1. Field of the Invention
The present invention relates to a soft-closing device, and more particularly to a soft-closing device for a sliding door to provide a buffering effect and an auto-positioning effect to the sliding door.
2. Description of Related Art
A sliding door panel can be slid along a rail by power to close or open a path. However, the sliding door panel easily bumps against a doorframe or a wall due to a rapid moving speed of the door panel, and this easily causes the door panel or the doorframe being damaged. Therefore, a resilient buffering pad/block is mounted on the rail to keep the door panel from bumping against the doorframe or the wall when the door panel is moved to an original position, such as a completely opened or closed position. With the resilient buffering pad/block, the sliding door panel and the doorframe can be kept from being damaged.
However, the resilient buffering pad/block will provide a rebounding force to the door panel when the door panel abuts with the buffering pad/block. Thus, the door panel will be rebounded separately from the original position due to the rebounding force, so that the sliding door cannot be positioned at the desired position. Additionally, noise easily generates due to vibration of the sliding door occurred by the door panel bumping with the buffering pad/block.
The main objective of the invention is to provide a soft-closing device for a sliding door to provide a buffering effect and an auto-positioning effect to the sliding door. The soft-closing device comprises a base, a cylinder, a slider and a resilient member. The base has a chamber defined in the base, a track channel and at least one guiding channel. The track channel is defined in an outer surface of the base and communicates with the chamber. The at least one guiding channel is defined in the outer surface of the base and communicates with the chamber. Each guiding channel has an end provided with a positioning recess. The cylinder is mounted in the chamber of the base and comprises a housing and an expansion rod retractably mounted on the housing. The slider is mounted slidably in the chamber along the track channel, extends out from the base via the track channel, is connected pivotally to the expansion rod of the cylinder and comprises a body, two holding arms and a positioning pin. The holding arms are respectively formed on and protrude from the ends of the body to define a holding recess between the holding arms. The positioning pin is mounted on the body and is mounted slidably in the at least one guiding channel in the base. The resilient member is mounted in the chamber and has two ends connected respectively with the base and the slider.
With reference to
The base (10) may be elongated, is hollow and has a chamber (12), a track channel (13) and at least one guiding channel (14). The chamber (12) is defined in the base (10), may be defined in the outer surface of the body (10) and has an opening in the outer surface of the body (10). The track channel (13) is defined longitudinally in the outer surface of the base (10) and communicates with the chamber (12). The at least one guiding channel (14) is defined longitudinally in the outer surface of the base (10) and communicates with the chamber (12). Preferably, the base (10) has two guiding channels (14) aligning with each other. Each guiding channel (14) has an end provided with a positioning recess (142) being oblique to the guiding channel (14).
The cylinder (20) may be a hydraulic or pneumatic cylinder, is mounted in the chamber (12) and comprises a housing (22) and an expansion rod (24). The housing (22) contains hydraulic or pneumatic pressure inside. The expansion rod (24) is retractably mounted on and extends out from the housing (22). With the pressure in the housing (22), a damping and resistance force is applied to the expansion rod (24) when the expansion rod (24) is expanded from or retracted into the housing (22).
To hold the cylinder (20) in the opened chamber (12) of the base (10), the base (10) further has a securing tab (18) and multiple securing members (19) to hold the cylinder (20) in position. The securing tab (18) is inserted into the chamber (12) via the opening and has a securing recess (182) defined in a side edge of the securing tab (18) and holding one end of the housing (22) inside. The securing tab (18) further has an engaging recess (184) defined in a side edge of the securing tab (18). The securing members (19) are mounted through two sides of the opening of the chamber (12) to keep the cylinder (20) from escaping from the chamber (12).
The slider (30) is mounted slidably in the chamber (12) along the track channel (13), extends out from the base (10) via the track channel (13), is connected pivotally to an end of the expansion rod (24) and comprises a body (32), two holding arms (33,332), a positioning pin (36), a connection portion (34) and a guiding pin (342).
The holding arms (33,332) are respectively formed on and protrude from two ends of the body (32) to define a holding recess between the holding arms (33,332). The holding recess engages a connecting rod (70) that is mounted slidably on the rail (62) and connected securely to a door panel (60) of the sliding door. With the engagement between the holding recess and the connecting rod (70), the slider (30) can be moved with the door panel (60) while the door panel (60) is moving. The positioning pin (36) is mounted on the body (32) and is mounted slidably in the guiding channels (14).
The connection portion (34) is mounted on one side of the body (32) and has two ends. One end of the connection portion (34) is connected pivotally to the end of the expansion rod (24), and the positioning pin (36) is mounted on the other end of the connection portion (34). The guiding pin (342) is mounted on the connection portion (34) at the end that is connected pivotally to the end of the expansion rod (24) and mounted slidably in the guiding channels (14).
The resilient member (40) may be a spring, is mounted in the chamber (12) and has two ends connected respectively with the base (10) and the slider (30). One end of the resilient member (40) is connected to the connection portion (34) at the end on which the positioning pin (36) is mounted. One end of the resilient member (40) is connected to and engages the engaging recess (184).
With reference to
When the door panel (60) is moved to the original position by power, with reference to
With the pressure in the cylinder (20), a rebounding force is prevented from being applied to the door panel (60), and vibration and noise can be avoided.
Moreover, during the movement of the door panel (60) toward the original position, the resilient member (40) can provide a recoil force to slider (30) to make the door panel (60) moving to and being positioned actually at the original position. Accordingly, an auto-positioning effect is provided to the door panel (60) by the recoil force of the resilient member (40). When the slider (30) is moved to retract the expansion rod (24) into the housing (22), the pressure in the cylinder (20) will provide a damping and resistance force against the slider (30), but the resilient member (40) provides a recoil force to the slider (30).
In practice, the forces provided by the cylinder (20) and the resilient member (40) can be arranged in reverse to that shown in the drawings. This means that the expansion rod (24) will be expanded from the housing (22) and the cylinder (20) provides a damping and resistance force to the slider (30) when the door panel (60) is moved toward the original position. At this time, the resilient member (40) is compressed.