Not Applicable
Not Applicable
The present invention relates generally to photovoltaic materials and manufacturing method. More particularly, the present invention provides a method and structure for manufacture of high efficiency thin film photovoltaic cells. Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi junction cells.
From the beginning of time, mankind has been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important energy source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking. Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, the supply of petrochemical fuel is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more people use petroleum products in growing amounts, it is rapidly becoming a scarce resource, which will eventually become depleted over time.
More recently, environmentally clean and renewable sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the flow of water produced by dams such as the Hoover Dam in Nevada. The electric power generated is used to power a large portion of the city of Los Angeles in California. Clean and renewable sources of energy also include wind, waves, biomass, and the like. That is, windmills convert wind energy into more useful forms of energy such as electricity. Still other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.
Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. Often, thin films are difficult to mechanically integrate with each other. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.
From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.
According to embodiments of the present invention, a method and a structure for forming thin film semiconductor materials for photovoltaic applications are provided. More particularly, the present invention provides a method and structure for forming semiconductor materials used for the manufacture of high efficiency photovoltaic cells. Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi-junction cells.
In a specific embodiment, a method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. The method includes forming a copper layer overlying the first electrode layer and forming an indium layer overlying the copper layer to form a multi-layered structure. In a specific embodiment, the method includes subjecting at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species. The method forms a copper indium disulfide material from at least the thermal treatment process of the multi-layered structure. In a specific embodiment, the copper indium disulfide material comprising a copper-to-indium atomic ratio ranging from about 1.2:1 to about 2:1 and a thickness of a substantially copper sulfide material having a copper sulfide surface region. The method includes removing the thickness of the copper sulfide material to expose a surface region having a copper poor surface. The copper poor surface comprises a copper to indium atomic ratio of less than about 0.95:1. The method subjects the copper poor surface to a sodium species to convert the copper poor surface from an n-type semiconductor characteristic to a p-type semiconductor characteristic. The method further subjects the copper poor surface to a treatment process during a time period associated with the subjecting of the copper poor surface with the sodium species. A window layer is formed overlying the copper indium disulfide material.
In an alternative embodiment, a method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. In a specific embodiment, the method forms a copper indium material comprising an atomic ratio of Cu:In ranging from about 1.35:1 to about 1.60:1 by at least sputtering a target comprising an indium copper material. The method subjects the copper indium material to a first thermal treatment process in an environment containing a sulfur bearing species to form a copper indium disulfide material from at least the first thermal treatment process of the copper indium material in a specific embodiment. In a specific embodiment, a copper poor copper indium disulfide material is formed within a portion of the copper indium disulfide material. The copper poor copper indium disulfide material has an atomic ration of Cu:In of about 0.99 and less. In a specific embodiment, the method includes compensating the copper poor copper indium disulfide material using a sodium species to change in characteristic from an n-type to a p-type. The method further forms a window layer overlying the copper indium disulfide material.
In a yet alternative embodiment, a method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region The method includes forming a chalcopyrite material overlying the electrode layer. In a specific embodiment, the chalcopyrite material comprises at least a copper poor copper indium disulfide material. The copper poor copper indium disulfide material includes a copper poor copper indium disulfide material surface. The copper poor copper indium disulfide surface has an atomic ratio of Cu:In of about 0.99 and less in a specific embodiment. The method includes compensating the copper poor copper indium disulfide material using a sodium species to change in the copper poor copper indium disulfide material from an n-type semiconductor characteristic a p-type semiconductor characteristic in a specific embodiment. The method forms a window layer overlying the chalcopyrite material and forms a second electrode layer overlying the window layer.
In a still yet alternative embodiment, a thin film photovoltaic device is provided. The thin film photovoltaic device includes a substrate. The substrate includes a surface region. A first electrode layer overlies the surface region. A chalcopyrite material overlies the first electrode layer. In a specific embodiment, the thin film photovoltaic device includes a copper poor copper indium disulfide surface having an atomic ratio of Cu:In of about 0.99 and less. The thin film photovoltaic device includes a compensating sodium species provided within one or more portions of the copper poor copper indium disulfide surface to change the copper poor copper indium disulfide surface from an n-type semiconductor characteristic to a p-type semiconductor characteristic in a specific embodiment. The semiconductor includes a window layer overlying the copper indium disulfide material and a second electrode layer overlying the window layer
Many benefits are achieved by ways of present invention. For example, the present invention uses starting materials that are commercially available to form a thin film of semiconductor bearing material overlying a suitable substrate member. The thin film of semiconductor bearing material can be further processed to form a semiconductor thin film material of desired characteristics, such as atomic stoichiometry, impurity concentration, carrier concentration, doping, and others. In a specific embodiment, the band gap of the resulting copper indium disulfide material is about 1.55 eV. Additionally, the present method uses environmentally friendly materials that are relatively less toxic than other thin-film photovoltaic materials. In a preferred embodiment, the present method and resulting structure is substantially free from a parasitic junction on an absorber layer based upon a copper poor chalcopyrite material. Also in a preferred embodiment, the open circuit voltage of the chalcopyrite material such as copper indium disulfide ranges from about 0.8 volts and greater and preferably 0.9 volts and greater or 1.0 volts and greater up to 1.2 volts. Depending on the embodiment, one or more of the benefits can be achieved. These and other benefits will be described in more detailed throughout the present specification and particularly below.
Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi junction cells.
According to embodiments of the present invention, a method and a structure for forming semiconductor materials for photovoltaic applications are provided. More particularly, the present invention provides a method for manufacturing thin film photovoltaic devices. Merely by way of example, the method has been used to provide a copper indium disulfide thin film material for high efficiency solar cell application. But it would be recognized that the present invention has a much broader range of applicability, for example, embodiments of the present invention may be used to form other semiconducting thin films or multilayers comprising iron sulfide, cadmium sulfide, zinc selenide, and others, and metal oxides such as zinc oxide, iron oxide, copper oxide, and others.
As shown in
As shown in
In a preferred embodiment, the method includes forming a barrier layer 125 overlying the electrode layer to form an interface region between the electrode layer and the copper layer. In a specific embodiment, the interface region is maintained substantially free from a metal disulfide layer having a semiconductor characteristic that is different from a copper indium disulfide material formed during later processing steps. Depending upon the embodiment, the barrier layer has suitable conductive characteristics and can be reflective to allow electromagnetic radiation to reflect back into a photovoltaic cell or can also be transparent or the like. In a specific embodiment, the barrier layer is selected from platinum, titanium, chromium, or silver. Of course, there can be other variations, modifications, and alternatives.
Referring now to
As shown in
In a specific embodiment, the sulfur bearing species can be provided as a layer material overlying the indium and copper layers or copper and indium layers. In a specific embodiment, the sulfur bearing species is provided as a thin layer or as a patterned layer. Depending upon the embodiment, the sulfur bearing species can be provided as a slurry, a powder, a solid material, a gas, a paste, or other suitable form. Of course, there can be other variations, modifications, and alternatives.
Referring to
As shown in
Subsequently, a window layer 310 is formed overlying the p-type copper indium disulfide material 320. The window layer can be selected from a group consisting of a cadmium sulfide (CdS), a zinc sulfide (ZnS), zinc selenium (ZnSe), zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), or others. In certain embodiments, these materials may be doped with one or more suitable impurities to form an n+ type semiconductor material. The window layer and the absorber layer forms a PN junction associated with a photovoltaic cell. The window layer is heavily doped to form a n+-type semiconductor layer in a preferred embodiment. In one example, indium species are used as the doping material to cause formation of the n+-type characteristic associated with the window layer 310. In another example, the doping process is performed under suitable conditions. In a specific embodiment, the window layer can use an aluminum doped ZnO material. The aluminum doped ZnO material can range from about 200 nm to about 500 nanometers in a specific embodiment. Of course, there can be other variations, modifications, and alternative
Referring to
In a preferred embodiment, the present method maintains an interface region between the electrode layer and the copper indium disulfide material substantially free from a metal disulfide layer having different semiconductor characteristics from the copper indium disulfide material. Depending upon the type of electrode material, the metal disulfide layer is selected from molybdenum disulfide layer or the like. In a specific embodiment, the interface region is characterized by a surface morphology substantially capable of preventing any formation of the metal disulfide layer, which is characterized by a thickness of about 5 nanometers to about 10 nanometers. In a preferred embodiment, the present method includes a thermal process during at least the maintaining process or a portion of the maintaining process of at least 300 Degrees Celsius and greater to prevent any formation of the metal disulfide layer, which can be a molybdenum disulfide or like layer. Of course, there can be other variations, modifications, and alternatives.
In a specific embodiment, a method for forming a thin film photovoltaic device is provided, which is outlined below.
The above sequence of steps provides a method according to an embodiment of the present invention. In a specific embodiment, the present invention provides a method and resulting photovoltaic structure free from parasitic junction regions in the absorber layer, which impair performance of the resulting device. Other alternatives can also be provided where steps are added, one or more steps are removed, or one or more steps are provided in a different sequence without departing from the scope of the claims herein. Details of the present method and structure can be found throughout the present specification and more particularly below.
In a specific embodiment, the photovoltaic device includes a chalcopyrite material, which acts as an absorber for the photovoltaic device. As shown, the chalcopyrite material can include, among others, copper indium disulfide material, copper indium aluminum disulfide, copper indium gallium disulfide, combinations of these, and others. In a specific embodiment, the chalcopyrite has a thin layer of copper sulfide 907, which has been previously described, as may remain as a residue or fixed material. Of course, there can be other variations, modifications, and alternatives.
Referring to
In a preferred embodiment, the present method subjects the copper poor surface to an ionic species to convert the copper poor surface from an n-type characteristic to a p-type characteristic, which behaves like a normal copper indium disulfide surface 1101, as shown in
In a specific embodiment, the ionic species can be applied using one or more techniques. These techniques include deposition, sputtering, spin coating, spraying, spray pyrolysis, dipping, electro deposition, painting, ink jet coating, sprinkling, any combination of these, and others. In some embodiments, the sodium species can be diffused from an overlying material, which can be an electrode layer or molybdenum or other suitable material. Alternatively, the sodium species can be diffused from a piece of sodium material or the like via a vapor phase. In a specific embodiment, the ionic species such as sodium can be diffused in vapor phase as in the “Siemens” process, but can be others, for short periods of time. In a specific embodiment, the treatment process passivates the surface at an heterojunction or the like, which facilitates carrier separation and transport. Additionally, the present treatment process can also generate desired conduction band offset, commonly called CBO. Of course, there can be other variations, modifications, and alternatives.
In a specific embodiment, the method includes forming a window layer overlying the copper indium disulfide material. The method also forms an electrode layer overlying the window layer. Depending upon the embodiment, the photovoltaic cell can be coupled to a glass or transparent plate or other suitable member. Alternatively, the photovoltaic cell can be coupled to another cell, e.g., bottom cell, to form a tandem or multi junction cell. Again, there can be other variations, modifications, and alternatives.
Although the above has been illustrated according to specific embodiments, there can be other modifications, alternatives, and variations. Additionally, although the above has been described in terms of copper indium disulfide, other like materials such as copper indium gallium disulfide, copper indium aluminum disulfide, combinations thereof, and others can be used. Other materials may include CuGaS2, CuInSe2, Cu(InGa)Se2, Cu(InAl)Se2, Cu(In,Ga)SSe, combinations of these, and the like. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/100,854, filed Sep. 29, 2008, entitled “SODIUM SPECIES SURFACE TREATMENT OF THIN FILM PHOTOVOLTAIC CELL AND MANUFACTURING METHOD” by inventor HOWARD W. H. LEE, commonly assigned and incorporated by reference herein for all purposes. This application is related to U.S. Provisional Patent Application No. 61/100,861, filed Sep. 29, 2008, commonly assigned, and is hereby incorporated by reference herein for all purpose. This application is related to U.S. patent application Ser. No. 12/563,065, filed on Sep. 18, 2009, now U.S. Pat. No. 8,008,110, and is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3520732 | Nakayama et al. | Jul 1970 | A |
3975211 | Shirland | Aug 1976 | A |
4062038 | Cuomo et al. | Dec 1977 | A |
4332974 | Fraas | Jun 1982 | A |
4335266 | Mickelsen et al. | Jun 1982 | A |
4441113 | Madan | Apr 1984 | A |
4442310 | Carlson et al. | Apr 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4465575 | Love et al. | Aug 1984 | A |
4471155 | Mohr et al. | Sep 1984 | A |
4499658 | Lewis | Feb 1985 | A |
4507181 | Nath et al. | Mar 1985 | A |
4517403 | Morel et al. | May 1985 | A |
4518855 | Malak | May 1985 | A |
4532372 | Nath et al. | Jul 1985 | A |
4542255 | Tanner et al. | Sep 1985 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4589194 | Roy | May 1986 | A |
4598306 | Nath et al. | Jul 1986 | A |
4599154 | Bender et al. | Jul 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4623601 | Lewis et al. | Nov 1986 | A |
4625070 | Berman et al. | Nov 1986 | A |
4638111 | Gay | Jan 1987 | A |
4661370 | Tarrant | Apr 1987 | A |
4663495 | Berman et al. | May 1987 | A |
4724011 | Turner et al. | Feb 1988 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4798660 | Ermer et al. | Jan 1989 | A |
4816082 | Guha et al. | Mar 1989 | A |
4816420 | Bozler et al. | Mar 1989 | A |
4837182 | Bozler et al. | Jun 1989 | A |
4873118 | Elias et al. | Oct 1989 | A |
4915745 | Pollock et al. | Apr 1990 | A |
4950615 | Basol et al. | Aug 1990 | A |
4968354 | Nishiura et al. | Nov 1990 | A |
4996108 | Divigalpitiya et al. | Feb 1991 | A |
5008062 | Anderson et al. | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5028274 | Basol et al. | Jul 1991 | A |
5039353 | Schmitt | Aug 1991 | A |
5045409 | Eberspacher et al. | Sep 1991 | A |
5078803 | Pier et al. | Jan 1992 | A |
5125984 | Kruehler et al. | Jun 1992 | A |
5133809 | Sichanugrist et al. | Jul 1992 | A |
5137835 | Karg | Aug 1992 | A |
5154777 | Blackmom et al. | Oct 1992 | A |
5180686 | Banerjee et al. | Jan 1993 | A |
5211824 | Knapp | May 1993 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5248345 | Sichanugrist et al. | Sep 1993 | A |
5261968 | Jordan | Nov 1993 | A |
5298086 | Guha et al. | Mar 1994 | A |
5336623 | Sichanugrist et al. | Aug 1994 | A |
5346853 | Guha et al. | Sep 1994 | A |
5397401 | Toma et al. | Mar 1995 | A |
5445847 | Wada | Aug 1995 | A |
5474939 | Pollock et al. | Dec 1995 | A |
5501744 | Albright et al. | Mar 1996 | A |
5512107 | Van den Berg | Apr 1996 | A |
5528397 | Zavracy et al. | Jun 1996 | A |
5536333 | Foote et al. | Jul 1996 | A |
5578103 | Araujo et al. | Nov 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5622634 | Noma et al. | Apr 1997 | A |
5626688 | Probst et al. | May 1997 | A |
5665175 | Safir | Sep 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5868869 | Albright et al. | Feb 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981868 | Kushiya et al. | Nov 1999 | A |
5985691 | Basol et al. | Nov 1999 | A |
6040521 | Kushiya et al. | Mar 2000 | A |
6048442 | Kushiya et al. | Apr 2000 | A |
6092669 | Kushiya et al. | Jul 2000 | A |
6107562 | Hashimoto et al. | Aug 2000 | A |
6127202 | Kapur et al. | Oct 2000 | A |
6166319 | Matsuyama | Dec 2000 | A |
6172297 | Hezel et al. | Jan 2001 | B1 |
6258620 | Morel et al. | Jul 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6307148 | Takeuchi et al. | Oct 2001 | B1 |
6328871 | Ding et al. | Dec 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6361718 | Shinmo et al. | Mar 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6423565 | Barth et al. | Jul 2002 | B1 |
6632113 | Noma et al. | Oct 2003 | B1 |
6635307 | Huang et al. | Oct 2003 | B2 |
6653701 | Yamazaki et al. | Nov 2003 | B1 |
6667492 | Kendall | Dec 2003 | B1 |
6690041 | Armstrong et al. | Feb 2004 | B2 |
6784492 | Morishita | Aug 2004 | B1 |
6852920 | Sager et al. | Feb 2005 | B2 |
6878871 | Scher et al. | Apr 2005 | B2 |
6974976 | Hollars | Dec 2005 | B2 |
7122398 | Pichler | Oct 2006 | B1 |
7179677 | Ramanathan et al. | Feb 2007 | B2 |
7194197 | Wendt et al. | Mar 2007 | B1 |
7220321 | Barth et al. | May 2007 | B2 |
7235736 | Buller et al. | Jun 2007 | B1 |
7252923 | Kobayashi | Aug 2007 | B2 |
7265037 | Yang et al. | Sep 2007 | B2 |
7319190 | Tuttle | Jan 2008 | B2 |
7364808 | Sato et al. | Apr 2008 | B2 |
7441413 | Bae et al. | Oct 2008 | B2 |
7442413 | Zwaap et al. | Oct 2008 | B2 |
7544884 | Hollars | Jun 2009 | B2 |
7736755 | Igarashi et al. | Jun 2010 | B2 |
7741560 | Yonezawa | Jun 2010 | B2 |
7855089 | Farris, III et al. | Dec 2010 | B2 |
7863074 | Wieting | Jan 2011 | B2 |
7910399 | Wieting | Mar 2011 | B1 |
7955891 | Wieting | Jun 2011 | B2 |
7960204 | Lee | Jun 2011 | B2 |
7993954 | Wieting | Aug 2011 | B2 |
7993955 | Wieting | Aug 2011 | B2 |
7998762 | Lee et al. | Aug 2011 | B1 |
8003430 | Lee | Aug 2011 | B1 |
8008110 | Lee | Aug 2011 | B1 |
8008111 | Lee | Aug 2011 | B1 |
8008112 | Lee | Aug 2011 | B1 |
8026122 | Lee | Sep 2011 | B1 |
8193028 | Lee | Jun 2012 | B2 |
8198122 | Lee | Jun 2012 | B2 |
8211736 | Lee | Jul 2012 | B2 |
20020002992 | Kariya et al. | Jan 2002 | A1 |
20020004302 | Fukumoto et al. | Jan 2002 | A1 |
20020061361 | Nakahara et al. | May 2002 | A1 |
20020063065 | Sonoda et al. | May 2002 | A1 |
20030075717 | Kondo et al. | Apr 2003 | A1 |
20030089899 | Lieber et al. | May 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040084080 | Sager et al. | May 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040110393 | Munzer et al. | Jun 2004 | A1 |
20040187917 | Pichler | Sep 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040252488 | Thurk | Dec 2004 | A1 |
20040256001 | Mitra et al. | Dec 2004 | A1 |
20050074915 | Tuttle et al. | Apr 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050164432 | Lieber et al. | Jul 2005 | A1 |
20050194036 | Basol | Sep 2005 | A1 |
20050287717 | Heald et al. | Dec 2005 | A1 |
20060034065 | Thurk | Feb 2006 | A1 |
20060040103 | Whiteford et al. | Feb 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096536 | Tuttle | May 2006 | A1 |
20060096537 | Tuttle | May 2006 | A1 |
20060096635 | Tuttle | May 2006 | A1 |
20060102230 | Tuttle | May 2006 | A1 |
20060130890 | Hantschel et al. | Jun 2006 | A1 |
20060160261 | Sheats et al. | Jul 2006 | A1 |
20060174932 | Usui et al. | Aug 2006 | A1 |
20060219288 | Tuttle | Oct 2006 | A1 |
20060219547 | Tuttle | Oct 2006 | A1 |
20060220059 | Satoh et al. | Oct 2006 | A1 |
20060249202 | Yoo et al. | Nov 2006 | A1 |
20060267054 | Martin et al. | Nov 2006 | A1 |
20070006914 | Lee | Jan 2007 | A1 |
20070089782 | Scheuten et al. | Apr 2007 | A1 |
20070116892 | Zwaap | May 2007 | A1 |
20070116893 | Zwaap | May 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070163643 | Van Duren et al. | Jul 2007 | A1 |
20070169810 | Van Duern et al. | Jul 2007 | A1 |
20070193623 | Krasnov | Aug 2007 | A1 |
20070209700 | Yonezawa et al. | Sep 2007 | A1 |
20070264488 | Lee | Nov 2007 | A1 |
20070283998 | Kuriyagawa et al. | Dec 2007 | A1 |
20070289624 | Kuriyagawa et al. | Dec 2007 | A1 |
20080032044 | Kuriyagawa et al. | Feb 2008 | A1 |
20080041446 | Wu et al. | Feb 2008 | A1 |
20080057616 | Robinson et al. | Mar 2008 | A1 |
20080092945 | Munteanu et al. | Apr 2008 | A1 |
20080092953 | Lee | Apr 2008 | A1 |
20080092954 | Choi | Apr 2008 | A1 |
20080105294 | Kushiya et al. | May 2008 | A1 |
20080110491 | Buller et al. | May 2008 | A1 |
20080110495 | Onodera et al. | May 2008 | A1 |
20080121264 | Chen et al. | May 2008 | A1 |
20080121277 | Robinson et al. | May 2008 | A1 |
20080210303 | Lu et al. | Sep 2008 | A1 |
20080280030 | Van Duren et al. | Nov 2008 | A1 |
20090021157 | Kim et al. | Jan 2009 | A1 |
20090087940 | Kushiya | Apr 2009 | A1 |
20090087942 | Meyers | Apr 2009 | A1 |
20090145477 | Moon et al. | Jun 2009 | A1 |
20090145746 | Hollars | Jun 2009 | A1 |
20090217969 | Matsushima et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090235983 | Girt et al. | Sep 2009 | A1 |
20090235987 | Akhtar et al. | Sep 2009 | A1 |
20090293945 | Peter | Dec 2009 | A1 |
20100081230 | Lee | Apr 2010 | A1 |
20100087016 | Britt et al. | Apr 2010 | A1 |
20100087026 | Winkeler et al. | Apr 2010 | A1 |
20100096007 | Mattmann et al. | Apr 2010 | A1 |
20100101648 | Morooka et al. | Apr 2010 | A1 |
20100101649 | Huignard et al. | Apr 2010 | A1 |
20100122726 | Lee | May 2010 | A1 |
20100197051 | Schlezinger et al. | Aug 2010 | A1 |
20100210064 | Hakuma et al. | Aug 2010 | A1 |
20100267190 | Hakuma et al. | Oct 2010 | A1 |
20110070682 | Wieting | Mar 2011 | A1 |
20110070683 | Wieting | Mar 2011 | A1 |
20110070684 | Wieting | Mar 2011 | A1 |
20110070685 | Wieting | Mar 2011 | A1 |
20110070686 | Wieting | Mar 2011 | A1 |
20110070687 | Wieting | Mar 2011 | A1 |
20110070688 | Wieting | Mar 2011 | A1 |
20110070689 | Wieting | Mar 2011 | A1 |
20110070690 | Wieting | Mar 2011 | A1 |
20110073181 | Wieting | Mar 2011 | A1 |
20110080690 | Ning et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
19987865198 | Feb 1999 | AU |
200140599 | Aug 2001 | AU |
3314197 | Nov 1983 | DE |
10104726 | Aug 2002 | DE |
102005062977 | Sep 2007 | DE |
2646560 | Nov 1990 | FR |
2124826 | Feb 1984 | GB |
2000173969 | Jun 2000 | JP |
2000219512 | Aug 2000 | JP |
2002167695 | Jun 2002 | JP |
2002270871 | Sep 2002 | JP |
2002299670 | Oct 2002 | JP |
2004332043 | Nov 2004 | JP |
2005311292 | Nov 2005 | JP |
WO 0157932 | Aug 2001 | WO |
WO 2005011002 | Feb 2005 | WO |
WO 2006126598 | Nov 2006 | WO |
WO 2007022221 | Feb 2007 | WO |
WO 2007077171 | Jul 2007 | WO |
WO 2008025326 | Mar 2008 | WO |
Entry |
---|
Vasekar (Solar energy materials, 93, pp. 69-73, (2009)). |
Bandyopadhyaya (Solar Energy Materials and Solar Cells, 60, pp. 323-339, (2000)). |
Rudmann (Appl. Phys. Lett. 84, pp. 1129-1131, (2004)). |
Baumann, A., et al., Photovoltaic Technology Review, presentation Dec. 6, 2004, 18 pages. |
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92. |
Guillen C., “CuInS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712. |
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337. |
Huang et al., Preparation of ZnxCd1—xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir, 1998, vol. 14, No. 15, pp. 4342-4344. |
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, Retrieved from http://www.isetinc.com/cigs.html on Oct. 1, 2008, 4 pages. |
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136. |
Kapur et al., “Non-Vacuum Processing of CuIn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Precursor Inks”, Thin Solid Films, 2003, vol. 431-432, pp. 53-57. |
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43, 2003. |
Kapur et al., “Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates”, 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, IEEE, 2002, pp. 688-691. |
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Materials Research Society, Proceedings vol. 668, (2001) pp. H3.5.1-H3.5.6. |
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Materials Research Society Proceedings, vol. 668, (2001) pp. H2.6.1-H2.6.7. |
Metha et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 107-113. |
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451. |
Yang et al., “Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode”, Applied Physics Letters, vol. 69, No. 3, Jul. 15, 1996, pp. 377-379. |
Yang et al., “Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix”, Journal Material Chem., 1997, vol. 7, No. 1, pp. 131-133. |
Yang et al., “Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite”, Synthetic Metals, 1997, vol. 91, pp. 347-349. |
Examination Report for PCT Patent Application No. PCT/US2008/0077965, Apr. 8, 2010, 7 pages. IPER. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2009/058829 mailed on Mar. 11, 2011, 12 pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2009/065351, mailed on Jan. 26, 2010, 13 pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US09/59097, mailed on Dec. 23, 2009, 12 pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US09/59095, mailed on Dec. 4, 2009, 12 pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US08/77965, mailed on Dec. 9, 2008, 8 pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US08/78019 mailed on Dec. 8, 2008, 9 pages. |
Non-Final Office Action of Sep. 15, 2011 for U.S. Appl. No. 12/237,377, 18 pages. |
Non-Final Office Action of Sep. 7, 2011 for U.S. Appl. No. 12/237,369, 21 pages. |
Notice of Allowance of Sep. 2, 2011 for U.S. Appl. No. 12/953,721, 20 pages. |
Notice of Allowance of Aug. 26, 2011 for U.S. Appl. No. 12/953,725, 20 pages. |
Notice of Allowance of Aug. 25, 2011 for U.S. Appl. No. 12/953,729, 19 pages. |
Non-Final Office Action of Aug. 4, 2011 for U.S. Appl. No. 12/479,409, 39 pages. |
Notice of Allowance of Aug. 2, 2011 for U.S. Appl. No. 12/953,716, 18 pages. |
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/577,132, 34 pages. |
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/953,701,18 pages. |
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/953,708, 17 pages. |
Final Office Action of May 31, 2011 for U.S. Appl. No. 12/621,489, 13 pages. |
Notice of Allowance of May 25, 2011 for U.S. Appl. No. 12/566,651, 8 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,729, 9 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,725, 9 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,721, 9 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,716, 9 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,708, 9 pages. |
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,701, 9 pages. |
Non-Final Office Action of Apr. 28, 2011 for U.S. Appl. No. 12/237,369, 17 pages. |
Notice of Allowance of Apr. 27, 2011 for U.S. Appl. No. 12/564,886, 11 pages. |
Notice of Allowance of Apr. 26, 2011 for U.S. Appl. No. 12/564,046, 11 pages. |
Notice of Allowance of Apr. 25, 2011 for U.S. Appl. No. 12/563,065, 11 pages. |
Notice of Allowance of Apr. 19, 2011 for U.S. Appl. No. 12/567,715, 11 pages. |
Notice of Allowance of Apr. 8, 2011 for U.S. Appl. No. 12/953,697, 11 pages. |
Notice of Allowance of Apr. 5, 2011 for U.S. Appl. No. 12/953,679, 11 pages. |
Notice of Allowance of Apr. 5, 2011 for U.S. Appl. No. 12/953,674, 11 pages. |
Final Office Action of Dec. 27, 2010 for U.S. Appl. No. 12/479,409, 26 pages. |
Non-Final Office Action of Dec. 17, 2010 for U.S. Appl. No. 12/577,132, 11 pages. |
Notice of Allowance of Dec. 14, 2010 for U.S. Appl. No. 12/558,117, 8 pages. |
Supplemental Notice of Allowability of Dec. 10, 2010 for U.S. Appl. No. 12/568,641, 3 pages. |
Notice of Allowance of Nov. 19, 2010 for U.S. Appl. No. 12/568,641, 6 pages. |
Notice of Allowance of Oct. 21, 2010 for U.S. Appl. No. 12/565,735, 4 pages. |
Restriction Requirement of Oct. 18, 2010 for U.S. Appl. No. 12/568,641, 4 pages. |
Non-Final Office Action of Sep. 28, 2010 for U.S. Appl. No. 12/237,371, 15 pages. |
Non-Final Office Action of Sep. 22, 2010 for U.S. Appl. No. 12/621,489, 23 pages. |
Notice of Allowance of Aug. 27, 2010 for U.S. Appl. No. 12/509,136, 8 pages. |
Non-Final Office Action of Aug. 18, 2010 for U.S. Appl. No. 12/237,369, 17 pages. |
Non-Final Office Action of Aug. 5, 2010 for U.S. Appl. No. 12/565,735, 14 pages. |
Non-Final Office Action of Jul. 22, 2010 for U.S. Appl. No. 12/479,409, 21 pages. |
Non-Final Office Action of May 27, 2010 for U.S. Appl. No. 12/568,641, 10 pages. |
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97. |
International Search Report & Written Opinion of PCT Application No. PCT/US 09/46161, date of mailing Jul. 27, 2009, 14 pages total. |
International Search Report & Written Opinion of PCT Application No. PCT/US 09/46802, mailed on Jul. 31, 2009, 11 pages total. |
Onuma et al., Preparation and Characterization of CuInS Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269. |
Klenk, “Characterisation and modeling of chalcopyrite solar cells,” Thin Solid Films 387, pp. 135-140, 2001. |
Number | Date | Country | |
---|---|---|---|
61100854 | Sep 2008 | US |