Sodium tetrachloroaluminate catalyzed process for the molecular weight reduction of liquid hydrocarbons

Information

  • Patent Grant
  • 4504378
  • Patent Number
    4,504,378
  • Date Filed
    Friday, February 18, 1983
    41 years ago
  • Date Issued
    Tuesday, March 12, 1985
    39 years ago
Abstract
A process for reducing the molecular weight of hydrocarbons using NaAlCl.sub.4 is provided wherein the hydrogen to carbon ratio of the product slate is approximately the same as the feed material, comprising contacting the feed material with a molten salt of NaAlCl.sub.4 having a ratio of aluminum chloride to sodium chloride of at least 1:1, preferably at a temperature of at least 660.degree. F., and at a pressure above atmospheric, preferably from about 50 psia to about 2000 psia, depending upon the product slate desired. According to the present invention, heavy hydrocarbons are converted to a liquid product slate wherein substantially all of the liquid components exhibit a molecular weight lower than the molecular weight range exhibited by the hydrocarbon feedstock.
Description

FIELD OF INVENTION
This invention relates to processes for upgrading heavy liquid hydrocarbons by reducing their molecular weight and, in particular, to processes using sodium tetrachloroaluminate as the catalyst.
BRIEF DESCRIPTION OF THE PRIOR ART
Extensive work has been directed towards transforming heavy hydrocarbons such as liquefied coal, asphalts, petroleum residual oils and the like into lighter, more useful hydrocarbon products, such as synthetic crudes. Most processes relate to the cracking and subsequent hydrogenation of such feed materials in the presence of a variety of catalysts including molten salts. Most known processes involve consumption of expensive hydrogen and/or the rejection of carbon to a low value product. Exemplary of such processes are those described in U.S. Pat. Nos. 3,966,582; 2,768,935; 4,317,712; 4,333,815; 1,825,294 and 3,764,515. These teach the use of a wide variety of halide salts and mixtures thereof as the catalytic reaction matrix. U.S. Pat. No. 4,317,712 and U.S. Pat. No. 4,333,815 disclose mixing aromatic hydrocarbons with a coal or petroleum oil feed which is subsequently cracked using ZnCl.sub.2 and AlCl.sub.3 as Friedel-Crafts catalysts. U.S. Pat. Nos. 1,825,294 and 3,764,515 disclose the use of a gaseous mineral acid, such as HCl, as a promoter for ZnCl.sub.2 and AlCl.sub.3. These references do not, however, teach the use of sodium tetrachloroaluminate (NaAlCl.sub.4) as a useful catalyst for reducing the molecular weight of liquid hydrocarbons. NaAlCl.sub.4 has been used as a heat transfer agent in the treatment of oil shale with subsequent benzene extraction to produce raw shale oil, i.e., R. C. Bugle, et al, Nature, Vol. 274, No. 5671, pp. 578-580.
Moreover, while the concept of converting heavy hydrocarbons to a slate of lower molecular weight liquids having approximately the same hydrogen to carbon (H/C) ratio as the feed may have been contemplated, to date prior art efforts have not proven this technically feasible. A key advantage of maintaining the H/C ratio is the elimination of cost of hydr]gen consumption or the need to produce large quantities of hydrogen in situ.
NaAlCl.sub.4 is a known catalyst for a number of reactions. For example, U.S. Pat. Nos. 2,125,235 and 2,146,667 disclose the use of NaAlCl.sub.4 for polymerization of hydrocarbon gases, e.g., olefins. U.S. Pat. No. 2,342,073 discloses the use of NaAlCl.sub.4 for the isomerization of paraffins. U.S. Pat. Nos. 2,388,007 and 3,324,192 teach the use of NaAlCl.sub.4 as a catalyst to alkylate aromatic hydrocarbons. U.S. Pat. No. 2,113,028 teaches a method of regenerating such double halide catalysts as NaAlCl.sub.4. None of these references, however, suggests the use of NaAlCl.sub.4 as a catalyst for molecular weight weight reduction of heavy liquid hydrocarons.
Heretofore, there has been little success or effort in development of processes wherein high molecular weight hydrocarbon liquids are transformer into a primarily liquid product slate having approximately the same hydrogen to carbon ratio as the initial feed. Similarly, heretofore there has been no recognition that NaAlCl.sub.4 may most advantageously be utilized to that end in a process at elevated temperatures and pressures.
Accordingly, it is an object of this invention to provide such a process.
BRIEF SUMMARY OF THE INVENTION
A process for reducing the molecular weight of hydrocarbons using NaAlCl.sub.4 is provided wherein the hydrogen to carbon ratio of the product slate is approximately the same as the feed material, comprising contacting the feed material with a molten salt of NaAlCl.sub.4, in a molar ratio of aluminum chloride to sodium chloride of at least 1:1, at a pressure of from about 50 psia to about 2000 psia, and preferably at a temperature of at least 660.degree. F., depending upon the product slate desired. According to the present invention, heavy hydrocarbons are converted to a liquid product slate wherein substantially all of the liquid components exhibit a molecular weight lower than the molecular weight range exhibited by the feed material.
DETAILED DESCRIPTION OF THE INVENTION
The feed materials useful in the practice of the present invention are heavy, or high molecular weight hydrocarbons, typically viscous liquids, such as liquefied or solvent refined coal, asphalt, including asphaltenes and preasphaltenes, tar, shale oil, petroleum residual oils, oils extracted from tar sands, and heavy petroleum crude oils boiling below about 1500.degree. F. In general, while most advantageously applied to petroleum residuals and shale oils, virtually any hydrocarbon can be utilized.
Low molecular weight hydrocarbons can be added to the feed material. These additives can include hydrogen donor materials, such as partially saturated aromatics (e.g., tetralin), or free radical acceptors such as aromatics and olefins. The hydrocarbon additives can also be nonreactive materials (e.g., paraffins) used only to reduce the concentration or viscosity of the feed material. The amount of additive, which will generally be recycled, will usually be less than four times the feed material on a weight basis.
The NaAlCl.sub.4 molten salt catalyst useful in the practice of the present invention comprises a mixture of aluminum chloride (AlCl.sub.3) and sodium chloride (NaCl) on about a one to one molar basis. In a preferred embodiment the ratio of AlCl.sub.3 to NaCl is slightly greater than one to one, i.e., there is about a 1 to 10 mole percent excess of AlCl.sub.3. In general, no excess NaCl is to be employed. In some cases, the molten NaAlCl.sub.4 can be raised to a higher activity level by treating it with dry hydrogen chloride gas prior to contacting the catalyst with the feed material. This treatment usually occurs at the catalyst manufacturing temperature of from about 300 to about 400.degree. F. and employs hydrogen chloride (HCl) at pressures of from about atmospheric to about 1000 psia.
In operation, it is believed that the molten salt of the present invention is not acting merely as a molecular weight reduction catalyst. These molten salts as indicated herein have been used in paraffin isomerization, alkylation of aromatics and olefin saturation and polymerization. Accordingly, it is believed that the initial function of the molten NaAlCl.sub.4 of the present invention is in the formation of free radicals from a portion of the feed. The free radicals thus produced react via a series of mechanisms to form a liquid product primarily comprising branched paraffins, aromatics and naphthenes.
The process is carried out under pressure. While any pressure above atmospheric is acceptable, the process is most advantageously operated at pressures from 50 psia up to about 2000 psia, preferably from about 100 psia to about 1000 psia. These pressures represent a significant decrease from those required in most commercial weight reduction processes via hydrogenation. The reaction temperature at which the feed and molten NaAlCl.sub.4 are contacted is typically from about 660.degree. F. to about 1000.degree. F., preferably from about 750.degree. F. to about 850.degree. F. and most preferably about 800.degree. F.
Selection of the pressure and temperature is dependent to some extent upon the feed material but mostly on the desired liquid product slate (i.e., molecular weight range) and on the desired level of contaminant (i.e., sulfur, nitrogen, and oxygen) removal. For purposes of this invention, optimization is considered to be maximum liquid product yield and minimum gas and catalyst residue yields. The high hydrogen to carbon ratio of gases usually results from leaving low hydrogen to carbon residues on the catalyst, and thus it is desirable to maximize the production of liquid product of essentially the same hydrogen to carbon ratio as the feed. The distillation range of the liquid product should be less than that of the feed material--e.g., less than about 1000.sup.+ .degree. F. for a petroleum residual oil feed. In some cases, it is preferable that the liquid product should all distill in the range of isobutane (about 11.degree. F.) to the end point of typical gasolines (about 425.degree. F.).
A purge gas, which is typically recycled, is required to remove the liquid product from the molten NaAlCl.sub.4. Below an operating pressure of about 622 psia, the purge can be either an inert gas such as nitrogen, carbon dioxide, helium, and the other Inert Gases of the Periodic Table, methane, etc. or a reactive gas such as hydrogen, carbon monoxide or low molecular weight aromatics, olefins and hydrogen donor materials which react with or donate hydrogen to the products produced. Mixtures of inert and reactive gases can also be used.
The yield and composition of the liquid product and the level of contaminant removal are essentially not affected by the purge gas composition for a given operating temperature and pressure below about 622 psia. This is an unexpected result in that most molecular weight reduction processes require the consumption of an external source of hydrogen. At pressures above about 622 psia, the use of an external hydrogen source will improve contaminant removal but will not affect the molecular weight range of the liquid product. The purge gas can also contain a quantity of hydrogen chloride gas to counteract the introduction of oxygen as a feed contaminant or in the form of dissolved water. Oxygen will convert the catalyst from the chloride to the oxide form and deactivate the catalyst.
During the molecular weight reduction of hydrocarbons according to the present invention, a large amount of low molecular weight free radicals are formed. These free radicals are saturated with hydrogen and yield compounds having high H/C ratios. This requires the use of an external source of hydrogen to saturate the free radicals or that carbon be rejected to the catalyst surface yielding the needed hydrogen in situ. The carbon must then be periodically removed to reactivate the catalyst. The addition of a free radical acceptor, i.e., electrophiles such as benzene and naphthalene, to either the purge gas or the feedstock results in the acceptor reacting with the free radicals, and thereby allowing the hydrogen in the feed to be efficiently used for molecular weight reduction and contaminant removal. When the acceptors are added to the feed alone or in conjunction with other additives, they can also act to dilute the feed and result in a more uniform distribution of the feed on the catalyst. Gaseous free radical acceptors can alternatively be added to either a reactive or non-reactive purge gas or used alone as the purge gas itself.
Certain hydrocarbon feedstocks contain components exhibiting very low H/C ratios. These components quickly form carbon residues on the NaAlCl.sub.4 catalyst which cannot be easily removed by hydrogen generated in situ from the feedstock or supplied externally. In these cases, a hydrogen donor material (e.g., tetralin) will donate hydrogen-free radicals which increase the H/C ratio of the residue and thereby facilitate its removal from the NaAlCl.sub.4 as a liquid product. These hydrogen donor additives are preferably added to the feedstock, but they can alternatively be added to a reactive or non-reactive purge gas or used alone as the purge gas.
These and other aspects of the invention may be best understood by reference to the following examples which are offered by way of illustration and not by way of limitation.





The following examples and optimization studies were performed using a grade AC-20 asphalt, unless indicated otherwise, and an NaAlCl.sub.4 molten salt. The experiments were performed at the conditions indicated in a continuous reactor. Unless indicated otherwise, the NaAlCl.sub.4 molten salt comprised a molar ratio of 1:1 of AlCl.sub.3 : NaCl and was produced by mixing AlCl.sub.3 and NaCl at 300.degree.-400.degree. F. under helium at atmospheric pressure.
EXAMPLE I
Reaction Temperature vs. Product Yield
A series of tests were performed at 113-121 psia and at a variety of temperatures to determine the effect of temperature on yields. The results obtained are tabulated in Table I.
TABLE I______________________________________Temperature Purge Yields As Wt % of Feed.degree.F. Gas Liquid Gas Catalyst Residue______________________________________600 Hydrogen 19.0 none 81.0660 Hydrogen 36.5 none 63.5750 Hydrogen 63.5 none 36.5800 Hydrogen 65.0 14.0 21.0820 Hydrogen 67.5 13.5 19.0850 Hydrogen 64.0 10.0 26.0900 Helium 44.0 6.0 50.0______________________________________
As the data in Table I demonstrates, the amount of residue left on the catalyst decreased from 81 to 19 weight percent as the temperature was increased from 600.degree. F. to about 820.degree. F. It is believed that the residue which remained via these temperatures was in all likelihood unreacted feed of a lower hydrogen to carbon ratio. Above about 820.degree. F. the residue on the catalyst again increased, probably due to a coking environment created by the higher temperatures. Hence, there is an optimum operating temperature between 600.degree.-660.degree. F. and the temperatures above about 820.degree. F. which result in thermal coking.
EXAMPLE II
Reaction Pressure vs. Yields, Liquid Product Quality, Hydrogen Production, and Contaminant Removal
A series of tests were performed at 804.+-.4.degree. F. under varying pressures. A test at a pressure of 12 psia was performed for compairson. The results are tabulated in Tables II and III for yields and product quality, respectively.
TABLE II______________________________________Pressure Purge Yields as Wt % of Feedpsia Gas Liquid Gas Catalyst Residue______________________________________ 12 Hydrogen 68.8 16.6 14.6121 Hydrogen 65.3 14.1 20.6269 Hydrogen 63.5 8.5 28.0419 Hydrogen 66.3 3.8 29.9616 Hydrogen 64.5 none 35.5622 Helium 63.5 0.1 36.1826 Hydrogen 66.0 0.7 33.3______________________________________
The data in Table II indicates that a portion of the asphalt feed is converted into a liquid product with yields (64-69%) essentially independent of pressure and purge gas type, i.e., reactive hydrogen or inert helium. The balance is converted either into a gaseous product, mostly methane through propane, or a catalyst residue. The gas yield can optimally be reduced by increasing the operating pressure. This is an unexpected result since in most processes higher hydrogen pressures result in higher gas yields.
TABLE III______________________________________ Liquid ProductPressure Purge Distillation Range - .degree.F.psia Gas 11 11-425 425-1000 1000.sup.+______________________________________ 12 Hydrogen none 18.5 71.5 10.0121 Hydrogen 12.0 55.5 32.5 none269 Hydrogen 15.0 69.5 15.5 none419 Hydrogen 15.0 83.5 1.5 none616 Hydrogen 17.5 81.0 1.5 none622 Helium 15.0 83.5 1.5 none826 Hydrogen 17.5 81.0 1.5 none______________________________________
From Table III it can be seen that as pressure was increased, the boiling point range (i.e., molecular weight) of the liquid product decreased. At atmospheric pressure (about 12 psia), the liquid product was essentially a synthetic crude oil, i.e., 81.5% of the product had a boiling point above 425.degree. F. At 419 psia, 98.5% of the liquid product boiled below the gasoline end point of 425.degree. F. For operating pressures between 419 and 826 psia, the boiling point range of the liquid product did not vary significantly. Also, the use of inert helium as the purge gas yielded the same molecular weight reduction as did the use of reactive hydrogen.
The component types existing in the 86.degree.-500.degree. F. portion (C.sub.6 -C.sub.13) of the liquid product were evaluated and the results provided in Table IV. The results show that mostly branched paraffins, naphthenes and aromatics were produced. The ratio of branched to normal paraffins for the C.sub.6 -C.sub.13 compounds ranged from 7.1 to 10.1. As reaction pressure was increased, the concentration of olefins and naphthenes decreased. The olefins were probably converted to isoparaffins and the naphthenes to aromatics.
TABLE IV______________________________________ Pressure-psiaComponents - Vol % 269 419 615 822______________________________________ParaffinsNormal 3.7 3.9 3.9 3.5Branched 34.3 39.5 28.0 32.9Olefins 0.7 1.0 0.5 0.0Naphthenes 14.9 13.2 10.9 8.4Aromatics 46.4 42.4 56.7 55.2______________________________________
In the same series of tests, the amount of hydrogen produced or consumed was measured along with the removal level of contaminants. The results are tabulated in Table V.
TABLE V______________________________________ Hydrogen - SCF/Bbl AC-20Pressure Purge Con- Wt % Sulfur In*psia Gas Production sumption Liquid Residue______________________________________ 12 Hydrogen 59 none 49.6 --121 Hydrogen 297 none 24.4 21.7117 Helium 300 none 19.6 --269 Hydrogen 250 none -- 29.4419 Hydrogen 146 none 3.2 33.8616 Hydrogen 45 none -- 15.6622 Helium 5 none -- 10.7826 Hydrogen none 146 -- 7.7______________________________________ *Based on the amount of sulfur in AC20 feed (3.89 wt %). Balance of sulfu is produced as hydrogen sulfide.
At reaction pressures below 622 psia, excess hydrogen was produced using either hydrogen or inert helium as the purge gas. This is not necessarily undesirable since the hydrogen produced could be used to remove the residue left on the catalyst. Slightly above 622 psia reaction pressure, hydrogen consumption starts to occur. At 826 psia, hydrogen consumption reached about 146 SCF/bbl. This amount of consumption is essentially equal to that (152 SCF/Bbl of AC-20 feed) required to remove all the sulfur in the feed. The data in Table V indicates that 92.3% of the sulfur in the AC-20 feed was recovered as hydrogen sulfide at the operating pressure of 826 psia. Essentially all the sulfur was removed from the liquid product at pressures slightly above 622 psia. The levels of desulfurization achieved with the molten NaAlCl.sub.4 catalyst at pressures of 622-826 psia are better than those typically achieved with other commercial desulfurization processes.
Since the composition of the liquid product did not change significantly between operating pressures of 419 and 826 psia and the sulfur removal level increased, we conclude that an external hydrogen source will be needed only for complete contaminant removal. Thus, the use of molten NaAlCl.sub.4 will minimize hydrogen consumption over commercial processes for molecular weight reduction of residual oils, etc.
EXAMPLE III
Nitrogen and Oxygen Removal
An additional experiment was performed in which shale oil, containing 1.22 and 2.11 weight percent, respectively, of oxygen and nitrogen contaminants, was contacted with molten NaAlCl.sub.4 at 798.degree. F. and 812 psia with a hydrogen purge. The liquid product contained 0.09 and 0.07 weight percent of oxygen and nitrogen, respectively. This amount of nitrogen in the liquid product represents only 2.6 weight percent of that in the original shale oil. Most of the oxygen in the liquid product is believed to have been dissolved water which means that the overall oxygen removal was in excess of 95 percent.
As can be seen from Example III, oxygen- and/or nitrogen-containing feedstocks when treated according to the present invention, can result in liquid products substantially free of oxygen and/or nitrogen which for purposes of the present invention means less than about 0.5 percent by weight.
EXAMPLE IV
Catalyst Modification vs. Liquid Product Yield
A series of tests were performed at 804.+-.5.degree. F., 814.+-.4 psia, and with a hydrogen purge to modify the activity level of the molten NaAlCl.sub.4 catalyst. The results are tabulated in Table VI.
TABLE VI______________________________________Catalyst ModificationOver Standard 1/1 Yields as Wt % of FeedMolar Ratio of AlCl.sub.3 /NaCl Liquid Gas Residue______________________________________No Modification 68.7 .+-. 1.2 none 31.3 .+-. 1.22% Excess NaCl 60.8 none 39.22% Excess AlCl.sub.3 67.8 none 32.2HCl Treatment at 12 psia 74.5 none 25.5HCl Treatment at 530 psia 64.6 12.2 23.2______________________________________
The results in Table VI show that the use of excess NaCl in the manufacture of the NaAlCl.sub.4 catalyst is undesirable. That is, liquid product yield was lost with a corresponding increase in residue yield. In these studies, the use of excess AlCl.sub.3 resulted in no benefit. However, it is believed that in some cases the use of excess AlCl.sub.3 will be beneficial. The concentration of excess AlCl.sub.3 will be limited by its volatility at operating pressure and temperature. The results also show that adding HCl gas during catalyst manufacture desirably results in reduced residue yields. At 12 psia of HCl pressure, the loss in residue is converted totally into liquid product yield. For an HCl pressure of 530 psia, the residue loss is partially converted into gas. This gas production could advantageously be converted into liquid product by operating at a higher pressure during the molecular weight reduction step.
EXAMPLE V
Effect of a Hydrogen Donor Feed Additive and a Free Radical Acceptor on Yields
Several experiments were performed to evaluate the use of tetralin as a hydrogen donor additive to the AC-20 feed. These experiments were performed at 801.+-.2.degree. F., 812 psia, and with a hydrogen purge. The results are given in Table VII.
TABLE VII______________________________________ Composition of the C.sub.6 -C.sub.13 Portion of theWt % Liquid Product - Vol %Tetralin Yields - Wt % of Feed Par- Aro-In Feed Liquid Residue affins Naphthenes matics______________________________________none 68.7 .+-. 1.2 31.3 .+-. 1.2 37.1 8.2 54.720.0 76.4 23.6 21.2 6.3 72.5______________________________________
The results show that the use of tetralin desirably increases the liquid product yield and reduces the residue yield. Also, the C.sub.6 -C.sub.13 portion of the liquid product contains more aromatic components. The production of more aromatics helps achieve the goal of obtaining a liquid product whose hydrogen to carbon ratio equals that of the feed. The results also show that the tetralin was converted into naphthalene and alkyl naphthalenes. The production of naphthalene means that the tetralin was acting as a hydrogen donor. The production of alkyl naphthalenes shows that the naphthalene resulting from hydrogen donation acts as a free radical acceptor.
Additional results show that a purge gas circulation of 1200-1500 SCF of hydrogen or helium per bbl of AC-20 feed is required to remove the liquid from the molten catalyst. These optimum rates were determined at an operating pressure of about 120 psia. The lighter products made at higher operating pressures required slightly less purge gas circulation. And likewise, the heavier products made at pressures lower than 120 psia required slightly more purge gas circulation.
Most of the above-reported experiments were performed at a reactor residence time of about 60 minutes (lb catalyst per lb/minute of asphalt feed). Lower residence times were also evaluated and it was found that no loss in liquid yield occurred down to about 30 minutes. At a residence time of 15 minutes, liquid production rate was reduced by 15%, but this is thought to be due to an inability during experimentation to supply sufficient heat to control reaction temperature at the optimum level.
When using fresh catalyst, a certain period of time is required for some carbon build up on the catalyst to optimize liquid production rate. During this period, gas and residue yields are slightly higher. As the process continues more residue is deposited and eventually the activity of the catalyst decreases to a point where liquid production stops. Hence, after a certain carbon build up, the catalyst should advantageously be replaced or regenerated.
An additional advantage of the molten salt catalyst of the present invention is that metal contaminants in the feed are incorporated in the melt, and apparently do not reduce the activity of the catalyst. However, at some point, large concentration of metals will likely either dilute or reduce the activity of the catalyst. At such a time, the catalyst should again be replaced.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the invention, as limited only by the scope of the appended claims.
Claims
  • 1. A process for reducing the molecular weight of a high molecular weight hydrocarbon feedstock comprising contacting said feedstock with a molten tetrachloroaluminate catalyst consisting essentially of NaAlCl.sub.4, having substantially no excess NaCl or AlCl.sub.3, at a pressure above atmospheric and at elevated temperature to produce a liquid product slate wherein substantially all of the components in said product slate exhibit a lower molecular weight than the molecular weight range exhibited by said feedstock.
  • 2. A process according to claim 1 wherein said contacting is at a temperature of from about 660.degree. F. to about 1000.degree. F.
  • 3. A process according to claim 2 wherein said temperature is from about 750 to about 850.degree. F.
  • 4. A process according to claim 3 wherein said temperature is about 800.degree. F.
  • 5. A process according to claim 1 wherein said pressure is from about 50 psia to about 2000 psia.
  • 6. A process according to claim 5 wherein said pressure is from about 100 psia to about 1000 psia.
  • 7. A process according to claim 1 further comprising separating said liquid product by purging with a purge gas.
  • 8. A process according to claim 7 wherein at least a portion of said purge gas is reactive.
  • 9. A process according to claim 7 wherein at least a portion of said purge gas is inert.
  • 10. A process according to claim 7 wherein said purge gas is selected from the group consisting. of helium, hydrogen, methane, carbon dioxide, carbon monoxide, aromatics, olefins, hydrogen donors, free radical acceptors and mixtures thereof.
  • 11. A process according to claim 7 wherein said purge gas contains hydrogen chloride.
  • 12. A process according to claim 7 wherein said purge gas is separated from said liquid product slate and is recycled.
  • 13. A process according to claim 1 wherein the hydrogen to carbon ratio of said liquid product slate is substantially the same as the hydrogen to carbon ratio of said feedstock.
  • 14. A process according to claim 1 wherein said feedstock is selected from the group consisting of liquefied coal, solvent refined coal, asphalt, asphaltenes, preasphaltenes, tar, shale oil, petroleum residual oils, oils extracted from tar sands, heavy petroleum crude oils boiling below about 1500.degree. F. and mixtures thereof and wherein substantially all the components of said liquid product slate exhibit molecular weights, lower than the molecular weight of the feedstock.
  • 15. A process according to claim 1 wherein said feedstock further comprises an additive selected from the group consisting of free radical acceptors, hydrogen donors and non-reactive paraffins.
  • 16. A process according to claim 15 wherein said additive is present in an amount up to four times said feedstock on a weight basis.
  • 17. A process according to claim 1 wherein said molten NaAlCl.sub.4 is pretreated with gaseous HCl before contacting said feedstock.
  • 18. A process for producing a liquid hydrocarbon product slate from a heavy liquid hydrocarbon feedstock comprising contacting said feedstock with a molten tetrachloroaluminate consisting essentially of NaAlCl.sub.4, having substantially no excess NaCl or AlCl.sub.3, at a temperature above about 600.degree. F. and at a pressure above about 50 psia and separating said liquid product slate from said molten tetrachloroaluminate by purging with a purge gas, wherein substantially all of the liquid components in said product slate exhibit a lower molecular weight than the molecular weight range exhibited by said feedstock.
  • 19. A process according to claim 18 wherein said liquid components have substantially the same hydrogen to carbon ratio as said feedstock.
  • 20. A process according to claim 18 wherein said feedstock has a boiling point above about 425.degree. F. and substantially all the components of said product slate boil below about 425.degree. F.
  • 21. A process according to claim 18 wherein said feedstock is sulfur-containing and said sulfur is removed as hydrogen sulfide to produce a liquid product slate substantially free of sulfur.
  • 22. A process according to claim 18 wherein said feedstock is nitrogen-containing and nitrogen is removed as ammonia to produce a liquid product slate substantially free of nitrogen.
  • 23. A process according to claim 18 wherein said feedstock is oxygen-containing and oxygen is removed as water to produce a liquid product slate substantially free of oxygen.
  • 24. A process according to claim 18 wherein said purge gas contains HCl.
  • 25. A process according to claim 18 wherein said feedstock further comprises at least one additive selected from the group consisting of free radical acceptors and hydrogen donors.
  • 26. A process according to claim 18 wherein said purge gas comprises a reactive gas.
  • 27. A process according to claim 18 wherein said purge gas comprises an inert gas.
  • 28. A process according to claim 18 wherein said catalyst is pretreated with HCl before contacting said feedstock.
  • 29. A process according to claim 28 wherein said catalyst pretreatment is at a temperature of from about 300.degree. F. to about 400.degree. F. and at a pressure of from about atmospheric to about 1000 psia.
  • 30. A process according to claim 18 wherein said purge gas further comprises a gas additive selected from the group consisting of free radical acceptors and hydrogen donors.
US Referenced Citations (80)
Number Name Date Kind
1608328 McAfee Nov 1926
1825294 Wolcott Sep 1931
1945530 Karrick Feb 1934
2041858 Pfirrmann May 1936
2087608 Pier et al. Jul 1937
2113028 Kuentzel Apr 1938
2125235 Atwell Jul 1938
2146667 Atwell Feb 1939
2342073 Cheney Feb 1944
2360700 McAllister et al. Oct 1944
2388007 Pardee et al. Oct 1945
2457457 Frejacques Dec 1948
2692224 Heinemann Oct 1954
2768935 Watkins Oct 1956
2865841 Hoekstra Dec 1958
2914461 Ciapetta Nov 1959
3085971 Mooi et al. Apr 1963
3324192 Roebuck et al. Jun 1967
3355376 Gorin et al. Nov 1967
3371049 Gorin et al. Feb 1968
3409684 Aristoff et al. Nov 1968
3556978 Hiteshue et al. Jan 1971
3594329 Gorin et al. Jul 1971
3625861 Gorin et al. Dec 1971
3657108 Kiovsky et al. Apr 1972
3663452 Kiovsky et al. May 1972
3677932 Hardesty et al. Jul 1972
3679577 Wantland et al. Jul 1972
3692666 Pollitzer Sep 1972
3725239 Kiovsky et al. Apr 1973
3736250 Berg et al. May 1973
3764515 Kiovsky Oct 1973
3790468 Loth Feb 1974
3844928 Geymer Oct 1974
3847795 Rieve et al. Nov 1974
3901790 Siskin et al. Aug 1975
3966582 Cramer Jun 1976
4051015 Bearden, Jr. et al. Sep 1977
4081400 Gorin Mar 1978
4132628 Pell Jan 1979
4134822 Wood et al. Jan 1979
4134826 Gorin Jan 1979
4136056 Zielke Jan 1979
4162963 Gorin Jul 1979
4247385 Gorin Jan 1981
4257873 Zielke et al. Mar 1981
4257914 Zielke et al. Mar 1981
4317712 Farcasiu Mar 1982
4333815 Vermeulen et al. Jun 1982
1923571 Galle et al. Aug 1933
1791562 Hofmann et al. Feb 1931
1598973 Kolsky Sep 1926
3668109 Kiovsky et al. Jun 1972
3790469 Loth et al. Feb 1974
1325299 Koetschau Dec 1919
1722042 Egloff Jul 1929
1815460 Chappell Jul 1931
1881901 Osmer Oct 1932
2337432 Veltman Dec 1943
2415716 Veltman Feb 1947
3542665 Wald Nov 1970
3909391 Rieve et al. Sep 1975
2149900 Pier et al. Mar 1939
3483118 Gleim et al. Dec 1969
3501416 Wald Mar 1970
3824178 Wald Jul 1974
1970143 Kimball Aug 1934
4118200 Kruesi Oct 1978
4019975 Urquhart Apr 1977
4060478 Lang Nov 1977
3824179 Kiovsky Jul 1974
3775286 Mukherjee et al. Nov 1973
3745108 Schuman et al. Jul 1973
3505207 Haney et al. Apr 1970
3505206 Decker Apr 1970
3502564 Hodgson Mar 1970
3996022 Larsen Dec 1976
1881927 Pott et al. Oct 1932
4092235 Schlosberg et al. May 1978
3483117 Gleim Dec 1969
Non-Patent Literature Citations (1)
Entry
R. C. Bugle et al., Nature, vol. 274, No. 5671, Aug. 10, 1978, pp. 578-580.