The disclosed invention relates to an intermediate temperature, sodium—halogen secondary cell (or rechargeable battery) with a sodium ion conductive electrolyte membrane and a positive electrolyte that comprises one or more sodium haloaluminate salts and a sodium halide. In some disclosed embodiments, the battery system utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point.
Batteries are known devices that are used to store and release electrical energy for a variety of uses. In order to produce electrical energy, batteries typically convert chemical energy directly into electrical energy. Generally, a single battery includes one or more galvanic cells, wherein each of the cells is made of two half-cells that are electrically isolated except through an external circuit. During discharge, electrochemical reduction occurs at the cell's positive electrode, while electrochemical oxidation occurs at the cell's negative electrode. While the positive electrode and the negative electrode in the cell do not physically touch each other, they are generally chemically connected by at least one (or more) ionically conductive and electrically insulative electrolytes, which can either be in a solid state, a liquid state, or in a combination of such states. When an external circuit, or a load, is connected to a terminal that is connected to the negative electrode and to a terminal that is connected to the positive electrode, the battery drives electrons through the external circuit, while ions migrate through the electrolyte.
Batteries can be classified in a variety of manners. For example, batteries that are completely discharged only once are often referred to as primary batteries or primary cells. In contrast, batteries that can be discharged and recharged more than once are often referred to as secondary batteries or secondary cells. The ability of a cell or battery to be charged and discharged multiple times depends on the Faradaic efficiency of each charge and discharge cycle.
While rechargeable batteries based on sodium can comprise a variety of materials and designs, most, if not all, sodium batteries that require a high Faradaic efficiency employ a solid primary electrolyte separator, such as a solid ceramic primary electrolyte membrane. The principal advantage of using a solid ceramic primary electrolyte membrane is that the Faradaic efficiency of the resulting cell approaches 100%. Indeed, in almost all other cell designs, electrode solutions in the cell are able to intermix over time and, thereby, cause a drop in Faradaic efficiency and loss of battery capacity.
The primary electrolyte separators used in sodium batteries that require a high Faradaic efficiency often consist of ionically conductive polymers, porous materials infiltrated with ionically conductive liquids or gels, or dense ceramics. In this regard, many rechargeable sodium batteries that are presently available for commercial applications comprise a molten sodium metal negative electrode, a sodium β″-alumina ceramic electrolyte separator, and a molten positive electrode, which may include a composite of molten sulfur and carbon (called a sodium/sulfur cell). Because these conventional high temperature sodium-based rechargeable batteries have relatively high specific energy densities and only modest power densities, such rechargeable batteries are typically used in certain specialized applications that require high specific energy densities where high power densities are typically not encountered, such as in stationary storage and uninterruptable power supplies.
Despite the beneficial characteristics associated with some conventional sodium-based rechargeable batteries, such batteries may have significant shortcomings. In one example, because the sodium β″-alumina ceramic electrolyte separator is typically more conductive and is better wetted by molten sodium at a temperature in excess of about 270° C. and/or because the molten positive electrode typically requires relatively high temperatures (e.g., temperatures above about 170° or 180° C.) to remain molten, many conventional sodium-based rechargeable batteries operate at temperatures higher than about 270° C. and are subject to significant thermal management problems and thermal sealing issues. For example, some sodium-based rechargeable batteries may have difficulty dissipating heat from the batteries or maintaining the negative electrode and the positive electrode at the relatively high operating temperatures. In another example, the relatively high operating temperatures of some sodium-based batteries can create significant safety issues. In still another example, the relatively high operating temperatures of some sodium-based batteries require their components to be resistant to, and operable at, such high temperatures. Accordingly, such components can be relatively expensive. In yet another example, because it may require a relatively large amount of energy to heat some conventional sodium-based batteries to the relatively high operating temperatures, such batteries can be expensive to operate and energy inefficient.
Thus, while sodium-based rechargeable batteries are available, challenges with such batteries also exist, including those previously mentioned. Accordingly, it would be an improvement in the art to augment or even replace certain conventional sodium-based rechargeable batteries with other sodium-based rechargeable batteries that operate effectively at intermediate temperatures.
Examples of sodium-halogen secondary cells are disclosed in Applicant's copending U.S. patent application Ser. No. 14/019,651, published as U.S. Publication No. 2014/0065456 entitled “Sodium-Halogen Secondary Cell.” The disclosed secondary cells include a positive electrode compartment housing a current collector disposed in a liquid positive electrode solution. Some examples of suitable positive electrode solution materials include organic solvents such as dimethyl sulfoxide, NMF (N-methylformamide), and ionic liquids.
The present disclosure provides an improvement to the positive electrode solution of the sodium-halogen secondary cells disclosed in Applicant's copending application. More specifically, the disclosed invention utilizes a positive electrolyte that comprises sodium halide in a molten haloaluminate electrolyte. In some disclosed embodiments, the battery system utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point.
A sodium ion conductive solid electrolyte separates the negative electrode and the positive electrode. In a non-limiting embodiment, the sodium ion conductive solid electrolyte comprises a NaSICON electrolyte material. The NaSICON electrolyte material has high sodium conductivity at cell operating temperatures.
In one non-limiting embodiment, the battery operates at a temperature in the range from 80° C. to 210° C.
In one non-limiting embodiment of the disclosed invention, the rechargeable sodium-halogen battery includes a negative electrode comprising metallic sodium in molten state. In another embodiment, the negative electrode may comprise metallic sodium in a solid state. The positive electrode comprises NaX, where X is a halogen selected from Cl, Br and I. The positive electrode is disposed in a molten salt positive electrolyte comprising AlX3. In some embodiments, the positive electrolyte is a mixture of at least two AlX3 salts that can be represented by the formula NaAlX′4−δX″δ, where 0<δ<4, wherein X′ and X″ are different halogens selected from Cl, Br and I.
The mixed molten salt positive electrolyte comprises at least two salts of the general formula NaAlX′4 and NaAlX″4 at various molar ratios, wherein X′ and X″ are different halogens selected from Cl, Br and I. In one non-limiting embodiment, the molar ratio of NaAlX′4 to NaAlX″4 is in the range of 9:1 to 1:9 with corresponding δ values of 0.4 to 3.6.
The positive electrode comprises additional NaX or a mixture of NaX compounds added in a molar ratio to the mixed molten salt positive electrolyte ranging from 1:1 to 3:1 of NaX:NaAlX′4−δX″δ. The excess NaX renders the positive electrolyte highly basic. At cell operating temperatures, the positive electrode and mixed molten salt positive electrolyte is a molten liquid or a two phase mixture wherein the mixed molten salt positive electrolyte is predominantly a liquid phase and the additional NaX or mixture of NaX compounds is a solid phase.
In other embodiments, the positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least three salts that can be represented by the formula NaAlX′4−δ−
The disclosed sodium haloaluminate molten salts are highly conductive at relatively low temperatures enabling the sodium-halogen battery to be highly efficient and reversible. These features and advantages of the present embodiments will become more fully apparent from the following description and appended claims.
In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” “in another embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment. Additionally, while the following description refers to several embodiments and examples of the various components and aspects of the described invention, all of the described embodiments and examples are to be considered, in all respects, as illustrative only and not as being limiting in any manner.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of suitable sodium-based negative electrodes, liquid positive electrode solutions, current collectors, sodium ion conductive electrolyte membranes, etc., to provide a thorough understanding of embodiments of the invention. One having ordinary skill in the relevant art will recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other embodiments, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
As stated above, secondary cells can be discharged and recharged and this specification describes cell arrangements and methods for both states. Although the term “recharging” in its various forms implies a second charging, one of skill in the art will understand that discussions regarding recharging would be valid for, and applicable to, the first or initial charge, and vice versa. Thus, for the purposes of this specification, the terms “recharge,” “recharged,” and “rechargeable” shall be interchangeable with the terms “charge,” “charged,” and “chargeable,” respectively.
The present embodiments provide a sodium-halogen secondary cell, which includes a molten or solid state sodium negative electrode and a sodium halide positive electrode disposed in a molten positive electrolyte that comprises one or more haloaluminate salts. In some disclosed embodiments, the secondary cell utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point. Although the described cell can comprise any suitable component,
Turning now to the manner in which the sodium secondary cell 10 functions, the cell can function in virtually any suitable manner. In one example,
In a contrasting example,
Referring now to the various components of the cell 10, the cell, as mentioned above, can comprise a negative electrode compartment 15 and a positive electrode compartment 25. In this regard, the two compartments can be any suitable shape and have any other suitable characteristic that allows the cell 10 to function as intended. By way of example, the negative electrode and the positive electrode compartments can be tubular, rectangular, or be any other suitable shape. Furthermore, the two compartments can have any suitable spatial relationship with respect to each other. For instance, while
With respect to the negative electrode 20, the cell 10 can comprise any suitable sodium negative electrode 20 that allows the cell 10 to function (e.g., be discharged and recharged) as intended. Some examples of suitable sodium negative electrode materials include, but are not limited to, a sodium sample that is substantially pure and a sodium alloy comprising any other suitable sodium-containing negative electrode material. In certain embodiments, however, the negative electrode comprises or consists of an amount of sodium that is substantially pure. In such embodiments, because the melting point of pure sodium is around 98° C., the sodium negative electrode will become molten above that temperature.
With respect to the positive current collector 30, the positive electrode compartment 25 can comprise any suitable positive electrode that allows the cell to be charged and discharged as intended. For instance, the positive electrode can comprise virtually any current collector 30 in combination with a halogen, shown generically as “X” in
With respect to the current collector 30, the cell 10 can comprise any suitable current collector that allows the cell to be charged and discharged as intended. For instance, the current collector can comprise virtually any current collector configuration that has been successfully used in a sodium-based rechargeable battery system. In some embodiments, the current collector comprises at least one of wires, felts, foils, plates, parallel plates, tubes, meshes, mesh screens, foams, and/or other suitable current collector configuration. It will be appreciated by those of skill in the art that the foam may include, without limitation, metal foams and carbon foams. Indeed, in some embodiments, the current collector comprises a configuration having a relatively large surface area which may include one or more mesh screens and metal foams.
The current collector 30 can comprise any suitable material that allows the cell 10 to function as intended. In this regard, some non-limiting examples of suitable current collector materials include tungsten, stainless steel, carbon, molybdenum, titanium, platinum, copper, nickel, zinc, a sodium intercalation material (e.g., NaxMnO2, etc.), nickel foam, nickel, a sulfur composite, a sulfur halide (e.g., sulfuric chloride), and/or another suitable material. Furthermore, these materials may coexist or exist in combinations. In some embodiments, however, the current collector comprises tungsten, carbon, molybdenum, titanium.
In some non-limiting embodiments, the reactions that may occur at the negative electrode 20, the positive electrode/current collector 30, and the overall reaction as the cell 10 is discharged may occur in at least two steps. These two potential reactions are shown below and designated Battery Chemistry 1 (shown schematically in
Where X comprises iodine, bromine, or chlorine.
Where X comprises iodine, the cell 10 may have the following chemical reactions and the following theoretical voltage (V vs. SHE (standard hydrogen electrode)) and theoretical specific energy (Wh/kg):
Where X is iodine, the charging reactions at the positive electrode may occur in two steps: 1) iodide to triiodide and 2) triiodide to iodine. Similarly, discharging reactions at the positive electrode may occur in two steps: 1) iodine to triiodide and 2) triiodide to iodide. Alternatively, the charging and discharging reactions may occur using the combination of reaction chemistries above.
Where X is bromine, the cell 10 may have the following chemical reactions and the following theoretical voltage (V vs. SHE) and theoretical specific energy (Wh/kg):
The charging reactions at the positive electrode may occur in two steps: 1) bromide to tribromide and 2) tribromide to bromine. Similarly, discharging reactions at the positive electrode may occur in two steps: 1) bromine to tribromide and 2) tribromide to bromide. Alternatively, the charging and discharging reactions may occur using the combination of reaction chemistries above.
It will be appreciated by those of skill in the art that an alternative positive electrode chemistry may include:
With an overall battery chemistry of:
With regards now to the sodium ion conductive electrolyte membrane 40, the membrane can comprise any suitable material that selectively transports sodium ions and permits the cell 10 to function with a positive electrolyte 35. In some embodiments, the electrolyte membrane comprises a NaSICON-type (sodium Super Ion CONductive) material. Where the electrolyte membrane comprises a NaSICON-type material, the NaSICON-type material may comprise any known or novel NaSICON-type material that is suitable for use with the described cell 10. Some suitable examples of NaSICON-type compositions include, but are not limited to, Na3Zr2Si2PO12, Na1+xSixZr2P3−xO12 (where x is between about 1.6 and about 2.4), Y-doped NaSICON (Na1+x+yZr2−yYySixP3−xO12, Na1+xZr2−yYySixP3−xO12−y (where x=2, y=0.12)), Na1−xZr2SixP3−xO12 (where x is between about 0 and about 3, and in some cases between about 2 and about 2.5), and Fe-doped NaSICON (Na3Zr2/3Fe4/3P3O12). Indeed, in certain embodiments, the NaSICON-type membrane comprises Na3Si2Zr2PO12. In other embodiments, the NaSICON-type membrane comprises one or more NaSELECT® materials, produced by Ceramatec, Inc. in Salt Lake City, Utah.
The positive electrode comprises NaX, where X is a halogen selected from Cl, Br and I. The positive electrode is preferably NaI.
The positive electrode is disposed in a molten salt positive electrolyte comprising AlX3. NaX and AlX3 may combine to form NaAlX4 as follows:
In some embodiments, the positive electrode is combined with a mixture of at least two AlX3 salts. The combination of positive electrode and positive electrolyte can be represented by the general formula NaAlX′4−δX″δ, where 0<δ<4, wherein X′ and X″ are different halogens selected from Cl, Br and I.
The mixed molten salt positive electrolyte comprises at least two salts of the general formula NaAlX′4 and NaAlX″4 at various molar ratios, wherein X′ and X″ are different halogens selected from Cl, Br and I. In one non-limiting embodiment, the molar ratio of NaAlX′4 to NaAlX″4 is in the range of 9:1 to 1:9 with corresponding δ values of 0.4 to 3.6.
The positive electrode comprises additional NaX or a mixture of NaX compounds added in a molar ratio to the mixed molten salt positive electrolyte ranging from 1:1 to 3:1 of NaX:NaAlX′4−δX″δ. The excess NaX renders the positive electrolyte highly basic. At cell operating temperatures, the positive electrode and mixed molten salt positive electrolyte is a molten liquid or a two phase mixture wherein the mixed molten salt positive electrolyte is predominantly a liquid phase and the additional NaX or mixture of NaX compounds is a solid phase.
The following Table 1 illustrates some non-limiting combinations of NaX and AlX3 to form NaAlX4.
In other embodiments, the positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least three salts that can be represented by the formula NaAlX′4−δ−
In some embodiments, the positive electrolyte 35 also comprises one or more halogens and/or halides. In this regard, the halogens and halides, as well polyhalides and/or metal halides that form therefrom (e.g., where the current collector 30 comprises a metal, such as copper, nickel, zinc, etc. (as discussed below)) can perform any suitable function, including, without limitation, acting as the positive electrode as the cell 10 operates. Some examples of suitable halogens include bromine, iodine, and chlorine. Similarly, some examples of suitable halides include bromide ions, polybromide ions, iodide ions, polyiodide ions, chloride ions, and polychloride ions. While the halogens/halides can be introduced into the positive electrode solution in any suitable manner, in some embodiments, they are added as NaX, wherein X is selected from Br, I, Cl, etc.
With reference now to the terminals 45 and 50, the cell 10 can comprise any suitable terminals that are capable of electrically connecting the cell with an external circuit (not shown), including without limitation, to one or more cells. In this regard, the terminals can comprise any suitable material, be of any suitable shape, and be of any suitable size.
In addition to the aforementioned components, the cell 10 can optionally comprise any other suitable component. By way of non-limiting illustration
The described cell 10 may function at any suitable operating temperature. In other words, as the cell is discharged and/or recharged, the sodium negative electrode and the positive electrolyte may have any suitable temperature. The negative and positive electrode compartments may operate at the same or different temperatures. Indeed, in some embodiments, the cell functions at an intermediate operating temperature in the range from about 80° C. to about 210° C. In other embodiments, the cell may function at an intermediate operating temperature in the range from about 110° C. to about 180° C. In yet another embodiment, the operating temperature of the cell in the range of about 150° C. to about 170° C.
The following examples are given to illustrate various embodiments within, and aspects of, the scope of the present invention. These are given by way of example only, and it is understood that the following examples are not comprehensive or exhaustive of the many types of embodiments of the present invention that can be prepared in accordance with the present invention.
The conductivity of NaI in a molten salt positive electrolyte AlCl3 was compared to the conductivity of NaI in an organic solvent solution that included N-methyl formamide. The molten salt positive electrolyte had a general formula of NaAlxIyClz. The conductivity of NaI in a molten salt positive electrolyte was approximately three times the conductivity of the organic solvent-based electrolyte at 120° C., as shown in
A sodium-iodine secondary cell was prepared as described herein containing sodium iodide in molten AlCl3 in a 60:40 NaI:AlCl3 ratio (a “basic” electrolyte). Tungsten wire was used as the positive current collector. NaSICON was used to separate a molten sodium negative electrode from the positive electrode/positive electrolyte. The oxidation of iodide was measured and found to produce two oxidation peaks, consistent with Battery Chemistry 1 and Battery Chemistry 2, described herein. Experimental results are shown in
Three symmetrical sodium-iodine secondary cells were prepared to test the reversibility of the oxidation/reduction reactions that occur in the positive electrode/positive electrolyte. The symmetrical cells were prepared as set forth in Table 2, below:
The symmetrical cells were operated as set forth in Table 3, below:
A graph of the current vs. voltage for the operation of the symmetrical cells is shown in
Embodiments of the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments and examples are to be considered in all respects only as illustrative and not as restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/087,507 entitled “SODIUM-HALOGEN SECONDARY CELL” filed Dec. 4, 2014. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/511,031, entitled “SODIUM-HALOGEN SECONDARY CELL,” filed Oct. 9, 2014, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/888,933 entitled “NASICON MEMBRANE BASED Na—I2 BATTERY,” filed Oct. 9, 2013. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/019,651, entitled “SODIUM-HALOGEN BATTERY,” filed Sep. 6, 2013, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/697,608 entitled “SODIUM-HALOGEN BATTERY,” filed Sep. 6, 2012, and which also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/777,967 entitled “SODIUM-HALOGEN SECONDARY CELL,” filed Mar. 12, 2013, and which also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/781,530 entitled “SODIUM-HALOGEN SECONDARY FLOW CELL,” filed Mar. 14, 2013, and which also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/736,444 entitled “BATTERY WITH BROMINE OR BROMIDE ELECTRODE AND SODIUM SELECTIVE MEMBRANE,” filed Dec. 12, 2012. All of these prior patent applications are expressly incorporated herein by reference.
This invention was made with government support under Contract No. 1189875 awarded by the Sandia National Lab. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3546021 | Gale | Dec 1970 | A |
3632448 | Beltzer | Jan 1972 | A |
3877984 | Werth | Apr 1975 | A |
3918991 | Hess | Nov 1975 | A |
4020246 | Seo et al. | Apr 1977 | A |
4041215 | Kormanyos et al. | Aug 1977 | A |
4162351 | Putt et al. | Jul 1979 | A |
4244986 | Paruso et al. | Jan 1981 | A |
4307164 | Church et al. | Dec 1981 | A |
4375501 | Peled et al. | Mar 1983 | A |
4427747 | Bennett et al. | Jan 1984 | A |
4485154 | Remick et al. | Nov 1984 | A |
4546055 | Coetzer et al. | Oct 1985 | A |
4579796 | Muramatsu | Apr 1986 | A |
4753858 | Jow et al. | Jun 1988 | A |
4828939 | Turley et al. | May 1989 | A |
4842963 | Ross, Jr. et al. | Jun 1989 | A |
4937155 | Tokoi et al. | Jun 1990 | A |
5051325 | Shishikura et al. | Sep 1991 | A |
5057206 | Engel et al. | Oct 1991 | A |
5139897 | Wedlake | Aug 1992 | A |
5213908 | Hagedorn | May 1993 | A |
5264298 | Townsend | Nov 1993 | A |
5290405 | Joshi et al. | Mar 1994 | A |
5342709 | Yahnke et al. | Aug 1994 | A |
5422197 | Zito | Jun 1995 | A |
5427873 | Shuster | Jun 1995 | A |
5516598 | Visco et al. | May 1996 | A |
5525442 | Shuster | Jun 1996 | A |
5536594 | Galloway | Jul 1996 | A |
5541019 | Anani et al. | Jul 1996 | A |
5552244 | Griffin et al. | Sep 1996 | A |
5563006 | Von Benda et al. | Oct 1996 | A |
5580430 | Balagopal et al. | Dec 1996 | A |
5604053 | Coetzer et al. | Feb 1997 | A |
5648183 | Licht et al. | Jul 1997 | A |
5686201 | Chu | Nov 1997 | A |
5695632 | Brons et al. | Dec 1997 | A |
5780186 | Casey, Jr. | Jul 1998 | A |
5856047 | Venkatesan et al. | Jan 1999 | A |
5882812 | Visco et al. | Mar 1999 | A |
5935421 | Brons et al. | Aug 1999 | A |
6017651 | Nimon et al. | Jan 2000 | A |
6025094 | Visco et al. | Feb 2000 | A |
6030720 | Chu et al. | Feb 2000 | A |
6033343 | Licht | Mar 2000 | A |
6033796 | Baji | Mar 2000 | A |
6110236 | Tsang et al. | Aug 2000 | A |
6153328 | Colborn | Nov 2000 | A |
6159634 | Yen et al. | Dec 2000 | A |
6165644 | Nimon et al. | Dec 2000 | A |
6200704 | Katz et al. | Mar 2001 | B1 |
6210564 | Brons et al. | Apr 2001 | B1 |
6210832 | Visco et al. | Apr 2001 | B1 |
6214061 | Visco et al. | Apr 2001 | B1 |
6225002 | Nimon et al. | May 2001 | B1 |
6248476 | Sun et al. | Jun 2001 | B1 |
6248481 | Visco et al. | Jun 2001 | B1 |
6265100 | Saaski et al. | Jul 2001 | B1 |
6270923 | Bito et al. | Aug 2001 | B1 |
6291090 | Kuznetsov et al. | Sep 2001 | B1 |
6310960 | Saaski et al. | Oct 2001 | B1 |
6355379 | Ohshita et al. | Mar 2002 | B1 |
6358643 | Katz et al. | Mar 2002 | B1 |
6368486 | Thompson et al. | Apr 2002 | B1 |
6376123 | Chu | Apr 2002 | B1 |
6402795 | Chu et al. | Jun 2002 | B1 |
6410181 | Spillman et al. | Jun 2002 | B1 |
6413284 | Chu et al. | Jul 2002 | B1 |
6413285 | Chu et al. | Jul 2002 | B1 |
6416903 | Fierro et al. | Jul 2002 | B1 |
6432584 | Visco et al. | Aug 2002 | B1 |
6537701 | Nimon et al. | Mar 2003 | B1 |
6610440 | LaFollette et al. | Aug 2003 | B1 |
6632573 | Nimon et al. | Oct 2003 | B1 |
6737197 | Chu et al. | May 2004 | B2 |
6767665 | Ohrem | Jul 2004 | B1 |
6787019 | Jacobson et al. | Sep 2004 | B2 |
6852450 | Hwang et al. | Feb 2005 | B2 |
6881234 | Towsley | Apr 2005 | B2 |
6911280 | De Jonghe et al. | Jun 2005 | B1 |
6955753 | Gomez | Oct 2005 | B1 |
6955866 | Nimon et al. | Oct 2005 | B2 |
6991662 | Visco et al. | Jan 2006 | B2 |
7070632 | Visco et al. | Jul 2006 | B1 |
7144654 | LaFollette et al. | Dec 2006 | B2 |
7166384 | LaFollette et al. | Jan 2007 | B2 |
7214443 | Clarke et al. | May 2007 | B2 |
7259126 | Gordon et al. | Aug 2007 | B2 |
7273680 | Durkot | Sep 2007 | B2 |
7282295 | Visco et al. | Oct 2007 | B2 |
7282296 | Visco et al. | Oct 2007 | B2 |
7282302 | Visco et al. | Oct 2007 | B2 |
7314681 | Randell et al. | Jan 2008 | B2 |
7390591 | Visco et al. | Jun 2008 | B2 |
7432017 | Visco et al. | Oct 2008 | B2 |
7482096 | De Jonghe et al. | Jan 2009 | B2 |
7491458 | Visco et al. | Feb 2009 | B2 |
8012621 | Joshi et al. | Sep 2011 | B2 |
8088270 | Gordon et al. | Jan 2012 | B2 |
8168321 | Shelekhin et al. | May 2012 | B2 |
8883339 | Choi | Nov 2014 | B2 |
8968902 | Coors et al. | Mar 2015 | B2 |
9413036 | Bhavaraju | Aug 2016 | B2 |
9431681 | Joshi | Aug 2016 | B2 |
20020150818 | Amatucci et al. | Oct 2002 | A1 |
20020172871 | Schucker | Nov 2002 | A1 |
20040065543 | Kovarsky | Apr 2004 | A1 |
20050006252 | Korpel et al. | Jan 2005 | A1 |
20050016857 | Kovarsky et al. | Jan 2005 | A1 |
20050109617 | Ono et al. | May 2005 | A1 |
20050260460 | Kishi et al. | Nov 2005 | A1 |
20060141346 | Gordon et al. | Jun 2006 | A1 |
20060177732 | Visco et al. | Aug 2006 | A1 |
20060226022 | Balagopal et al. | Oct 2006 | A1 |
20060257734 | Obata et al. | Nov 2006 | A1 |
20070048610 | Tsang et al. | Mar 2007 | A1 |
20070154762 | Schucker | Jul 2007 | A1 |
20070221265 | Affinito et al. | Sep 2007 | A1 |
20080268327 | Gordon et al. | Oct 2008 | A1 |
20090061288 | Gordon et al. | Mar 2009 | A1 |
20090134040 | Gordon et al. | May 2009 | A1 |
20090134842 | Joshi et al. | May 2009 | A1 |
20090136830 | Gordon | May 2009 | A1 |
20090189567 | Joshi et al. | Jun 2009 | A1 |
20090212743 | Hagiwara et al. | Aug 2009 | A1 |
20100044241 | Pendleton et al. | Feb 2010 | A1 |
20100089762 | Gordon | Apr 2010 | A1 |
20100239893 | Gordon et al. | Sep 2010 | A1 |
20100261051 | Okada et al. | Oct 2010 | A1 |
20100279165 | Lemmon | Nov 2010 | A1 |
20100285372 | Lee et al. | Nov 2010 | A1 |
20110104526 | Boxley et al. | May 2011 | A1 |
20110127967 | Soloveichik | Jun 2011 | A1 |
20110057135 | Boxley et al. | Aug 2011 | A1 |
20120015256 | Komaba et al. | Jan 2012 | A1 |
20120021273 | Ohmori et al. | Jan 2012 | A1 |
20120045695 | Sheem et al. | Feb 2012 | A1 |
20120126752 | Joshi et al. | May 2012 | A1 |
20120141856 | Gordon et al. | Jun 2012 | A1 |
20120164524 | Bogdan et al. | Jun 2012 | A1 |
20120061823 | Boxley et al. | Jul 2012 | A1 |
20120214043 | Olschimke et al. | Aug 2012 | A1 |
20120219833 | Coors et al. | Aug 2012 | A1 |
20120219838 | Coors et al. | Aug 2012 | A1 |
20120219843 | Bogdan et al. | Aug 2012 | A1 |
20130052525 | Kageura et al. | Feb 2013 | A1 |
20130130085 | Choi | May 2013 | A1 |
20130196224 | Kim et al. | Aug 2013 | A1 |
20140030571 | Bhavaraju et al. | Jan 2014 | A1 |
20140065456 | Bhavaraju et al. | Mar 2014 | A1 |
20140170443 | Bhavaraju et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2935655 | Oct 2015 | EP |
2973832 | Jan 2016 | EP |
2115522 | Jul 1972 | FR |
2301108 | Sep 1976 | FR |
2518320 | Jun 1983 | FR |
21599661 | Dec 1985 | GB |
59-75985 | Apr 1984 | JP |
61-032366 | Feb 1986 | JP |
62186470 | Aug 1987 | JP |
08-017465 | Jan 1996 | JP |
10162807 | Jun 1998 | JP |
2001-307709 | Nov 2001 | JP |
2008293678 | Dec 2008 | JP |
2008300173 | Dec 2008 | JP |
201181971 | Apr 2011 | JP |
2015-531218 | Sep 2015 | JP |
100651246 | Aug 2005 | KR |
20070021110 | Feb 2007 | KR |
WO2012061823 | Aug 1992 | WO |
WO9416468 | Jul 1994 | WO |
WO2005038953 | Apr 2005 | WO |
WO-2005091946 | Oct 2005 | WO |
WO2013154349 | Oct 2013 | WO |
WO-2014039762 | Mar 2014 | WO |
WO2014159542 | Oct 2014 | WO |
Entry |
---|
Machine translation of FR 2115522, obtained Mar. 6, 2019 (Year: 1972). |
Akhtar, Kiran Q. , “Non Final Office Action”, U.S. Appl. No. 14/040,241, dated Feb. 24, 2017, 1-21. |
Gotz, Heide , “European Search Report”, European Patent Application No. EP10829189.9, dated Nov. 18, 2016, 1-7. |
Parsons, Thomas , “Non Final Office Action”, U.S. Appl. No. 13/466,844, dated May 19, 2017, 1-10. |
Unknown, , “Examination Report”, Australian Patent Application No. 2013364191, dated Apr. 4, 2017, 1-3. |
Young, Lee W., “International Search Report”, PCT Search Report for App. No. PCT/US 08/10435, (dated Nov. 25, 2008),1-2. |
Young, Lee W., “Written Opinion of the International Searching Authority”, PCT Written Opinion for App. No. PCT/US 08/10435i, (dated Nov. 25, 2008),1-4. |
Armand, Michel et al., “Ionic-liquid materials for the electrochemical challenges of the future”, Nature Materials, (Jul. 24, 2009),621-629. |
Doyle, Kevin P., et al., “Dentrite-Free Electrochemical Deposition of Li—Na Alloys from an Ionic Liquid Electrolyte”, Journal of the Electrochemical Society, (May 2006),A1353-A1357. |
Kim, K et al., “Electrochemical Investigation of Quaternary Ammonium/Aluminum Chloride Ionic Liquids”, Journal of the Electrochemical Society, (Jun. 2004),A1168-A1172. |
Kim, Ketack et al., “The Role of Additives in the Electroreduction of Sodium Ions in Chloroaluminate-Based Ionic Liquids”,Journal of the Electrochemical Society, (Dec. 2004),E9-E13. |
Lang, Christopher M., et al., “Cation Electrochemical Stability in Chloroaluminate Ionic Liquids”, J. Phys. Chem., (2005),19454-19462. |
Salminen, Justin et al., “Ionic liquids for rechargeable lithium batteries”, Lawrence Berkeley National Laboratory, (Sep. 21),1-19. |
Cullen, Sean P., “Office Action for U.S. Appl. No. 12/205,759”, (dated Sep. 16, 2010),1-22. |
Cullen, Sean P., “Office Action for U.S. Appl. No. 12/205,759”, (dated Apr. 13, 2011),1-15. |
Lee, Kang Young “International Search Report”, International App. No. PCT/US2010/055718, (dated Jun. 21, 2011),1-3. |
Lee, Kang Young “Written Opinion”, International App. No. PCT/US2010/055718, (dated Jun. 21, 2011),1-3. |
Cullen, Sean P., “Non-Final Office Action”, U.S. Appl. No. 12/725,319, (dated Jan. 6, 2012),1-10. |
Cullen, Sean P., “Final Office Action”, U.S. Appl. No. 12/725,319, (dated Apr. 27, 2012),1-12. |
Cho, Jun B., “International Search Report”, PCT App. No. US2010/027535 (Corresponding to U.S. Appl. No. 12/725,319), (dated Oct. 20, 2010),1-4. |
Cho, Jun B., “Written Opinion of the International Searching Authority”, PCT App. No. US2010/027535 (Corresponding to U.S. Appl. No. 12/725,319), (dated Oct. 20, 2010),1-5. |
Ryu, et al., “Bibliographical Data and Abstract (English Language)”, Application Publication for US2007154814, Corresponding to KR10-0651246, (Aug. 22, 2005),1. |
Wiedemann, Eric “Supplementary European Search Report”, European Patent Application No. 10754004.9 (Corresponding to U.S. Appl. No. 12/725,319, (dated May 16, 2012),1-6. |
Lee, Kang Y., “International Search Report”, PCT App. No. US2010/055718 (Corresponding to U.S. Appl. No. 12/940,864), (dated Jun. 21, 2011),1-3. |
Lee, Kang Y., “Written Opinion of the International Searching Authority”, PCT App. No. US2010/055718 (Corresponding to U.S. Appl. No. 12/940,864, (dated Jun. 21, 2011),1-3. |
Suzuki, et al., “Bibliographical Data and Abstract (English Language)”, Japanese Patent application JP62-186470, (Aug. 14, 1987),1-2. |
Sonoda, et al., “Bibliographical Data and Abstract (English Translation)”, Japanese Patent Application JP-59-75985, (Apr. 28, 1984),1-2. |
Abraham, et al., “A Low Temperature Na-S Battery Incorporating a Soluble S Cathode”, ElectroChimica Acta, 1978, vol. 23, Pergamon Press Ltd., (Jun. 1, 1978),501-507. |
Yun, Cho K., “Internationial Search Report”, PCT App. No. PCT/US2012/036959 (corresponding to U.S. Appl. No. 13/466,844), (dated Nov. 23, 2012),1-3. |
Yun, Cho K., “Written Opinion of the International Searching Authority”, PCT App. No. PCT/US2012/036959 (corresponding to U.S. Appl. No. 13/466,844), (dated Nov. 23, 2012),1-5. |
Cullen, Sean P., “Non Final Office Action”, U.S. Appl. No. 12/205,759, (dated Apr. 5, 2013),1-17. |
Lee, Dong W., “International Serach Report”, PCT Application No. PCT/US13/68552 (Corresponding to U.S. Appl. No. 14/072,468, (dated Jan. 24, 2014),1-3. |
Lee, Dong W., “Written Opinion of the International Searching Authority”, PCT Application No. PCT/US2013/68552 (Corresponding to U.S. Appl. No. 14/072,468), (dated Jan. 24, 2014),1-5. |
Lee, Dong W., “International Search Report”, PCT Application No. PCT/US13/62386 (Corresponding to U.S. Appl. No. 14/040,241), (dated Dec. 23, 2013),1-3. |
Lee, Dong W., “Written Opinion of the International Search Authority”, PCT Application No. PCT/US2013/62386 (Corresponding to U.S. Appl. No. 14/040,241), (dated Dec. 23, 2014),1-5. |
Lee, Dong W., “International Search Report”, PCT Application No. PCT/US2013/058403 (Corresponding to U.S. Appl. No. 14/019,651), (dated Dec. 2, 2013),1-3. |
Lee, Dong W., “Written Opinion of the International Searching Authority”, PCT Application No. PCT/US2013/058403 (Corresponding to U.S. Appl. No. 14/019,651, (dated Dec. 2, 2013),1-6. |
Marks, Jacob B., “Non Final Office Action”, U.S. Appl. No. 14/469,865, (dated Apr. 7, 2015),1-6. |
Shin, Ju C., “International Search Report”, PCT Application No. PCT/US2014/059954 (Corresponding with U.S. Appl. No. 14/511,031), (dated Jan. 20, 2015),1-3. |
Shin, Ju C., “Written Opinion of the International Searching Authority”, PCT Application No. PCT/US2014/059954 (Corresponding with U.S. Appl. No. 14/511,031), (dated Jan. 20, 2015),1-4. |
Jarvi, Tommi “Supplementary European Search Report”, European Patent Application No. 12783042.0 (dated Oct. 14, 2014),1-7. |
Takeguchi, Yasuhiro “Final Rejection Action”, Japanese Patent Application No. 2012-537241, (dated Jun. 17, 2014),1-6. |
“Notice of Allowance”, Japanese Patent Application 2012-537241), (dated May 11, 2015),1-6. |
Parsons, Thomas H., “Final Office Action”, U.S. Appl. No. 13/466,844, (dated Aug. 11, 2015),1-13. |
Masatsugu, Morimitsu “English Lanuage Abstract”, JP2008293678, (dated Dec. 4, 2008),1. |
Peramunage, et al., “A Solid Sulfur Cathode for Aqueous Batteries”, Science, vol. 261, (Aug. 20, 1993),1029-1032. |
Marks, Jacob B., “Non-Final Office Action”, U.S. Appl. No. 12/940,864 (dated Jun. 18, 2013),1-30. |
Marks, Jacob B., “Final Office Action”, U.S. Appl. No. 12/940,864, (dated Jan. 29, 2014),1-11. |
Marks, Jacob B., “Notice of Allowance”, U.S. Appl. No. 12/940,864, (dated Jun. 20, 2014),1-7. |
Cain, Edward J., “Non Final Office Action”, U.S. Appl. No. 14/072,468, (dated Oct. 5, 2015),1-6. |
Quraishi, Kiran “Non-Final Office Action”, U.S. Appl. No. 14/040,241, (dated Oct. 28, 2015),1-12. |
Colucci, Rios J., “Non-Final Office Action”, U.S. Appl. No. 14/019,651, (dated Aug. 17, 2015),1-26. |
Akhtar, Kiran Q. , “Final Office Action”, U.S. Appl. No. 14/040,241, dated May 18, 2016, 1-19. |
Cain, Edward J. , “Notice of Allowance”, U.S. Appl. No. 14/072,468, dated Apr. 28, 2016, 1.7. |
Coetzer, et al., “Bibliographic Data:”, FR2518320, Jun. 17, 1983. |
Colucci Rigs, Jose A. , “Final Office Action”, U.S. Appl. No. 14/019,651, dated Dec. 17, 2015, 1-30. |
Colucci Rios, Jose A , “Non Final Office Action”, U.S. Appl. No. 14/511,031, dated Apr. 12, 2016, 1-15. |
Colucci Rios, Jose A , “Notice of Allowance”, U.S. Appl. No. 14/019,651, dated Mar. 31, 2016, 1-7. |
Grenness, Morten , “US Publication of”, FR2301108, Dec. 20, 1977, 1-8. |
Jarvi, Tommi , “European Examination Report”, European Patent Application No. 12783042.0, dated Mar. 1, 2016, 1-8. |
Kim, Yeon K. , “International Search Report”, PCT Application No. PCT/US2015/063244, dated Mar. 18, 2016, 1-3. |
Kim, Yeon K. , “Written Opinion of the International Searching Authority”, PCT Application No. PCT/US2015/63244, dated Mar. 18, 2016, 1-3. |
Masson, Jean-Pierre , “European Search Report”, European Patent Application No. 13842649.9, dated Apr. 26, 2016, 1-8. |
Parsons, Thomas H. , “Non Final Office Action”, U.S. Appl. No. 13/466,844, dated Mar. 23, 2016, 1-15. |
Zhang, et al., “A Reveiw of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries”, Journal of Power Sources, Elsevier SA, CH, vol. 196, No. 1, Jan. 1, 2011, 13-24. |
Communication pursuant to Article 94(3) EPC for European Application No. 13834937.8-1360 dated Sep. 29, 2017 (4 pages). |
Final Rejection Office Action in U.S. Appl. No. 14/511,031 dated Nov. 3, 2016 (11 pages). |
Notice of Allowance in U.S. Appl. No. 14/511,031 dated Aug. 10, 2017 (11 pages). |
Notice of Allowance on U.S. Appl. No. 14/511,031 dated Jan. 9, 2018 (10 pages). |
Notice of Reasons for Rejection in Japanese Application No. 2015-531218 (with English Translation) dated Jan. 9, 2018 (11 pages). |
Notification of Reasons for Refusal in Japanese Application No. 2015-531218 (with English translation) dated Mar. 14, 2017 (9 pages). |
Sakane, et al., “X A F S Analysis of Triiodide Ion in Solutions”, Journal of Synchrotron Radiation, Dec. 31, 2001, vol. 8, pp. 674-676. |
Supplementary European Search Report in EP Application No. 14842956.6 dated Mar. 27, 2017 (1 page). |
Extended European Search Report for EP15865518.3 dated Jun. 29, 2018 (11 pages). |
Notice of Reason for Rejection in KP Appl. No. 2016-540948 dated Jun. 14, 2018, with English translation (12 pages). |
Dunn, Halina , “European Search Report”, European Patent Application No. 13834937.8 (Corresponding to U.S. Appl. No. 14/019,651), dated Mar. 18, 2016, 1-7. |
Kelly, Michael , “European Search Report”, European Patent Application No. 13865228.4, dated Jul. 15, 2016, 1-7. |
Kokai, “English Translation”, JP 2011-81971, 1-6. |
Kokai, “English Translation”, JP 2008-300173, 1-8. |
Parsons, Thomas H. , “Non Final Office Action”, U.S. Appl. No. 13/466,844, dated Feb. 26, 2015, 1-22. |
Tsuji, Hirosuke , “Final Office Action”, Japanese Patent Application No. 2014-510410 (Japanese Version), dated Apr. 5, 2016, 1-4. |
Tsuji, Hirosuke , “Final Office Action”, Japanese Patent Application No. 2014-510410 (English Translation), dated Apr. 5, 2016, 1-6. |
Tsuji, Hirosuke , “Non-Final Office Action”, Japanese Patent Application No. 2014-510410 (English Translation), dated Nov. 10, 2015, 1-15. |
Tsuji, Hirosuke , “Non-Final Office Action”, Japanese Patent Application No. 2014-510410 (Japanese Version), dated Nov. 10, 2015, 1-8. |
Unknown, , “Notice of Allowance”, Japanese Patent Application No. 2014-510410, dated Aug. 9, 2016, 1-4. |
Number | Date | Country | |
---|---|---|---|
20160087313 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62087507 | Dec 2014 | US | |
61888933 | Oct 2013 | US | |
61697608 | Sep 2012 | US | |
61777967 | Mar 2013 | US | |
61781530 | Mar 2013 | US | |
61736444 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14511031 | Oct 2014 | US |
Child | 14956078 | US | |
Parent | 14019651 | Sep 2013 | US |
Child | 14511031 | US |