The present invention relates to a fitting or pipe socket containing a dual-functional composite gasket comprising an elastomeric portion and a non-elastomeric portion for providing a securely seated gasket in the fitting so that an improved seal results between the gasketed socket and a spigot, the method of forming the fitting containing the securely sealed gasket, and the composite gasket, per se. Additionally, the present invention relates to an improved pipe joining system including the composite gasket.
In plastic pipe systems, connections between the various components must be sealed to prevent escape of fluids from the connections. The connections typically comprise an enlarged bell which receives a spigot. The spigot and bell can be formed as segments of pipe lengths or connecting members, such as elbows, T's, etc. In this application, the terms “fitting” and “pipe” are intended to include both pipe lengths and connecting members.
The seal between the bell and spigot is conventionally provided by a gasket mounted in one of the components of the connection and sealingly and resiliently engaging the other component. Most often, the seal is mounted in the bell and is engaged and deformed by the spigot such that a tight interference fit is formed to prevent the escape of fluid.
Gaskets formed exclusively of elastomeric material, such as natural rubber, are disadvantageous since they can be displaced from their intended position so as not to provide an adequate seal. For example, such gaskets may be pushed from their intended position during insertion of the spigot within the bell, which is know as “fishmouthing”.
Gaskets reinforced with metal bands can be deformed and the metal can corrode causing the gaskets to leak. Moreover, when such gaskets are made an integral segment of the pipe spigot, deformation or corrosion of the metal band can cause the entire pipe section to leak.
Gaskets reinforced with plastic locking rings have been increasingly used. Such gaskets are described in U.S. Pat. No. 4,343,480 to Vassallo and U.S. Pat. No. 4,579,354 to Vassallo and Valls, which are hereby incorporated by reference in their entirety. Although such systems have the advantage of reducing the amount of elastomeric material required to prevent tearing of the gasket upon making up of the joint and to discourage blow out at operating pressures, a gap normally results between the forward wall of the elastomeric gasket and the internal surface of the bent retaining wall of the hub of the pipe or fitting. Thus, the final dimensions of the bent retaining wall depends entirely on the steel bending die, which results in non-uniform retainer walls.
It has now been discovered that the disadvantages associated with the use of conventional elastomeric gaskets used in combination with a retaining ring can be eliminated by the present invention. Surprisingly, it has been found that the gap between the inner wall of a bent retainer and the adjacent wall of the gasket in the resulting groove that existed in prior configurations can be eliminated by the present invention comprising a gasketed bell in the cylindrical body of a pipe or fitting, the pipe or fitting having a longitudinal axis and comprising an enlarged, generally cylindrical, one piece hub formed in the forward end of the body, with the hub having a cylindrical section of a first diameter suitable to overfit an end of an adjacent length of pipe, the hub including an integral, radially inwardly open internal groove of a second diameter, the second diameter being greater than said first diameter. The internal groove is defined forwardly by an integral, radially inwardly bent retainer and rearwardly by an integral, circular, generally angular corner with a, generally cylindrical, composite gasket disposed in the groove.
The dual-functional, composite gasket of the present invention comprises forward and rearward axially disposed portions, in which the forward, axially disposed portion is formed of a non-elastomeric plastic and is substantially non-flexible in the axial direction, and has a first leading edge and a first trailing edge. Unlike gasketed fittings having a bent retainer which are formed with elastomeric gaskets used with a plastic reinforcing ring, the first leading edge of the forward axially disposed portion of the composite gasket of the present invention is in substantial contact with the inner surface of said radially inwardly bent retainer. The rearward axially disposed portion is formed of an elastomeric material and is adjacent and in contact with the forward axially disposed non-elastomeric portion, such that the rearward axially disposed portion has a second leading edge and a second trailing edge, with the second leading edge of the second axially disposed portion in contact with said first trailing edge of said forward axially disposed portion and the second trailing edge having a rounded corner seated in the integral, circular, angular corner of the internal groove. The bent retainer and the hub are of unitary construction.
According to a preferred embodiment of the present invention, the forward portion of the composite gasket, which comprises the non-elastomeric plastic, forms the major portion of the composite gasket, while the rearward, elastomeric portion of the composite gasket, comprises the minor portion of the gasket. Thus, by positioning substantially the non-flexible, non-elastomeric plastic as the forward portion of the gasket and as the major portion of the gasket, it better serves as a mold for forming the bent retainer, which both eliminates the gap between the undersurface of the bent retainer and the surface of the gasket and provides a precise and consistent retainer configuration. Thus, the present gasket serves the dual function of a firm molding surface and a fluid seal.
According to another preferred embodiment, a portion of the first trailing edge of the forward portion of the composite gasket extends into the rearward portion of the composite gasket in various geometric configurations, which not only improve the joining of the forward and rear portions of the gasket, but reduce the cost of the gasket because of the lower cost of non-elastomeric plastic as compared with the elastomeric portion of the gasket.
The present invention also comprises a method for seating a composite gasket in the cylindrical body of a pipe or fitting, the pipe or fitting having a longitudinal axis, which comprises providing an enlarged, generally cylindrical, one piece hub formed in the forward end of the body, the hub having a cylindrical section of a first diameter suitable to overfit an end of an adjacent length of pipe, the hub including an integral, radially inward open, internal groove of a second diameter, in which the second diameter is greater than the first diameter, the internal groove is defined rearwardly by an integral, circular, angular corner. Next, a generally cylindrical, dual-functional, composite gasket is inserted into the groove, which gasket comprises forward and rearward axially disposed portions, in which the forward, axially disposed portion is formed of a non-elastomeric plastic and is substantially non-flexible in the axial direction, and has a first leading edge and a first trailing edge, while the rearward axially disposed portion is formed of an elastomeric material, the rearward axially disposed portion has a second leading edge and a second trailing edge. The second leading edge of the second axially disposed portion is in contact with the first trailing edge of the forward axially disposed portion, and the second trailing edge has a substantially rounded corner. The gasket is inserted into the groove such that the rounded corner of the gasket is seated in the integral, circular, angular corner of said groove. Next, the end of the first diameter section of the hub is heated to cause the end to soften; and the softened end of the first diameter section of the hub is bent to cause it to move radially inward until the inner surface of the hub end is in contact with and firmly pressed against the first leading edge of the non-elastomeric plastic forward portion of the composite gasket to form an integral, radially inwardly bent retainer.
The present invention further comprises a pipe joint formed by inserting the insert end of a first plastic pipe into the gasketed bell in the cylindrical body of a pipe or fitting having a longitudinal axis and comprising an enlarged, generally cylindrical, one piece hub formed in the forward end of the body having a cylindrical section of a first diameter suitable to overfit the insert end of the first pipe. The hub includes an integral, radially inward open, internal groove of a second diameter greater than the first diameter, and the internal groove is defined forwardly by an integral, radially inward bent retainer and rearwardly by an integral, circular, generally angular corner. The internal groove has a generally cylindrical, dual-functional, composite gasket disposed therein comprising forward and rearward axially disposed portions. The forward, axially disposed portion is formed of a non-elastomeric plastic and is substantially non-flexible in the axial direction, and has a first leading edge and a first trailing edge with the first leading edge of the forward axially disposed portion in substantial contact with the inner surface of the radially inwardly bent retainer. The rearward axially disposed portion is formed of an elastomeric material and is adjacent and in contact with the forward axially disposed portion, and has a second leading edge and a second trailing edge. The second leading edge of the second axially disposed portion is in contact with the first trailing edge of the forward axially disposed portion, and the second trailing edge has a substantially rounded corner seated in the integral, circular, angular corner. The bent retainer and the hub are of unitary construction.
Referring now to the drawings that form a part of the original disclosure:
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer to only the particular structure of the invention selected for illustration in the drawings, and are not intended to define or limit the scope of the invention.
Referring now to the drawings,
As shown in
As indicated, non-elastomeric plastic portion 32 is substantially non-flexible in the axial direction. This rigidity enables the non-elastomeric portion 32 of composite gasket to serve as a molding surface for formation of the bent retainer as will be described in connection with
In addition, non-elastomeric portion 32 may be substantially non-flexible in the radial as well as the axial direction, if desired. However, the resulting composite gasket 30 cannot be bent into a heart shape without breaking, and thus, cannot be removed from the fitting or pipe bell for replacement.
The non-elastomeric portion 32 may be formed of any suitable plastic and may include polyolefins, such as polyethylene or polypropylene and copolymers thereof, poly(vinylchloride), and the like materials which are usually synthetic, thermoplastic polymers and capable of being processed by extrusion, molding, etc., but which are not capable of rapidly returning to the original length after being significantly stretched. Such materials are well-known in the art. Suitable plastics useful for the non-elastomeric plastic portion and the elastomeric portion 32 are disclosed in U.S. Pat. No. 4,693,483 to Valls and in U.S. Pat. No. 4,723,905 to Vassallo and Valls, the entire disclosures of which are hereby incorporated by reference.
Referring again to
Another advantage of the present invention is that the elastomeric portion 34 can be color coded to easily identify the composite gasket by color. Thus, for example, “Santoprene grade 201-55W185” can be color coded for a given application user application to identify the composite gasket on sight.
Likewise, the non-elastomeric portion 32 may be color coded so as, for example, to match the color of the fitting or belled pipe in which it is used, which fitting or belled pipe which has been tinted to a white or non-white color. Thus, for example, portion 32 may be colored green to match the green fitting with which it is used. Thus, portion 32 may be colored red, green, yellow, blue, brown or white, or hue of such color or any other desired color to match or contrast the pipe or fitting with which it is to be used. Similarly, elastomeric portion 34 may be colored with such colors to match or be in contrast with the color of portion 32. Thus, portion 34 could be tinted green and portion 32 black or green to contrast or match, respectively, portion 34. Such color coding may be accomplished by adding the desired tint to the non-elastomeric and/or elastomeric material prior to co-molding the composite gasket. Such color coding may be for aesthetic purposes or for identification purposes. For example, elastomeric portion 34 may be tinted various selected colors to identify the hardness of portion 34 to the end user.
As seen in
As depicted in
Referring to
Thus, the composite gasket 30 of the present invention is “dual-functional”, since the non-elastomeric portion serves as a mold for the heated edge of the hub to be bent and formed into a uniform bent retainer, as well as a sealing means for a joint formed when a length of pipe is inserted into gasketed hub of the pipe or fitting.
In
In accordance with the preferred embodiments of the present invention, the molding portion of the composite gasket comprises the non-elastomeric, substantially non-flexible plastic and forms the major portion of the composite gasket, while the elastomeric portion of the composite gasket constitutes the minor portion of the gasket. By increasing the amount of non-elastomeric plastic in the composite gasket relative to the elastomeric portion, the rigidity of the mold portion of the gasket is increased, while the cost of the gasket is decreased proportionately, in view of the greater cost of the elastomeric portion of the gasket.
As shown in
In the embodiment of
The embodiment of
While advantageous embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2966539 | Sears et al. | Dec 1960 | A |
3260540 | Houot | Jul 1966 | A |
3372942 | Carter | Mar 1968 | A |
3573871 | Warner | Apr 1971 | A |
3776682 | Parmann | Dec 1973 | A |
3929958 | Parmann | Dec 1975 | A |
4030872 | Parmann | Jun 1977 | A |
4066269 | Linne | Jan 1978 | A |
4120521 | Parmann | Oct 1978 | A |
4299412 | Parmann | Nov 1981 | A |
4343480 | Vassallo | Aug 1982 | A |
4368894 | Parmann | Jan 1983 | A |
4372905 | Bohman | Feb 1983 | A |
4379559 | Bohman | Apr 1983 | A |
4468042 | Pippert et al. | Aug 1984 | A |
4572523 | Guettouche et al. | Feb 1986 | A |
4579354 | Vassallo et al. | Apr 1986 | A |
4602793 | Andrick | Jul 1986 | A |
4625383 | Vassallo et al. | Dec 1986 | A |
4637618 | Valls | Jan 1987 | A |
4666165 | Nordin | May 1987 | A |
4693483 | Valls | Sep 1987 | A |
4723905 | Vassallo et al. | Feb 1988 | A |
4818209 | Petersson et al. | Apr 1989 | A |
4826028 | Vassallo et al. | May 1989 | A |
4834398 | Guzowski et al. | May 1989 | A |
4834430 | Vassallo et al. | May 1989 | A |
4856561 | Zicaro | Aug 1989 | A |
4906010 | Pickering et al. | Mar 1990 | A |
4984831 | Bengtsson | Jan 1991 | A |
5057263 | Bengtsson | Oct 1991 | A |
5064207 | Bengtsson | Nov 1991 | A |
D323024 | Petersson et al. | Jan 1992 | S |
5094467 | Lagabe | Mar 1992 | A |
D326710 | Valls | Jun 1992 | S |
5120153 | Valls | Jun 1992 | A |
D330073 | Valls | Oct 1992 | S |
5213339 | Walworth | May 1993 | A |
5219189 | Demoisson et al. | Jun 1993 | A |
5295697 | Weber et al. | Mar 1994 | A |
D347885 | Gustafsson | Jun 1994 | S |
D351459 | Andersson | Oct 1994 | S |
D362902 | Reiber | Oct 1995 | S |
D374710 | Gustafsson | Oct 1996 | S |
5639959 | Reiber | Jun 1997 | A |
5649713 | Ledgerwood | Jul 1997 | A |
5695201 | Wheeler | Dec 1997 | A |
5803513 | Richardson | Sep 1998 | A |
6142484 | Valls, Jr. | Nov 2000 | A |
6173965 | Niessen | Jan 2001 | B1 |
6260851 | Baron | Jul 2001 | B1 |
6277315 | Hallstedt et al. | Aug 2001 | B1 |
6371530 | Sato et al. | Apr 2002 | B1 |
6409178 | Raden et al. | Jun 2002 | B1 |
6457718 | Quesada | Oct 2002 | B1 |
6499744 | Quesada | Dec 2002 | B1 |
Number | Date | Country |
---|---|---|
56127416 | Oct 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20040140625 A1 | Jul 2004 | US |