The present invention relates to a socket wrench for installing a laser ignition system in an internal combustion engine.
In contrast to ignition systems having conventional spark plugs, laser ignition systems in internal combustion engines have the advantage that the performance of the internal combustion engine is increased and pollutant emissions are reduced simultaneously. It may thus be assumed that the significance of laser ignition systems will increase in the future. Moreover, such laser ignition systems may be used in gas turbines.
A laser ignition device for igniting an air-fuel mixture in an internal combustion engine is discussed in DE 10 2004 001 554 A1, an ignition laser of the laser ignition device protruding into a combustion chamber of the internal combustion engine. The ignition laser is supplied optically from a pump light source via an optical fiber.
The laser ignition system may be made up of multiple components, essentially namely the ignition laser, the optical fiber and the pump light source which are detachably connected to one another. However, for reasons of functional reliability and for cost savings, the laser ignition system may be manufactured as a non-separable unit. This means that primarily in the case of the non-removable laser ignition systems, the ignition laser must be inserted into an opening provided for that purpose (ignition laser receptacle) in a cylinder head of the internal combustion engine without, for example, being able to remove the optical fiber in advance.
German patent document DE 35 15 102 C2 discusses a socket wrench for inserting a conventional spark plug into a cylinder head. A tubular socket wrench includes in this connection an internal wrench for fixing the spark plug and an outer jacket for accommodating the spark plug in a form-lock. Turning the outer jacket together with the internal wrench using a standard torque wrench makes it possible to screw the spark plug into a thread provided for the spark plug in the cylinder head. In this socket wrench, the ignition cable must be removed from the spark plug while the spark plug is installed in the cylinder head of the internal combustion engine.
An object of the exemplary embodiments and/or exemplary methods of the present invention is to provide an installation device, for example, a socket wrench for a laser ignition system in which the laser ignition system may be installed quickly and reliably in an internal combustion engine without having to separate the optical fiber from the ignition laser. The device should also be cost-effective.
This objective may be achieved by a socket wrench having the features described herein. The following description and the drawings contain significant features for the invention, it being possible for the features to be significant for the invention both alone and in various combinations, without it being necessary for this to be pointed out explicitly. Advantageous refinements are found in the subclaims.
An aspect of the exemplary embodiments and/or exemplary methods of the present invention is to provide a tool in which the ignition laser is inserted into the output section of the tool including at least the connected optical fiber, and the optical fiber is guided in the tool in such a way that it rotates during the installation. This avoids possible damage of the optical fiber caused by twisting. The longitudinal recess, which may, for example, be configured as a groove or slot, is provided in the output section for guiding the optical fiber in the tool. This makes it possible to install the laser ignition system in the internal combustion engine in a simple manner.
It is advantageous if a reinforcing tube is additionally situated as an outer jacket on the socket wrench at least in the output section. The socket wrench is hollow and the ignition laser may thus be inserted initially into an open end of the output section of the tool according to the present invention in the axial direction in a form-locked manner, and the optical fiber may be inserted radially into a slot of the tool according to the present invention. The form-locked connection may be produced, for example, by a hexagon, as is known from conventional spark plugs, or a double hexagon. In any case, the outer contour of the ignition laser and the inner contour of the tool according to the present invention must be coordinated in such a way that the necessary tightening torque may be transferred from the tool to the ignition laser.
Since the slot reduces the strength of the socket wrench, the risk exists that it will widen during tightening, so that the form-locked connection is lost and/or the ignition laser is damaged and a prescribed tightening torque is not achieved. In an additional specific inventive embodiment of the socket wrench according to the present invention, this is prevented by a coaxial reinforcing tube. In this way, the tool achieves adequate strength for tightening the ignition laser using the prescribed tightening torque. The use of the reinforcing tube is thus very effective and cost-efficient.
The reinforcing tube is rotatable on the socket wrench; however, it may also be displaceable on the socket wrench in the axial direction, so that the reinforcing tube may be brought into a desired position relative to the socket wrench by a rotational movement, a displacement movement in the axial direction or by combined rotational and displacement movements. It is possible to attach a marking on the outside of the socket wrench which indicates that the reinforcing tube is in the correct axial position in relation to the socket wrench for the installation.
A clearance fit is present between an outside diameter of the socket wrench and an inside diameter of the reinforcing tube, at least in the tool's output section. If the socket wrench opens slightly under load caused by the tightening torque, it comes into contact with the reinforcing tube so that this contributes to the strength of the entire tool. In a first variant of the tool, the clearance fit may also be applied over the entire length of the reinforcing tube. In a second variant of the tool, a transition fit may also be selected, which may possibly be more difficult to rotate but contributes to greater strength.
It is advantageous in particular if the reinforcing tube also has a longitudinal recess. The longitudinal recess may, for example, be configured as a groove or slot; the longitudinal recess of the reinforcing tube may have the same configuration as the longitudinal recess in the socket wrench.
The reinforcing tube may be continuously slotted and may be long enough that it protrudes from the ignition laser receptacle in the cylinder head during installation. When the ignition laser including the optical fiber is inserted, the positions of the longitudinal recesses in the socket wrench and reinforcing tube coincide so that the optical fiber may be inserted into the tool without difficulty. After that, the reinforcing tube is rotated by at least 45°, which may be by 180°, by a maximum of 315°.
If the reinforcing tube has been rotated by 180° in relation to the socket wrench after insertion of the optical fiber, the longitudinal recess of the socket wrench and the slot of the reinforcing tube are diametrically opposed and the optical fiber is located in the longitudinal recess of the socket wrench. Now the ignition laser may be screwed into the cylinder head of the internal combustion engine with the aid of the tool according to the present invention and tightened using the prescribed torque. After installation, the reinforcing tube may be turned back so that the longitudinal recesses of the socket wrench and reinforcing tube coincide again. The tool may now be removed easily from the ignition laser and from the optical fiber.
In order to make rotating the reinforcing tube easier, the reinforcing tube has a structure on one outer surface, in particular a knurl. This makes the entire device easier to handle and is cost-effective to manufacture.
If the longitudinal recess of the socket wrench is longer than the reinforcing tube, the optical fiber may protrude from the longitudinal recess of the socket wrench above the reinforcing tube, even if the slot of the reinforcing tube is rotated in relation to the longitudinal recess of the socket wrench, and the tool according to the present invention is thus “closed.” This makes it possible for the optical fiber to be guided out of the socket wrench outside of the ignition laser receptacle. The fact that the socket wrench includes an extension section between the drive section and the output section in order to conform to the depth of the laser ignition receptacle provides additional support. The longitudinal recesses in the socket wrench and in the reinforcing tube are of course continued in the extension section.
In an alternative embodiment, the socket wrench is only formed as a slotted hollow cylinder in the output section, and above it makes a tapered transition to a solid material, for example, a round bar. The longitudinal recess of the socket wrench ends in the taper. The optical fiber is then routed in the drive section (and in the extension section, if present) next to the round bar, but within the reinforcing tube.
It is also possible that the reinforcing tube has a locking device against twisting in relation to the socket wrench. This prevents the reinforcing tube from being unintentionally twisted in relation to the socket wrench during the installation. The locking device may, for example, be active in the 180° position by, for example, engaging a spring-loaded bolt in the socket wrench in the longitudinal recess of the reinforcing tube. This is a simple, effective and cost-efficient implementation.
In order to tighten the ignition laser using the prescribed tightening torque, it is advantageous if the socket wrench has a standardized polygon, in particular a square, at the free end of the drive section. The polygon may be situated on the inside of the socket wrench or also externally on its periphery. A standard torque wrench may be used for rotating the ignition laser on the polygon. The torque wrench may also be fixedly connected to the reinforcing tube as a variant, making the torque wrench an integral component of the tool, which may possibly also be folded up by using a joint for saving space.
It is also advantageous that the socket wrench according to the present invention may have a mounting device for a pump light source of the laser ignition system. In the area of the tool above the ignition laser receptacle, a plate, for example, is fastened to the socket wrench, on which the pump light source may be fastened temporarily for the installation. This may be accomplished, for example, by using at least one knurled nut, the bolts engaging in mounting holes of the pump light source, or also by other quick fasteners, e.g., clamps or hook and loop fasteners. A simple insertion or suspension of the pump light source in a form-locked receptacle on the socket wrench may also be adequate. After the socket wrench is removed, the pump light source (including the connected optical fiber) is finally fastened to a mounting rail of the internal combustion engine.
After exiting from the longitudinal recesses, the optical fiber is routed up to the pump light source laterally adjacent to the socket wrench. If the optical fiber is of a greater length, it may be advantageous to attach a mounting device for the optical fiber in addition to the mounting device for the pump light source, in order to avoid damage to the optical fiber during the installation.
An exemplary embodiment of the present invention will be explained below with reference to the figures.
Laser ignition systems in internal combustion engines have advantages compared to ignitions having conventional spark plugs, since they offer optimized combustion systems. It may thus be assumed that the significance of laser ignition systems will increase in the future.
Laser ignition system 10 is installed in the internal combustion engine with the aid of a tool according to the present invention.
Form-lock 28 may be a hexagon or a double hexagon. Moreover, socket wrench 26 has a longitudinal recess 30 which extends from output section 22 to the vicinity of drive section 20. Longitudinal recess 30 may be configured as a groove or slot in tubular socket wrench 26 and is used for accommodating optical fiber 14 during the installation of ignition laser 12.
Drive section 20 has a standardized square drive 32 formed in the interior of socket wrench 26. Alternatively, a polygon formed on the outside, for example, a hexagon may be used as a drive.
In output section 22 and partially in extension section 24, socket wrench 26 is jacketed by a reinforcing tube 34. Reinforcing tube 34 has a clearance fit in relation to socket wrench 26, so that reinforcing tube 34 is rotatable in relation to socket wrench 26. In the exemplary embodiment represented, reinforcing tube 34 is shorter than longitudinal recess 30 of socket wrench 26. Reinforcing tube 34 has a longitudinal recess 36 over its entire length which may be configured as a groove or slot.
Longitudinal recess 30 of socket wrench 26 and longitudinal recess 36 of reinforcing tube 34 are placed into a position above one another by rotation.
Pump light source 16 which is connected to optical fiber 14 is fastened to a mounting device 38. As is apparent in
Reinforcing tube 34 is now rotated by at least 45° or a maximum of 315°, which may be 180°, so that optical fiber 14 is guided in longitudinal recess 30 of socket wrench 26 and covered by reinforcing tube 34.
The installation of laser ignition system 10 in the internal combustion engine is explained with reference to
Number | Date | Country | Kind |
---|---|---|---|
10 2009 000 798 | Feb 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/051229 | 2/2/2010 | WO | 00 | 11/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/091976 | 8/19/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4324158 | Le Roy | Apr 1982 | A |
4393583 | Zwald | Jul 1983 | A |
4749251 | Moulin | Jun 1988 | A |
5031981 | Peterson | Jul 1991 | A |
5425290 | Fought et al. | Jun 1995 | A |
5899554 | Hsu | May 1999 | A |
6135607 | Cook | Oct 2000 | A |
6725747 | Erwin | Apr 2004 | B2 |
6938522 | Stannik | Sep 2005 | B1 |
7249540 | Hacker et al. | Jul 2007 | B1 |
7347129 | Youtsey | Mar 2008 | B1 |
20080087145 | Youtsey | Apr 2008 | A1 |
20100282030 | Youtsey | Nov 2010 | A1 |
20100282031 | Takeda et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
35 15 102 | Oct 1986 | DE |
Number | Date | Country | |
---|---|---|---|
20120118114 A1 | May 2012 | US |