The present invention is directed toward a tool used to generate a fastening engagement between two structures and, more particularly, toward a fastening insert used where the space provided for the mating engagement is constrained or the configuration of the structures generates a compromising work setting.
Many structures and equipment components are modular and require temporary and/or permanent fastening. A common form of fastening is a nut and bolt. Unfortunately, design parameters and other constraints sometimes dictate that the mating engagement between these components occurs at an inconvenient location for a user attempting to fasten the components together. For example, some mating engagements are between brackets positioned well within an engine compartment, the parts of which may be hot and spatially constricting. Other mating engagements may be located on equipment that requires users to use poor ergonomics and compromising postures that are unsafe in order to complete the fastening. Still further, other mating engagements require the use of large, heavy fasteners that make it even more difficult for a user.
Existing fasteners consist of a nut that engages a bolt (threadingly or otherwise) to complete the fastening. Typically, the bolt is inserted through apertures of the structure and engages the nut, which when advanced towards each other, generates the mating engagement. Wrenches or sockets are used to hold and/or manipulate the nut and/or bolt to effectuate the advancement toward each other. Typically, a second wrench or socket is used in an attempt to hold the nut while the first wrench is used to manipulate the bolt, or vice versa. However, wrenches and sockets are designed for leverage and torque, and therefore are not well suited to hold and/or manipulate the nut when the nut is positioned in the constrained and/or compromising position and/or location as described above. For example, it may simply be impossible to maneuver a wrench into a small space in order to engage the nut and/or bolt.
Other tools exist, such as, for example, sockets, that attempt to hold the nut in a stationary position while the bolt is advanced, but these are also inadequate for several reasons. One of the reasons for their inadequacy is that these tools typically require being placed over or around the nut. This proves to be difficult if the nut is in a compromising position or location, and nearly impossible if the nut is large and heavy. Furthermore, the constrained space may not provide enough headroom to place the tool on or around the nut. In addition, such tools are not well suited to maneuver and position the nut without slipping from the nut or inhibiting rotational motion of the nut relative to the tool.
The present invention is directed toward overcoming one or more of the above-identified problems.
The inventive device includes an insert used as part of a fastener. The insert may be configured to have a coupling engagement with a bolt so that when coupled together they form a fastener. A bolt aperture and an extension aperture are formed into the insert. An extension bar (which assists a user with placement and positioning of the insert during use) may be inserted within the extension aperture to assist with positioning and stabilizing the insert while the bolt is inserted into the bolt aperture. In some embodiments, the insert may be placed in a constrained position with the assistance of the extension bar and used to generate a mating engagement between two ancillary structures so as to fasten the two structures together. After the mating engagement is formed, the extender bar may be removed from the extension aperture.
As described above, the extension bar may enable placement of the insert in constrained areas or compromising locations of, for example, two ancillary structures. This may include introduction of the insert within a bracket, placing the insert against a platform located within large machinery, placing the insert against a hot manifold within an engine compartment, placing the insert in a cavity formed in the structure, etc. For example, in one exemplary embodiment, the insert may be used as a nut to couple an air hose hanger to a railcar coupler by introducing the insert within the railcar coupler and holding it in place while a bolt is introduced from outside the coupler through the air hose hanger and is advanced into the bolt aperture. While connected to the insert, the extender bar may be used to assist with maneuvering, positioning, stabilizing and angling the insert to facilitate alignment between the bolt and the bolt aperture. This may be especially beneficial if the insert is large or heavy.
While these potential advantages are made possible by technical solutions offered herein, they are not required to be achieved. The presently disclosed device can be implemented to achieve technical advantages, whether or not these potential advantages, individually or in combination, are sought or achieved.
Further features, aspects, objects, advantages, and possible applications of the present invention will become apparent from a study of the exemplary embodiments and examples described below, in combination with the Figures, and the appended claims.
The above and other objects, aspects, features, advantages and possible applications of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings, in which:
The following description is of an embodiment presently contemplated for carrying out the present invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles and features of the present invention. The scope of the present invention should be determined with reference to the claims, which are to be given the full breadth thereof.
Referring now to
The faces 21, 22 may be flat, convex, conical, or any other shape. Similarly, the side 23 may be circular, polygonal, or any other shape. The shape of the faces 21, 22 and side 23 may be configured to accommodate the space within which the insert 20 is to be used. For instance, if the insert 20 is for coupling an air hose hanger to a railcar coupler, the first face 21 may be flat, the rear face 22 may be conical, and the side 23 may form a convex polygonal shape, as shown in
In some embodiments, the bolt aperture 24 protrudes through the disk-like member, extending from the front face 21 to the rear face 22, and the extension aperture 25 is configured as a dead hole (meaning does not extend all the way through). This configuration may enable insertion of the extension bar 40 within the extension aperture 25 without interference of traverse motion of the bolt 30 through the bolt aperture 24 because the extender bar 40 abuts against an inner wall of the dead hole without intruding into the bolt aperture 24. However, other configurations may be utilized. For instance, the extension aperture 25 may not be a dead hole, but rather protrude through the disk-like member, extending from a point on the side 23 to a subtending point of the side 23 but without crossing into the line of path formed by the bolt aperture 24. In another embodiment, the extension aperture 25 may cross into the path of the bolt aperture 24 to enable the extender bar 40 to intrude into the bolt aperture 24. As will be explained more later, the extension aperture 25 may be provided with an insert retention means 50b, which not only temporarily secures the extender bar 40 within the extension aperture 25, but also may serve as a mechanical stop to prevent the extender bar 40 from intruding into the bolt aperture 24. Other mechanical stops may be utilized, which may include a rim or tab disposed at or near the opening of the extension aperture 25, or even a tapered shape to the extension aperture 25. Furthermore, the bolt aperture 24 may be configured as a dead hole (meaning not extending all the way through) having the same or similar features. The bolt aperture 24 may be threaded 50a (see
Other configurations may include the bolt aperture 24 on the side 23. Further configurations may include the extension aperture 25 on any one of the front 21 and rear faces 22. In addition, the insert 20 may be provided with a plurality of bolt apertures 24 and/or a plurality of extension apertures 25. At least one of the apertures 24, 25 may be conjoined with another of the same type of aperture 24, 25. For instance, a first extension aperture 25 may extend from the front face 21 to conjoin with a second extension aperture 25 extending from the side 23. Similar configurations may exist for the bolt aperture 24.
The apertures 24, 25 may exhibit a variety of shapes. As shown in
The polygonal shape of the extension aperture 25 may provide added utility by inhibiting free rotational movement of the insert 20 relative to the extender bar 40. In an exemplary use of the device 10 (see
In addition, any of the apertures 24, 25 may exhibit a flare 26 (see
An extension retention means 50b (see
The extension retention means 50b may further enable a user to maneuver, position, stabilize and angle the insert 20 to facilitate alignment between the bolt 30 and the bolt aperture 24 by securely holding the extension bar 40 to the insert 20. As shown in
Referring now to
At least one of the first end 41 and the second end 42 may have the cooperating extension retention means 60 to temporarily retain the extension bar 40 within the extension aperture 25. The extension retention means 60 may be the same type or similar type of mechanisms as previously described.
In some embodiments, only the second end(s) 42 of the extension bar 40 exhibits a complementary shape as that of the extension aperture 25. This is illustrated in
In some embodiments, a distal end of the extension bar 40 may be configured as a socket 70 to receive at least one of another extension bar 40 and/or another tool. Thus, the first end 41 may be configured as the socket 70 and the second end 42 may exhibit the complementary shape of the insert aperture 25. The extension retention means 60 of the second end 42 may be used to temporarily retain the extension bar 40 in the extension aperture 25 of the insert 20, or a socket 70 of a second extender bar (not shown). Similarly, a socket retention means (not shown), which may be the same type or similar type of mechanisms as those of the retention means 50a, 50b, may be used to temporarily retain first and second extension bars together.
In addition, the second end 42 of the extender bar 40 may be configured to removably receive an ancillary mechanical socket, thereby enabling interchangeability of socket ends. In this embodiment, the extension retention means 60 would enable the temporary securement of the various mechanical sockets.
In some embodiments, the extension bar 40 includes a handle (not shown) to provide added dexterity when manipulating the device 10. The handle may include a textured surface or a rubber and/or polymer member disposed on a surface thereof. Moreover, the extension bar 40 may be expandable in length. The may be achieved via a telescoping engagement of a plurality of extender body portions 40′, 40″ (see
Other embodiments may include at least one ball joint connecting portions of an extension bar 40 together to enable angled articulation of two or more portions.
It will be apparent to those skilled in the art that numerous modifications and variations of the described examples and embodiments are possible in light of the above teachings of the disclosure. The disclosed examples and embodiments are presented for purposes of illustration only. Other alternate embodiments may include some or all of the features disclosed herein. Therefore, it is the intent to cover all such modifications and alternate embodiments as may come within the true scope of this invention, which is to be given the full breadth thereof. Additionally, the disclosure of a range of values is a disclosure of every numerical value within that range, including the end points.