1. Field of the Invention
The present invention generally relates to drawers that slide in and out of a cabinet, and particularly to mechanisms that control the rate at which a drawer slides into a cabinet such that an abrupt stop of the closing motion of the drawer is avoided when it arrives at a fully closed position, and at which a drawer slides away from a cabinet such that an abrupt stop of the opening motion of the drawer is avoided when it arrives at a fully open position.
2. Description of the Prior Art
There are presently available a number of rate controlling mechanisms, both damping and springing mechanisms, that are provided with a drawer or lid of cabinets. Some of the simpler mechanisms include rubber or foam bumpers between the face of the cabinet and the drawer or slide mechanism. Though the bumpers soften the impact of the drawer as the drawer closes, the bumpers are not optimal for heavy or fast moving drawers and not an effective for the abrupt stops.
Other mechanisms include a springing mechanism located proximate the drawer or lid. For example, in U.S. Pat. No. 5,409,308 to Reuter et al., a cabinet is provided with a curved, upward-swinging door with an opening mechanism including a pair of opposed pivot arms, each pivotably connected to a gas spring, which is connected to the end walls of a cabinet. Each pivot arm includes a circular disk portion integrally formed with a tangential arm and a mounting bracket for mounting each pivot arm to door. The rod of the gas spring preferably faces downwardly and the cylinder end preferably faces upwardly, to keep the oil in the cylinder. When opening the door, each arm rotates around a central boss of the circular disk causing the gas spring to generate a force tangential to the rotatably mounted circular disk. The force of the gas spring causes the door to continue to move open. However, the primary motion of the door is swinging, rather than sliding, and the use of a complexly designed arm is necessary to bear the load of the door and the force of the gas spring when swinging open and closed.
Yet, other springing mechanisms are available for drawers that slide. Generally, these mechanisms are integrated with the rails in a complicated manner that often do not allow for minimal modifications to conventional drawer-slide rail systems. Furthermore, many of the slide mechanisms only provide for a soft-close action but do not address both the soft-close action and the soft-open action. One example is U.S. Pat. No. 6,752,478 to Francz, which shows a damping mechanism, preferably a slide and a damper, borne on the pull-out rail toward the front of the drawer and parallel to the sides of a drawer. The damping mechanism travels with the movement of the pull-out rail, and remains inoperative until when the drawer is closing, an abutment presses against the plunger. The abutment presses against the plunger of the damping mechanism, pushing the piston into the cylinder, which causes damping of the drawer and prevents a front panel from striking against the body side walls with a great force. A pull-in device arranged at the rear of a support rail can also be included to couple a central rail, which runs between the pull-out rail and the support rail. The pull-in device pulls the central rail, together with the pull-out rail, further into the furniture carcass, with this movement being dampened by the damping mechanism and consequently providing only a soft-close action.
Thus, there remains a need for a drawer and slide mechanism that allows the drawer to fully close or fully open gradually without an abrupt stop, that is, providing a soft-close action and a soft-open action. There also remains a need to integrate such drawer and slide mechanism with conventional drawer slide systems in a simpler manner.
In one embodiment of the present invention, a soft-close cabinet slide assembly can include a cabinet, a drawer, and at least one slide mechanism coupling the drawer to the cabinet to permit movement of the drawer between a fully open position and a fully closed position. A gas spring can also be included in the soft-close cabinet slide assembly having a first end coupled to the cabinet and a second end coupled to the drawer. The gas spring is preferably situated to facilitate a reduction of speed of the drawer as the drawer approaches the fully closed position or the fully open position. Preferably, the soft-close cabinet slide assembly also includes a first pivotal coupling at the first end of the gas spring and a second pivotal coupling at the second end of the gas spring. The pivotal couplings can permit the gas spring to swing through an arc as the drawer moves between the fully open position and the fully closed position. When the drawer moves through the middle position, the gas spring can achieve a compressed position. The gas spring can achieve an extended position, when the drawer moves to the fully open and fully closed positions. An operator can also exert an external force to the drawer to move the drawer passed the middle position, when such external force can be removed, allowing the drawer to move through the middle position.
In another embodiment of the present invention, the soft-close cabinet slide assembly can include a cabinet for receiving a drawer, with the drawer having a front end, a rear end, and a middle region in between the front and rear ends. The soft-close cabinet slide assembly can also include at least one slide mechanism coupling the drawer to the cabinet to permit movement of the drawer through a middle position between a fully open position and a fully closed position. A forcing means for exerting an extension force can also be included in the soft-close cabinet slide assembly. The forcing means can include a mechanical spring, a gas spring, a gas spring with a damper, or other equivalents. The forcing means can have a first end coupled proximate the front of the cabinet and a second end coupled to the middle region of the drawer. The forcing means can be movable between an extension position and a compressed position, with the forcing means being situated to facilitate a reduction of speed of the drawer as the drawer approaches the fully closed position. The forcing means preferably achieves the compressed position when the drawer is at the middle position, and achieves the extension position when the drawer is at either the fully open position or the fully closed position. The drawer preferably moves passed the middle position from either the fully open position or the fully closed position by an external force.
One feature of the soft-close cabinet slide assembly of the present invention is the soft-close action of the drawer, and thus the reduction of effort by an operator, when the drawer is closing. Another feature of the soft-close cabinet slide assembly of the present invention is the soft-open action of the drawer, and thus the reduction of effort by an operator, when the drawer is opening. Yet, another feature is the simple manner by which the soft-close cabinet slide assembly achieves the soft-close action, the soft-open action, or both. For instance, as the drawer leaves the middle position, the forcing means or the gas of the gas spring exerts an extension force on the drawer to cause the drawer to accelerate with an increase in speed to either the fully closed position or the fully open position. As the piston and rod of the gas spring approaches a fully extended position, the piston contacts oil within the cylinder. The oil is forced to pass through an orifice in the piston, thereby causing the drawer to decelerate to perform the soft-close action, the soft-open action, or both, as the drawer moves relative to the cabinet.
Other features and advantages of the present invention will become apparent to those skilled in the art from the following disclosure of preferred embodiments of the present invention exemplifying the best mode of practicing the invention. The following disclosure references the accompanying drawings illustrating the preferred embodiments.
a is a top view of a soft-close cabinet slide assembly shown without a cabinet, depicting a gas spring and a drawer at a middle position.
b is a top view of a soft-close cabinet slide assembly shown without a cabinet, depicting a gas spring and a drawer at a fully open position.
c is a top view of a soft-close cabinet slide assembly shown without a cabinet, depicting a gas spring and a drawer at a fully closed position.
Referring to the drawings, where like reference numerals are used throughout the various views to designate like components, and more particularly to
According to
Referring to
The soft-close cabinet slide assembly 10 also includes a forcing means 30 for exerting an extension force. The forcing means 30 can include: a mechanical spring, a gas spring that provides a controlled extension force with or without a damper, or other equivalents known in the art. A preferred embodiment of the present invention includes a gas spring 32. Referring to
Referring to
The gas spring 32 can move between an extension position 40 and a compressed position 42. The extension position 40 can be when the rod 35 is at 100 percent extension, or fully extended, or less than 100 percent extension. The compressed position 42 can be when the rod 35 is at 100 percent compression, or fully retracted, or less than 100 percent compression. In other words, the rod 35 need not be fully extended to reach the extension position 40, and the rod 35 need not be fully compressed to reach the compressed position 42. When the gas spring 32 achieves the compressed position 42, the drawer 14 can be moving through a middle position 50, as illustrated in
When the gas spring 32 achieves the extension position 40, or being less compressed than the compressed position 42, the drawer 14 can be positioned at either the fully open position 26 (see
The gas spring 32 can be located anywhere on the drawer 14 or cabinet 12 as appreciated by those of ordinary skill in the art. According to
In general, an operator of one of the embodiments of the soft-close cabinet slide assembly 10 can apply an external force 60 on the drawer 14 to place the drawer 14 in either the fully open position 26 or the fully closed position 28. Referring to
Referring to
As the drawer 14 leaves the middle position 50 to approach the fully closed position 28 or fully open position 26, the piston and rod 35 of the gas spring 32, because of the force of the gas, exert an extension force on the drawer 14 and load 8, which causes the drawer 14 to accelerate with an increase in speed. As a result, the piston and rod 35 of the gas spring 32 approaches the extension position 40 or a fully extended position, where the piston contacts oil within the cylindrical tube 31, causing the oil to pass through the orifice in the piston. Thus, the drawer 14 experiences a reduction of speed, or decelerates, and gives a soft-open action when the drawer 14 is at the fully open position 26 and/or a soft-close action when the drawer 14 is at the fully closed position 28.
Alternatively, as the drawer 14 is experiencing an increase in acceleration, the drawer 14 can be prevented from moving passed the fully open position 26 and/or the fully closed position 28 by physical stops positioned on the slide mechanism 20 and/or drawer 14. For example, the face 62 of the cabinet 12 can engage the overhang 64 of the face of the drawer 14 to stop the drawer 14. Here, the area 66 of movement of the drawer 14 between the middle position 50 and the fully closed position 28 is small enough, where the soft-close action is executed by the slower acceleration of the drawer 14 moving toward the interior 13 of the cabinet 12, represented by arrow 69. The drawer 14 can also experience a slower acceleration to execute the soft-open action as the drawer 14 moves away from the interior 13 of the cabinet 12. The soft-close cabinet slide assembly 10 can perform only the soft-close action or only the soft-open action, or can perform both the soft-close action and the soft-open action.
From the forgoing description of the structure and operation of a preferred embodiment of the present invention, it will be apparent to those skilled in the art that the present invention is susceptible to numerous modifications and embodiments within the ability of those skilled in the art and without exercise of the inventive facility. Accordingly, the scope of the present invention is defined as set forth of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2934390 | Wright | Apr 1960 | A |
4575879 | Cabral et al. | Mar 1986 | A |
4720154 | Seiter | Jan 1988 | A |
5201512 | Rabin | Apr 1993 | A |
5409308 | Reuter et al. | Apr 1995 | A |
5524979 | Carson et al. | Jun 1996 | A |
5634702 | Fistonich | Jun 1997 | A |
6336692 | Snyder | Jan 2002 | B1 |
6553617 | Salice | Apr 2003 | B1 |
6615450 | Salice | Sep 2003 | B2 |
6702411 | Helver | Mar 2004 | B2 |
6752478 | Francz | Jun 2004 | B1 |
6799663 | Dubach | Oct 2004 | B2 |
6932200 | Booker et al. | Aug 2005 | B2 |
20030089565 | Salice | May 2003 | A1 |
20050264144 | Verbeek et al. | Dec 2005 | A1 |
20070024166 | Sung | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
1635025 | Mar 2006 | EP |
1790251 | May 2007 | EP |
WO 2009109536 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090295262 A1 | Dec 2009 | US |