Claims
- 1. In a sodium sulphur cell having a current collector in contact with the cathodic reactant, the improvement wherein said current collector is formed of an impermeable carbon or graphite tube, a conductive solid metal core within the carbon or graphite tube, and graphite felt around said core constituting a deformable conductive interface between the surface of the core and the internal surface of the tube.
- 2. In a sodium sulphur cell having a sulphur/polysulphide material forming a cathodic reactant and a cathode current collector extending into said cathodic reactant the improvement wherein said current collector is formed of an impermeable carbon or graphite tube containing a solid metal core and graphite felt around the core and extending over the internal surface of the carbon or graphite tube to thereby form a conductive interface between the core and the current collector tube.
- 3. A sodium sulphur cell comprising a housing, a tubular solid electrolyte within said housing, a sodium electrode sealed in an annular region around said electrolyte tube, a sulphur electrode within said electrolyte tube and a cathode current collector located axially within the tubular electrolyte, the sulphur electrode being in the annular region between the cathode current collector and the electrolyte, said current collector comprising an impermeable carbon or graphite tube, a solid metal core in the tube, and a deformable fibrous electronic conductor in the annular space between the tube and the core to constitute an electronic current carrying interfaces between the inner surface of the tube and the core.
- 4. A sodium-sulphur cell as claimed in claim 3 wherein the deformable fibrous electronic conductor comprises graphite felt.
- 5. A sodium sulphur cell as claimed in claim 3 wherein the carbon or graphite tube is rendered impervious by pyrolytic impregnation.
- 6. A sodium sulphur cell comprising an outer housing of generally tubular form closed at one end, an electrolyte tube of beta-alumina ceramic closed at one end axially located within the housing, sodium in the annular region between the electrolyte tube and the housing, a cathode current collector extending axially in the electrolyte tube, which cathode current collector comprises a carbon or graphite tube closed at one end and containing a solid conductive metal core with graphite felt in the annular region between the core and the inner surface of the carbon or graphite tube to form an electronically conductive interface between the core and the inner face of the carbon or graphite tube, a porous carbon or graphite felt between the electrolyte tube and the cathode current collector, a cathodic reactant material including sulphur impregnating said felt, sealing means sealing the housing to the electrolyte tube to seal the sodium containing region and sealing the electrolyte tube to the carbon or graphite tube to seal the sulphur containing region and further sealing means sealing the open end of the carbon or graphite tube.
- 7. In a sodium-sulphur cell having a current collector in contact with a cathodic reactant, the improvement wherein said current collector is formed of a tube of electrically conductive impermeable material chemically and electro-chemically inert to the cathodic reactant, a core within said tube and extending along the length thereof, said core being of a material having an electrical conductivity greater than that of the tube, and a deformable fibrous electronically conductive material in the annulus between the core and the inner surface of the tube and extending along the length of that annulus to constitute an electrically conductive interface between the core and the inner face of the tube.
Priority Claims (1)
Number |
Date |
Country |
Kind |
4884/74 |
Feb 1974 |
UK |
|
Parent Case Info
This application is a continuation-in-part of our copending application Ser. No. 550,072 filed Feb. 14, 1975 now U.S. Pat. No. 3,982,957.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
3982957 |
Jones et al. |
Sep 1976 |
|
3982959 |
Partridge et al. |
Sep 1976 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
550072 |
Feb 1975 |
|