This disclosure relates to a surgical device and methods of using the surgical device to attach tissue to bone. More particularly, this disclosure is directed to a soft anchor assembly that includes a sheath and a flexible strand affixed as non-sliding relative to the sheath.
Orthopedic procedures are often performed to repair musculoskeletal injuries. For example, soft tissue may tear away from bone during vigorous exercise or sporting activities. When such tears occur, reattachment is often necessary to repair the damaged tissue. Suture anchors are one type of surgical device that has been developed to facilitate these repairs.
Rotator cuff tears are one common condition causing shoulder disability in patients. Failure of the rotator cuff tendon may result in pain in the shoulder and/or loss of shoulder function. Several different arthroscopic repair techniques are known for repairing rotor cuff tears, including single-row, double-row and bridging techniques. Additional advancements in this field of technology are desired.
A soft anchor assembly according to an exemplary aspect of the present disclosure includes, among other things, a sheath, a first flexible strand affixed as non-sliding relative to the sheath and a second flexible strand slidable relative to the sheath.
In a further non-limiting embodiment of the foregoing assembly, the sheath is a tubular sleeve made of a flexible suture material.
In a further non-limiting embodiment of either of the foregoing assemblies, the first flexible strand and the second flexible strand are both passed through portions of a bore that extends through the sheath.
In a further non-limiting embodiment of any of the foregoing assemblies, the first flexible strand exits the sheath at a different location from the second flexible strand.
In a further non-limiting embodiment of any of the foregoing assemblies, the first flexible strand is a suture tape and the second flexible strand is a suture.
In a further non-limiting embodiment of any of the foregoing assemblies, the first flexible strand is a suture tape or a suture and the second flexible strand is a suture.
In a further non-limiting embodiment of any of the foregoing assemblies, at least one stitch fixates the first flexible strand to the sheath.
In a further non-limiting embodiment of any of the foregoing assemblies, a first portion of the first flexible strand exits the sheath through a first opening and a second portion of the first flexible strand exits the sheath through a second opening.
In a further non-limiting embodiment of any of the foregoing assemblies, the second flexible strand exits the sheath at least at two locations that are between the first opening and the second opening.
In a further non-limiting embodiment of any of the foregoing assemblies, the first portion of the first flexible strand is affixed to the sheath with a first stitch and the second portion of the first flexible strand is affixed to the sheath with a second stitch.
A method according to another exemplary aspect of the present disclosure includes, among other things, attaching tissue to a bone, the attaching step including the use of a soft anchor assembly that includes a sheath and a first flexible strand fixated as non-sliding to the sheath.
In a further non-limiting embodiment of the foregoing method, the attaching step includes inserting the soft anchor assembly into the bone, inserting a knotless anchor into the bone laterally from the soft anchor assembly and connecting the first flexible strand of the soft anchor assembly to the knotless anchor.
In a further non-limiting embodiment of either of the foregoing methods, the inserting step includes inserting the soft anchor assembly through the tissue as part of a trans-tendon technique.
In a further non-limiting embodiment of any of the foregoing methods, the connecting step includes loading a free end of the first flexible strand through an eyelet of the knotless anchor.
In a further non-limiting embodiment of any of the foregoing methods, the method includes tensioning the tissue by pulling on the first flexible strand.
In a further non-limiting embodiment of any of the foregoing methods, the soft anchor assembly includes a second flexible strand, and the attaching step includes tying a knot in the second flexible strand.
A method of attaching tissue to bone according to another exemplary aspect of the present disclosure includes, among other things, inserting a first medial row of fixation devices into a bone, the first medial row of fixation devices including at least one soft anchor assembly that includes a sheath and a first flexible strand fixated as non-sliding relative to the sheath. The method includes inserting a second lateral row of fixation devices into the bone, the second lateral row of fixation devices including at least one knotless anchor and connecting the first flexible strand of the at least one soft anchor assembly to the at least one knotless anchor.
In a further non-limiting embodiment of the foregoing method, the at least one soft anchor assembly is inserted through a tissue and into the bone.
In a further non-limiting embodiment of either of the foregoing methods, the at least one soft anchor assembly includes a second flexible strand that is slidable relative to the sheath, and comprising tying a knot in the second flexible strand to attach a tissue to the bone.
In a further non-limiting embodiment of any of the foregoing methods, the connecting step includes loading a free end of the first flexible strand through a portion of the at least one knotless anchor, tensioning the free end of the first flexible strand to achieve a desired tension on a tissue and inserting the at least one knotless anchor into the bone.
The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
This disclosure describes various soft anchor assemblies and associated surgical techniques for attaching tissue to bone. The soft anchor assemblies are formed of “soft” materials, such as suture materials, that confer the ability to be inserted into bone sockets/holes and bunch together, collapse, expand and/or change shape to fixate within the socket/hole. In some embodiments, the soft anchor assembly includes a sheath and a flexible strand affixed as non-sliding relative to the sheath. In other embodiments, the soft anchor assembly includes a sheath, a first flexible strand affixed as non-sliding to the sheath, and a second flexible strand that is slideable relative to the sheath. The soft anchor assemblies of this disclosure may be utilized in various surgical techniques to attach tissue to bone. These and other features are described in greater detail in the paragraphs that follow.
In this disclosure, the soft anchor assembly 10 is referred to as a “soft” construct because it is formed of soft materials such as yarns, fibers, filaments, strings, fibrils, strands, sutures, etc., or any combination of such materials. The soft materials may be synthetic or natural materials, or combinations of synthetic and natural materials, and may be bio-degradable or non-degradable within the scope of this disclosure. In one non-limiting embodiment, the soft anchor assembly 10 is made exclusively of soft, suture-based materials.
The exemplary soft anchor assembly 10 may include a sheath 12 and a flexible strand 14 that is affixed as non-sliding relative to the sheath 12. The sheath 12 includes a tubular body 16 that extends between opposing ends 18a, 18b. The opposing ends 18a, 18b may be open or closed ends. The tubular body 16 establishes a bore 20 that extends between the opposing ends 18a, 18b.
In one embodiment, the sheath 12 is a tubular sleeve made of a flexible material, such as a braided, woven, or knitted structure made of yarns, fibers, filaments, sutures or similar materials, or combinations of these materials. In one non-limiting embodiment, the sheath 12 is constructed of polyester suture material. Other materials may also be suitable to construct the sheath 12.
The flexible strand 14 is passed through at least a portion of the bore 20 of the sheath 12. The flexible strand 14 may assist in bunching together the sheath 12 once the soft anchor assembly 10 is inserted into bone and the flexible strand 14 is tensioned. In one embodiment, the flexible strand 14 passes through openings 22 formed through the tubular body 16 and which are spaced from the opposing ends 18a, 18b of the sheath 12 (see
In one embodiment, the flexible strand 14 is a suture. Non-limiting examples of suitable sutures include FiberWire®, TigerWire®, or FiberChain® suture, although any type of suture may be utilized, including cored or coreless sutures. In another embodiment, the flexible strand 14 is suture tape, such as FiberTape®. The flexible strand 14 could include any soft, flexible strand of material.
The flexible strand 14 is affixed as non-sliding relative to the sheath 12. In other words, the flexible strand 14 is not slidable inside the bore 20 to change its positioning relative to the sheath 12. Fixating the flexible strand 14 to the sheath 12 improves the ability to tension the flexible strand 14, such as during bridging techniques, as is further discussed below.
In one embodiment, the flexible strand 14 is affixed to the sheath 12 by a stitch 24. The stitch 24 may extend through both the sheath 12 and the flexible strand 14 to fixate the flexible strand 14 to the sheath 12. Alternatively, the flexible strand 14 could be glued or bonded to the sheath 12. Other fixating techniques may also be utilized. In one embodiment, the stitch 24 is provided near a center C of the sheath 12.
The soft anchor assembly 110 of
First, as shown in
Next, the bone 28 is prepared for receiving a medial row of fixation devices. The medial row of fixation devices may include one or more soft anchor assemblies 10, 110, in one non-limiting embodiment. Referring to
The soft anchor assemblies 10, 110 are then inserted into the bone sockets 26 (see
The bone 28 is next prepared for insertion of a lateral row of fixation devices. The lateral row of fixation devices may include one or more knotless anchors. In one non-limiting embodiment, the knotless anchors include SwivelLock® anchors. In another embodiment, the knotless anchors include PushLock® anchors. However, other knotless anchors may also be utilized.
As shown in
Tension may be applied to the flexible strands 14 so that the tissue 30 is reduced and compressed against the bone 28, and once a desired tissue tension is achieved, the knotless anchors 36 are inserted into the bone sockets 34 to complete the repair. Because the flexible strands 14 are fixated as non-sliding relative to the sheath 12 of each soft anchor assembly 10, 110, each free end 32 of each flexible strand 14 may be tensioned individually and prior to insertion of the final fixation device of the lateral row. Stated another way, use of the soft anchor assemblies 10, 110 avoids the necessity of achieving tensioning with a single anchor of the lateral row.
Insertion in the manner described above configures the flexible strands 14 in a crisscross pattern P (see
Referring first to
Next, as shown in
The soft anchor assembly 210 may additionally include a second flexible strand 215. The second flexible strand 215 may slide relative to the sheath 212. The bore 220 is sized such that it can accommodate both the first flexible strand 214 and the second flexible strand 215.
In one embodiment, the first flexible strand 214 is a suture tape and the second flexible strand 215 is a suture. In another embodiment, the first flexible strand 214 and the second flexible stand 215 are both sutures.
The first flexible strand 214 and the second flexible strand 215 may exit the sheath 212 at different locations. For example, in one embodiment, the first flexible strand 214 exits the sheath 212 through openings 222 formed through the tubular body 216 that are spaced from the opposing ends 218a, 218b, whereas the second flexible strand 215 passes through openings 225 that are intermediate of the openings 222 (see
The soft anchor assembly 210 can be used in a variety of techniques to attach tissue to bone. In one embodiment, the soft anchor assembly 210 may be employed in techniques similar to those shown in
Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.
The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claims should be studied to determine the true scope and content of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5989252 | Fumex | Nov 1999 | A |
6511498 | Fumex | Jan 2003 | B1 |
7749250 | Stone et al. | Jul 2010 | B2 |
8273106 | Stone et al. | Sep 2012 | B2 |
8562647 | Kaiser et al. | Oct 2013 | B2 |
20050192631 | Grafton | Sep 2005 | A1 |
20070055206 | To | Mar 2007 | A1 |
20080065114 | Stone | Mar 2008 | A1 |
20090318960 | Burkhart | Dec 2009 | A1 |
20090318961 | Stone | Dec 2009 | A1 |
20120197271 | Astorino et al. | Aug 2012 | A1 |
20120253365 | Sikora | Oct 2012 | A1 |
20120290004 | Lomardo et al. | Nov 2012 | A1 |
20130116730 | Denham | May 2013 | A1 |
20130123810 | Brown et al. | May 2013 | A1 |
20130296936 | Burkhart | Nov 2013 | A1 |
20140046368 | Kaiser et al. | Feb 2014 | A1 |
20140052178 | Dooney, Jr. | Feb 2014 | A1 |
20140052179 | Dreyfuss et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2014151766 | Sep 2014 | WO |
2015095534 | Jun 2015 | WO |
Entry |
---|
Extended European Search Report for European Application No. 15182593.2, mailed Feb. 5, 2016. |
Number | Date | Country | |
---|---|---|---|
20160074030 A1 | Mar 2016 | US |