contact beam 211 to provide simultaneous physical contact between the mating pin contact 701 and contact points 209, 210. Once in position, the mating pin contact 701 (see e.g.,
During insertion of the mating pin contact 701, the mating pin contact 701 contacts the two finger contact points 207 at bifurcated contact fingers 301, which provide a lifting force that reduces the mating force. Specifically, the first contact beam 201 is cantilevered at a distance from the torsional segment 204 to free end 202 resulting in a lift force that corresponds to a lowered normal force. An inflexible second center contact point 209 is contacted with the mating pin contact 701 after the lifting of the first contact beam 201 is substantially complete. As mating pin contact 701 insertion is continued, the mating pin contact 701 physically contacts the first center contact point 205 and finger contacts 210. Therefore, the insertion of the mating pin contact 701 requires a lower force and/or a shallow mating angle and less plating wear. In addition, the flexibility of the contact fingers 301, 401 permit up to six contact points 205, 207, 209, 210 to physically touch the mating pin contact 701 simultaneously when fully mated for mechanical and/or electrical stability. The two bifurcated contact fingers 301, 401 generate at least some of the resisting force; the remaining resisting force is provided by the fixed center contact points 205, 209 such that the mating pin contact 701 is located in physical contact with each of the contact points 205, 207, 209, 210. In addition, the two bifurcated contact fingers 301, 401 and the corresponding finger contacts 207, 210 provide stability to resist motion during vibration.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.