Soft filled prosthesis shell with variable texture

Information

  • Patent Grant
  • 9808338
  • Patent Number
    9,808,338
  • Date Filed
    Friday, September 30, 2016
    7 years ago
  • Date Issued
    Tuesday, November 7, 2017
    6 years ago
Abstract
A soft prosthetic implant, such as a silicone breast implant, is provided. The implant has a variety of different surfaces, for example, different textures, located on different areas of the outer surface of the implant.
Description
FIELD OF THE INVENTION

The present invention relates to soft prosthetic implants and, more particularly, to textured exterior surfaces of such implants, for instance, breast implants.


BACKGROUND OF THE INVENTION

Implantable prostheses are commonly used to replace or augment body tissue. In the case of breast cancer, it is sometimes necessary to remove some or all of the mammary gland and surrounding tissue, which creates a void that can be filled with an implantable prosthesis. The implant serves to support surrounding tissue and to maintain the appearance of the body. The restoration of the normal appearance of the body has an extremely beneficial psychological effect on post-operative patients, eliminating much of the shock and depression that often follows extensive surgical procedures. Implantable prostheses are also used more generally for restoring the normal appearance of soft tissue in various areas of the body, such as the buttocks, chin, calf, etc.


Soft implantable prostheses typically include a relatively thin and flexible envelope or shell made of vulcanized (cured) silicone elastomer. The shell is filled either with a silicone gel or with a normal saline solution. The filling of the shell takes place before or after the shell is inserted through an incision in the patient.


In the United States, women can choose between two different types of breast implant shell surfaces: a smooth surface and a textured surface. The surgeon generally recommends the type of surface based on his or her technique and the shape of the breast implant chosen to best fit the needs of each patient.


Breast implants are not without complications, one of which is termed capsular contracture. This is a complication that occurs upon contraction of a fibrous outer capsule that forms around the implant, which tends to render the implant spherical and stiff and aesthetically undesirable. According to the United States Food and Drug Administration's (FDA) Breast Implant Consumer Handbook (2004), the literature shows that textured surface breast implants may decrease the capsular contracture rate.


Texturing may be provided in a number of ways. Silicone gel breast implants covered with a thin layer of textured polyurethane foam enjoyed considerable popularity in the 1980s because of their remarkable resistance to the early development of fibrous capsular contracture. For example, U.S. Pat. No. 3,293,663 describes a soft gel-filled prosthesis with a porous polyester fabric on the back side for tissue ingrowth and anchoring to the chest wall. Although these devices are no longer available in the U.S. because of regulatory constraint, their medical and commercial success stimulated interest in surface texturization of silicone implants.


Despite many advances in the development of safe and comfortable prosthetic implants, there remains room for improvement.


SUMMARY OF THE INVENTION

The present invention provides a prosthesis suitable for implantation in a human being, for example, a breast implant suitable for use in reconstruction or augmentation of the human breast. The prosthesis generally comprises an implantable member, for example, an elastomeric shell that is filled or is fillable with a liquid or gel. The implantable member has an exterior surface including one or more fixation regions defined thereon and configured, positioned or structured to provide enhanced or controlled tissue ingrowth or adhesion.


In accordance with one aspect of the invention, the fixation surfaces are discrete surface portions extending across an anterior face or a posterior face of the implant. These fixation surfaces, sometimes herein referred to as “fixation regions,” are generally defined by a texture, roughness or sheen that is different from a texture, roughness or sheen of adjacent surface portions of the implant.


In some embodiments, the fixation regions have an increased or enhanced texture relative to the balance of the anterior face or posterior face of the implant. In other words, the balance of the exterior surface may be relatively less textured than the fixation regions. In some embodiments, the fixation regions are textured and adjacent surfaces, for example, the surface or surfaces that are not defined by the fixation regions, are substantially less textured, or are relatively smooth.


The prosthesis may be structured to encourage enhanced tissue ingrowth or adhesion at the fixation regions, relative to an otherwise identical surface without such texture, roughness or sheen.


In one aspect of the invention, the fixation regions are positioned and/or configured such that the prosthesis, after implantation in the body, moves more naturally with the human body, for example, in relative unity with the muscles of the body. It is contemplated that because the implant moves more naturally with the human body, the implant may be less prone to wear resulting from material stresses relative to conventional implants, for example, implants without such fixation regions. Furthermore, it is contemplated that the present implants will be more comfortable to the patient in that they will move more naturally with the body.


In a more specific aspect of the invention, the fixation regions may be located at specific regions on an anterior face of the shell, that is, a face of the shell which faces the front of the human body when the implant has been appropriately implanted in the human body. Alternatively or additionally, one or more discrete fixation surfaces may be provided on a periphery of the shell (e.g. circumferentially) and/or on the posterior face of the shell, that is, the face of the shell that faces the back of the human body when the implant has been implanted in the human body.


In an even more specific aspect of the invention, the fixation regions comprise at least one elongated region located on the anterior face of the shell. The at least one elongated region may be, for example, a band-shaped region or alternatively, a plurality of band shaped regions having enhanced texture, roughness or sheen.


In another broad aspect of the invention, the prosthesis comprises a breast implant having a shell including a fixation region having a first texture and a balance of the shell surface having a second texture that is different from the first texture. In other words, in some embodiments of the invention, the entire, or substantially entire, exterior of the breast implant shell is a textured surface with specific regions thereof having a greater degree of texturing relative to the remaining portions of the textured surface.


It is contemplated that such different texturing will stimulate or encourage different degrees of tissue ingrowth or adhesion at the different fixation regions. For example, in one embodiment, the first fixation region is located on a posterior face of the implant and the second fixation region is located on an anterior face of the implant. The first fixation region may be defined by a texture that is more conducive to tissue interaction and adhesion whereas the second fixation region may be defined by a texture that is relatively less conducive to tissue interaction and adhesion.


In yet another aspect of the invention, the prosthesis comprises a shell having an exterior structured to contact tissue, the shell including a first fixation surface having a first open cell structure, and a second fixation surface having a second open cell structure different than said first open cell structure. In addition, the first fixation surface and the second fixation surface are positioned to encourage respectively different degrees of tissue ingrowth or tissue adhesion by the body at a body-shell interface.


For example, the first open cell structure comprises relatively large open cells and the second open cell structure comprises relatively smaller open cells. Alternatively or additionally, the first open cell structure may comprise a first distribution of cells and the second open cell structure comprises a second distribution of cells wherein the first distribution of cells is relatively more dense than the second distribution of cells.


In yet another specific aspect of the invention, the first open cell structure comprises relatively large rounded open cells and the second open cell structure comprises relatively small rounded open cells. Alternatively, the first open cell structure comprises relatively rounded open cells and the second open cell structure comprises relatively angular open cells.


Advantageously, in accordance with certain embodiments, the first and second fixation surfaces are positioned and structured to be at least somewhat effective to disrupt or disorient capsular tissue formation about the prosthesis after the prosthesis has been implanted in the body.


The present invention further provides a breast prosthesis shell for implantation in a human being, the shell manufactured by the steps of providing a shell precursor; applying a layer of silicone elastomer to the shell precursor, applying solid particles of a first configuration to a portion of the layer of silicone elastomer and applying solid particles of a second configuration to another portion of the layer of silicone elastomer before the layer is fully cured. After the layer including the solid particles embedded therein is cured, the solid particles are then dissolved, for example, by means of a solvent that does not dissolve the silicone elastomer to any appreciable extent. The resulting elastomer shell includes a first open cell texture region formed by said application of the solid particles of the first configuration, and a second open cell texture region formed by said application of the solid particles of the second configuration.


In yet another aspect of the invention, a method of augmenting or reconstructing a breast of a human being is provided. The method generally comprises providing an implantable member including at least one elongated fixation region as described elsewhere herein and implanting the implantable member into a breast of a human being such that the fixation region generally aligns with one of the pectoralis major muscle group and the pectoralis minor muscle group. The method may further comprise filling the implantable member with a liquid or gel prior to or after the implanting step.


A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become appreciated as the same become better understood with reference to the specification, claims, and appended drawings wherein:



FIGS. 1A-1B are a front view and a side elevational view, respectively, of an exemplary round breast implant of the present invention;



FIGS. 2A-2B are a front view and side elevational view, respectively, of an exemplary shaped breast implant of the present invention;



FIGS. 3A and 3B are schematic views of a woman's upper torso showing, alignment of the pectoralis major muscle group and the pectoralis minor muscle group, respectively;



FIGS. 4A and 4B are vertical sectional views through a woman's breast and adjacent chest anatomy showing, respectively, subglandular and submuscular placement of a breast implant;



FIGS. 5A-5B are front and side elevational views of an exemplary round breast implant of the present invention having a generally elongated or band-shaped fixation surface;



FIGS. 6A-6B are front and side elevational views of an exemplary shaped breast implant of the present invention having a generally elongated or band-shaped fixation surface;



FIG. 7 is a front elevational view of another breast implant in accordance with the invention including a first fixation region having a first texture and a second fixation region having a second texture different from the first texture;



FIGS. 8A and 8B are front and rear elevational views of an exemplary round breast implant of the present invention having a front texture and a rear texture that are different from one another;



FIG. 9 is a side view of a breast implant in accordance with another embodiment of the invention;



FIG. 10 is a side view of a breast implant in accordance with yet another embodiment of the invention; and



FIG. 11 is a side view of a breast implant in accordance with yet a further embodiment of the invention.





DETAILED DESCRIPTION

The present invention provides a saline- or gel-filled soft implant shell, preferably a silicone elastomer shell, with a fixation surface over an exterior portion. The primary application for such soft implants is to reconstruct or augment the female breast. Other potential applications are implants for the buttocks, testes, or calf, among other areas.


The terms “fixation surface” or “fixation region”, as used herein, generally refer to a region or portion of an exterior surface of an implant which is positioned, structured or adapted to encourage tissue ingrowth or adhesion at a body/implant interface. For example, a fixation region may be a texture, roughness or sheen that is distinct from, for example, more pronounced than, adjacent surfaces of the implant which do not encourage tissue ingrowth of adhesion to the same degree as the fixation region. For example, other regions or surfaces of the implant exterior may be relatively smooth or less textured relative to the fixation regions.


Such a fixation region may be formed by any suitable means, for example, but not limited to, a salt removal process such as described in U.S. Pat. No. 5,007,929, with appropriate changes being made. Alternatively, the fixation surfaces may be formed by separate textured elements such as textured patches or films adhered to the outside of an otherwise “smooth” or less textured implant. Still, another method for forming the discrete fixation regions may be by using a relatively roughened surface portion of a mold used to form the implant. Another method for forming the present fixation regions includes texturing the exterior of the implant after formation. The present invention should not be considered limited to any particular type of texturing or fixation surface, though there might be certain advantages with one or more of these techniques.


Turning now to the Figures, FIGS. 1A and 1B are front and side elevational views of an exemplary round breast implant 20. Generally, the implant 20 comprises an exterior surface defined by a relatively smooth anterior face 21, a textured posterior face 22 and a textured peripheral region 24 located between the anterior face 21 and the posterior face 22. The relatively smooth anterior face may be a relatively less textured surface (relative to texture of posterior face 22), such as, for example, a fine textured surface or even a matte finish. In some embodiments, the implant 20 has a relatively smooth posterior face, a textured anterior face and a textured or smooth peripheral region. The fixation surfaces 22, 24 themselves may have differing degrees of texturing. The diameter D and front-to-back thickness T of the implant are shown and vary depending on the patient's chest size and aesthetic considerations.


In the shown embodiment, the rear fixation surface 22 extends to the apex 26 or generatrix of the convex outer periphery of the implant 20. The peripheral fixation surface 24 continues forward a short distance S onto the anterior or front surface 21. In some embodiments, the distance S is between about 10% and about 30% of the thickness T. In some embodiments, the peripheral fixation surface 24 extends substantially entirely around the periphery of the implant 20, such that the implant 20 is axi-symmetric. In other embodiments, the peripheral fixation surface 24 may be abbreviated so as to extend around only a portion of the periphery of the implant, such as the inferior or superior half, or the peripheral fixation surface may be broken up into spaced apart segments. In some embodiments, the peripheral fixation surface 24 comprises substantially evenly spaced segments resulting in alternating smooth and textured areas.



FIGS. 2A-2B illustrate an exemplary shaped breast implant 30 of the present invention having an inferior frontal lobe 32 simulating a natural breast. Like implant 20, implant 30 includes a rear fixation surface 34 and a peripheral fixation surface 36. The width W, height H, and front-to-back thickness T of the implant are shown. If the front projection is round, then W=H, otherwise W may be greater than or less than H. When provided with a natural shape, the implant 30 has a proper orientation, namely with the inferior lobe 32 at the lower center. Accordingly, the peripheral fixation surface 36 may extend completely around the periphery of the implant, or may be formed in discrete areas and be oriented relative to the natural shape of the implant. For example, the peripheral fixation surface 36 may be formed only around the inferior or lower half of the implant, or may be formed only on the sides.



FIG. 3A illustrates a woman's upper torso schematically showing on one side placement and alignment of the pectoralis major muscle group, while FIG. 3B illustrates the placement and alignment of the pectoralis minor muscle group. These two muscle groups overlap one another and extend generally from the shoulder or collarbone region to the rib cage underneath the breast. One aspect of the present invention is to provide an implant including fixation surfaces such as described elsewhere herein, which are substantially aligned with these muscle groups when the implant is placed in the body.


While not wishing to be bound by any specific theory of operation, the regions or lines of contact of the implant with the primary chest muscles experience greater movement than other areas of the implant not interfacing the muscles. It is believed by the present inventors that by providing a fixation region of the implant that is substantially coincident with or in substantial alignment with one or more of these muscle groups is more likely to remain secured (i.e., they move with the muscle). In addition, it is contemplated that such discrete fixation regions may provide the benefit of disrupting capsule formation and/or reducing the potential for capsular contraction.



FIG. 4A is a vertical sectional view through a woman's breast and adjacent chest anatomy showing a subglandular placement of a breast implant 40. The implant 40 is positioned over the top of the pectoralis major muscle group 42, which in turn overlays the pectoralis minor muscle group 44. The chest wall 48 showing a plurality of ribs 50 is also indicated underneath the pectoralis minor muscle 44. FIG. 4B is a vertical sectional view as in FIG. 4A but showing a submuscular placement of the implant 40, underneath the pectoralis major muscle group 42. Both these two implant placements are utilized primarily depending on the surgeon's clinical determination, sometimes influenced by a dialogue between patient and the surgeon and desired outcome. Depending on the implant placements, the implant 40 may be in contact with one or both muscle groups. In some embodiments of the invention, the implant includes substantially elongated fixation regions as described and shown herein, and said fixation regions being in substantial alignment with the appropriate muscle group which interface the implant when the implant is placed in the body.


For example, FIGS. 5A-5B are front and side elevational views of an exemplary round breast implant 60 of the present invention having a posterior face 62, a peripheral region 64, and an anterior face including an elongated or band-shaped fixation region 66. The band-shaped fixation region 66 extends generally along a diagonal angle and commences at the front border of the peripheral fixation surface 64. The illustrated embodiment, the fixation region 66 has a substantially constant width W as seen from the front in FIG. 5A. In one embodiment, the width W is between about 1 mm to about 20 mm, for example, between about 2 mm to about 15 mm. Alternatively, although not shown, the fixation region 66 may have a configuration that is other than a constant width.


In one embodiment, the band-shaped fixation surface 66 is generally oriented or aligned with either the pectoralis major muscle group or pectoralis minor muscle group when the implant is implanted in the breast. For instance, if the implant 60 is destined for a submuscular placement such as in FIG. 4B, the fixation surface 66 may be oriented to be generally aligned with the pectoralis major muscle group, as seen in FIG. 3A. Alternatively, the angle at which the insertion surface 66 is oriented may be an approximation of the average angle of the pectoralis major and pectoralis minor muscle groups. In this way, the implant 60 has a fixation surface 66 to encourage tissue ingrowth or adhesion along the major stress lines of the implant. Preferably, the fixation surface 66 is angled between about 30-60° with respect to a vertical plane through the implant 60. Of course, if the implant 60 is round as shown, the fixation surface 66 itself defines the orientation thereof. In one embodiment, the band-shaped fixation surface 66 is centered about the center of the implant 60, therefore creating two symmetric orientations about 180° apart. This arrangement facilitates implant by providing two possible orientations for the surgeon.


The band-shaped fixation region 66 may extend substantially across the anterior face of the implant and may be defined by a texture that is different from a balance of the anterior face. The fixation region 66 may also have a different texture, for example, a more pronounced or more aggressive texture, than the rear fixation surface 62 or peripheral surface 64.



FIGS. 6A-6B illustrate another exemplary shaped breast implant 70 of the present invention. The implant 70 again features a rear fixation surface 72, a peripheral fixation surface 74, and a plurality of separate band-shaped fixation surfaces 76a, 76b, 76c. These discrete fixation surfaces 76a, 76b, 76c are positioned or configured to align with one or more of the muscle groups described above. For example, the three fixation surfaces 76a, 76b, 76c may be generally oriented relative to the fan-shaped pectoralis minor muscle group. Because the shaped implant 70 is orientation-specific, proper placement of the implant orients the fixation surfaces 76a, 76b, 76c with the particular muscle group. As mentioned above, the various fixation surfaces 72, 74, 76a, 76b, and 76c may be formed with a similar level of roughness, or some may be less textured, such as with a matte finish. For instance, the rear and peripheral fixation surfaces 72, 74 may have a fine, matte finish, while the frontal fixation surfaces 76a, 76b, 76c are more densely textured. The present invention contemplates all permutations of texturing choices.


In cross-section, the textured implant shells of the present invention may be single- or multi-layered. The overall thickness of the textured implant shell wall may be somewhat greater than a similar smooth-walled shell because of the extra layers of texture.


Turning now to FIG. 7, an anterior (front) view of another breast implant of the present invention is shown generally at 110. The implant 110 includes a shell 112 having an exterior surface including a first fixation region 114 having a first texture 116 and a second fixation region 118 having a second texture 122 that is different from the first texture 116. In the shown embodiment, the first texture 116 is a more “aggressive” texture than the second texture 122. The first texture 116 is structured to encourage a greater degree of tissue interaction than the second texture 122.


In lieu of the second texture 122, it is contemplated that the second fixation region 118, and perhaps the entire balance of the exterior of the shell 112, may be a low sheen surface, for example, a matte finish.


Turning now to FIGS. 8A and 8B, anterior (front) and posterior (rear) views, respectively, of another breast implant in accordance with the invention are shown generally at 210. The implant 210 includes a shell 212 having an anterior face 212a and a posterior face 212b, and including a first fixation region 214 having a first texture 216 and a second fixation region 218 having a second texture 222 that is different from the first texture 216. In the shown embodiment, the first texture 216 may encompass the entire, or substantially entire, anterior face 212a of the implant 210. The first texture 216 is defined by a first distribution of pores, crevices or caverns that is relatively less dense than that of the second texture 222. The second texture 222, which may encompass the entire, or substantially entire, posterior face 221b of the implant 210, may be structured to encourage a greater degree of tissue interaction and adhesion than that of the first texture 216.


In another aspect of the invention, a breast implant is provided, the implant comprising an elastomeric shell comprising a first region and a second region, and an outer surface, the first region defined by a first textured surface of the shell; and the second region defined by a second surface of the shell that is different from the first textured surface of the shell. In some embodiments, the first textured surface is substantially defined by interconnected pores extending a depth of between about 0.2 mm to about 5.0 mm into the shell outer surface.


In some embodiments, the interconnected pores of the first textured surface extend at least about two to about five pore diameters deep into the shell outer surface. Such a surface can be made using alternating porogens and elastomer on the surface of the breast implant shell, to gain the desired depth of porosity, fusing the porogens, and removing the porogens to leave the interconnected porous structure that overlies a non-porous layer of the shell which contains the silicone gel filling.


For example, the pores may be made with dissolvable porogen beads, having a diameter of between about 100 micron to about 1000 micron, between about 200 micron to about 800 micron, or a diameter of between about 300 micron to about 700 micron, or a diameter of between about 400 micron to about 600 micron.


In some embodiments, the size of the pores of the porous textured surface will be somewhat equivalent to the size of the porogens used to form the pores. In some embodiments, at least about 50%, or about 80%, or about 70% ort about 80%, or about 90% of the pores have a diameter of a uniform size, for example, a diameter of about 100 micron, about 200 micron, about 300, micron, about 400 micron, about 500 micron, about 600 micron, about 700 micron, about 800 micron, about 900 micron or about 1000 micron or greater.


In some embodiments, the pores have a diameter of between about 100 micron to about 1000 micron, for example, wherein at least about 50%, or about 60%, or about 70%, or about 80%, or about 90% of the pores have a diameter in a range of between about 100 micron to about 1000 micron, between about 200 micron to about 800 micron, between about 300 micron to about 700 micron, or between about 400 micron to about 600 micron.


For example, in one embodiment, the first textured surface is defined by pores extending about 2 to about 5 pores deep and about 90% of the pores have a diameter of between about 400 micron to about 600 micron. The second surface in this and other embodiments may comprise a second textured surface defined by pores extending no greater than about one pore deep into the shell outer surface.


In some embodiments, the second surface is a substantially smooth surface, or a less porous surface, or a less textured surface, or is a surface that allows for less tissue ingrowth, relative to the first textured surface.


In one embodiment, a breast implant having a variable textured surface is provided, the implant comprising an elastomeric shell comprising a first region and a second region, an outer surface, and an anterior side and a posterior side, the first region defined by a first textured surface of the shell, the first textured surface being substantially defined by interconnected pores extending at least about two to about five pore diameters deep to a depth of between about 0.8 mm to about 3.0 mm into the shell outer surface, wherein the pores have a diameter of between about 400 micron to about 600 micron; and the second region defined by a second surface of the shell that is different from the first textured surface of the shell, the second surface defined by a surface selected from a group of surfaces consisting of a smooth surface, a second textured surface that is less porous than the first textured surface, a third textured surface having concavities extending no greater than about one pore deep into the shell outer surface, and a fourth textured surface having concavities extending less than one pore deep into the shell outer surface.


Further still, such as shown in FIGS. 9-11 to be discussed hereinafter, the first region, comprising a region more textured or more conducive to tissue ingrowth, may be disposed on at least a portion of an anterior side of the shell, and the second region comprising a relatively smooth, or less textured, or less conducive to tissue ingrowth, may be being disposed on at least a portion of a posterior side of the shell. Such an implant in accordance with this embodiment is structured to facilitate surgical removal of the implant from a patient. For example, the implant provides for easier surgical removal relative to an implant that is fully textured on all of the outer surfaces of the implant.


For example, the first surface of the implant, disposed at least in part on the anterior side of the implant, and having a deeply porous texture than the second surface, provides a structure for greater tissue integration and may also reduce capsular formation and/or capsular contraction. The posterior side of the implant may be smooth or may include a lighter, less porous texture which provides for minimal tissue integration. In some instances, the pore size of the first textured surface and the pore size of the second textured surface may be substantially the same, with the depth of porosity being the distinction between the two surfaces. In another embodiment, the pore size may be different between the two surfaces, but with the first textured surface providing for greater tissue integration than the second surface.


In these embodiments, the present implant is structured to provide certain aesthetic and surgical advantages over prior art implants. Surgically, for example, the anterior portion of the implant can be readily accessed through the original incision, for example inframammary incision, and the integrated tissue can be visualized and surgically separated from the more textured surfaces of the implant. The posterior side of the implant, which is by nature more difficult to access surgically access, can be separated from the tissue by simple finger dissection of peeling away of the implant due to its minimal tissue integration. Aesthetically, tissue adherence advantageously can maintain a desired position of the implant in the breast, preventing rotation or migration, and maintaining correct orientation of anatomically shaped implants.



FIGS. 9, 10 and 11 show additional embodiments of the invention in which first and second surface textures are located on different regions of an implant in accordance with the invention, and which can provide at least one or more of the advantages described above with respect to maintaining correct positioning and facilitating surgical removal if needed.



FIG. 9 is a side view of a breast implant 310 in accordance with one embodiment of the invention. In this embodiment, implant 310 includes a first surface region 316 and a second surface region 322. Second surface region 322 is different, in terms of texture or smoothness, relative to first surface region 316. For example, second surface region 322 is relatively less textured, less porous, and/or less conducive to tissue ingrowth, relative to first surface region 316. In some embodiments, the porosity of first surface region 316 is a multiple-pore depth texture, the porosity of this texture extending from an outer surface 324 of the implant 310 to a depth that is several pores in depth, for example, about 3, 4 or 5 or more pores in depth. In contrast, second surface region may be relatively smooth, untextured, having open cavities, single-pore depth, or half-pore depth, generally lacking deep cavities beneath the surface, or otherwise lacking significant texture conducive to tissue ingrowth relative to first surface region 316. As shown, first surface region 316 may extend on a portion, for example, on a portion of the anterior face of the implant 310, without extending into the outer perimeter region.



FIG. 10 is a side view of a breast implant 410 in accordance with yet another embodiment of the invention. In this embodiment, implant 410 includes a first surface region 416 and a second surface region 422. Second surface region 422 is different, in terms of texture or smoothness, relative to first surface region 416. For example, second surface region 422 is relatively less textured, less porous, and/or less conducive to tissue ingrowth, relative to first surface region 416. In some embodiments, the porosity of first surface region 416 is a multiple-pore depth texture, the porosity of this texture extending to a depth that is several pores in depth, for example, about 3, 4 or 5 or more pores in depth. In contrast, second surface region may be relatively smooth, untextured, having open cavities, single-pore depth, or half-pore depth, generally lacking deep cavities beneath the surface, or otherwise lacking significant texture conducive to tissue ingrowth relative to first surface region 416. As shown, first surface region 416 may extend on a portion, for example, on a lower portion of the anterior face of the implant 410, and second surface region 422 may extend on a portion, for example, an upper portion, of the posterior face of the implant 410.



FIG. 11 is a side view of a breast implant 510 in accordance with yet another embodiment of the invention. In this embodiment, implant 510 includes a first surface region 516 and a second surface region 522. Second surface region 522 is different, in terms of texture or smoothness, relative to first surface region 516. For example, second surface region 522 is relatively less textured, less porous, and/or less conducive to tissue ingrowth, relative to first surface region 416. In some embodiments, the porosity of first surface region 516 is a multiple-pore depth texture, the porosity of this texture extending to a depth that is several pores in depth, for example, about 3, 4 or 5 or more pores in depth. In contrast, second surface region may be relatively smooth, untextured, having open cavities, single-pore depth, or half-pore depth, generally lacking deep cavities beneath the surface, or otherwise lacking significant texture conducive to tissue ingrowth relative to first surface region 516. As shown, first surface region 516 may extend on a portion, for example, on a lower and anterior portion of the implant 510, and second surface region 522 may extend on the posterior face of the implant 510 as well as portions of the anterior face of the implant.


Numerous other arrangements are possible and are considered to be within the scope of the present invention.


One process for forming flexible implant shells for implantable prostheses involves dipping a suitably shaped mandrel into a silicone elastomer dispersion. Many such dispersions are used in the field. Basically they contain a silicone elastomer and a solvent. The silicone elastomer is typically polydimethylsiloxane, polydiphenyl-siloxane or some combination of these two. Typical solvents include xylene or 1,1,1-trichloroethane. Different manufacturers vary the type and amount of the ingredients in the dispersion, the viscosity of the dispersion and the solid content of the dispersion. Nonetheless, the present invention is expected to be adaptable to have utility with a wide variety of silicone rubber dispersions.


The mandrel is withdrawn from the dispersion and the excess silicone elastomer dispersion is allowed to drain from the mandrel. After the excess dispersion has drained from the mandrel at least a portion of the solvent is allowed to volatilize or evaporate. Normally this is accomplished by flowing air over the coated mandrel at a controlled temperature and humidity. Different manufacturers use various quantities, velocities or directions of air flow and set the temperature and humidity of the air at different values. However, the desired result, driving off the solvent, remains the same.


An exemplary process for forming the textured surfaces, or fixation surfaces on a molded silicone shell will now be described. After the mandrel is raised out of the silicone dispersion with what is to be the final layer adhering thereto, this layer is allowed to stabilize. That is, it is held until the final coating no longer flows freely. This occurs as some of the solvent evaporates from the final coating, raising its viscosity.


Once the flexible shell has been stabilized, any loose fibers or particles are removed from the exterior of the shell, for example, with an anti-static air gun. A tack coat layer is then applied. The tack coat layer may be sprayed on, but is desirably applied by dipping the flexible shell on the mandrel into a tack coat dispersion. The operator immerses the flexible shell into the dispersion and returns the mandrel to a rack for stabilization. The time required for stabilization typically varies between 5-20 minutes. A suitable tack coat layer is desirably made using the same silicone dispersion material employed in the base layers.


At this point, dissolvable particles, texturing beads, or porogens (for example, dissolvable sugar or polymer particles) are applied over that portion of the exterior surface to be textured. The solid particles may be applied manually by sprinkling them over the tacky surface while the mandrel is manipulated, or a machine operating like a bead blaster or sand blaster could be used to deliver a steady stream of solid particles at an adequate velocity to the coating on the mandrel. The portion of the shell that is not to be textured may be masked during the application of the particles. One method of particle application is to dip the mandrel/shell into a body of the solid particles or expose it to a suspension of the solid particles.


The tacky flexible shell may then be immersed in a fluidized (air-mixing) aqueous bath of the porogens. After a suitable period of stabilization, such as between about 5-20 minutes, the shells may be dipped into an overcoat dispersion. A suitable overcoat dispersion may be made using the same material employed in the base layers. Alternating layers of porogens and silicone dispersion may be used to create a depth of texturing desired. The coated shells on the mandrels may then be then mounted on a rack and allowed to volatilize, such as, for example, about 15 minutes.


The entire silicone elastomer shell structure may be vulcanized or cured in an oven at elevated temperatures. The temperature of the oven may be kept between about 200° F. and about 350° F. for a curing time preferably between about 20 minutes and about 1 hour, 40 minutes. Upon removal from the oven, the mandrel/shell assembly is placed in a solvent for the porogens, and the porogens allowed to dissolve. The solvent does not affect the structure or integrity of the silicone elastomer. When the porogens have dissolved, the assembly is removed from the solvent and the solvent evaporated. The shell can then be stripped from the mandrel. At this point, it is preferable to place the shell in a solvent for the porogens and gently agitate it to ensure complete dissolution of all the porogens. When the shell is removed from the solvent, the solvent is evaporated.


Dissolving the porogens leaves behind open, interconnected, cavities in the surface of the shell where the porogens had been.


After finishing the shell according to the steps described above, the steps required to make a finished breast implant prosthesis may be similar to those known in the art. For example, an opening left by the dip molding process is patched with uncured sheeting, usually made of silicone rubber. Then, if the prosthesis is to be filled with silicone gel, this gel is added and cured, the filled prosthesis packaged, and the packaged prosthesis sterilized. If the prosthesis is to be inflated with a saline solution, a one-way valve is assembled and installed, the prosthesis is post cured if required, and the prosthesis is then cleaned, packaged and sterilized. A combination breast implant prosthesis can also be made wherein a gel-filled sac is positioned inside the shell to be surrounded by saline solution.


In one aspect of the invention, a breast implant is provided having more significant texturing on the front, or anterior side, of the implant, and is reduced or omitted on the back, or posterior side of the implant to enhance tissue adherence on front of the implant and to reduce tissue adherence to muscle tissue on the back of the implant. For example, in some embodiments, the anterior surface of the implant includes two, three, four, five or more layers of texturing, made for example, by alternating layers of texturing particles with silicone dispersion layers, during the manufacturing process; and the posterior surface includes one layer of texturing made by application of a single layer of texturing particles (not alternated with elastomer). Alternatively, the anterior surface includes two or more layers of texturing and the posterior surface having less or no texturing. In any of the aforementioned embodiments, the depth of the porous structure of first surface region may be a relatively deep porous structure, for example, a porous structure that is multiple pores deep, for example a depth of porosity that is about 3, 4 or more pores in depth. In some embodiments, the pore size, for example, the pore diameter, is based on the size of the particles used to form the texture.


In some embodiments, about 50%, or about 70% or about 80% or about 90% of the particles used to form the texture are generally spherical beads, for example, dissolvable polymer beads, having a diameter of between about 100 micron to about 1000 micron, for example, about 200 micron to about 800 micron, for example, or about 300 micron to about 700 micron, or about 400 micron to about 600 micron in diameter.


In one embodiment, about 90% of the particles used to form the pores are between about 420 micron to about 595 micron in diameter.


In one particularly advantageous embodiment, the depth or thickness of the texture extends between about 0.2 mm to about 5.0 mm, or between about 0.4 mm to about 4.0 mm, or between about 0.8 mm to about 3.0 mm. In one embodiment, about 90% of the particles used to form the pores are between about 420 micron to about 595 micron in diameter, and the depth of the porous portion is between about 0.8 mm to about 3.0 mm.


In some embodiments, the texture of the first surface and/or second surface are made using polymer microspheres, for example, polymer microspheres having the aforementioned particle sizes or distributions. In some embodiments, the texturing is accomplished using one or more of the processes described in U.S. Pat. No. 8,685,296, issued Apr. 1, 2014, U.S. Pat. No. 8,877,822, issued Nov. 4, 2014, and/or in U.S. patent application Ser. No. 13/631,091, filed on Sep. 28, 2012, the entire disclosure of each of these documents being incorporated herein by this specific reference.


For example, a method for making the variable textured implant, for example, may comprise coating a breast implant mandrel with an elastomer base, curing the elastomer base to form a base layer, coating the cured base layer with an elastomer base, coating the elastomer base with porogens to form a porogen layer on the elastomer base. The porogens may comprise a core material and a shell material surrounding the core material. In some embodiments, the porogen comprises a shell material having a melting point temperature that is lower than a melting point temperature of the core material. The method may further comprise coating the porogen coating with another layer of elastomer, coating this layer of elastomer with another coating of porogens, (and, if desired, repeating the elastomer and porogen coating steps until a desired thickness is built up on the mandrel), treating the elastomer and porogen layers built up on the mandrel to cause the porogens to at least partially fuse to one another within the elastomer and causing the elastomer to cure, thereby forming a porogen scaffold comprising fused porogens and cured elastomer. Next, the porogen scaffold is removed from the elastomer, for example, by dissolving the porogens using a suitable dissolute. The porogen scaffold removal results in a textured implant shell having a textured surface comprising interconnected pores. This method may include masking portions of the implant shell during the layering steps to keep the other regions of the implant untextured, e.g. matte, thus producing a breast implant shell having a texture on only a first region of the implant, with a balance of the implant surface being untextured, or matte. Alternatively, the masked portion may be unmasked after the first region has been textured, and the unmasked portion may then be textured using a process different from the first region texturing process, or similar thereto but with fewer layers, for example. For example, after the first region has been textured, the unmasked portion may be layered with only one layer of porogens to produce a second region that has a lightly textured surface, or fewer alternating layers of elastomer and porogens may be used to produce a less textured, less porous, second region of the implant. Many different combinations of these steps may be used to produce the final variable textured implant as described elsewhere herein and having one or more of the surgical and/or aesthetic advantages described herein.


Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the scope of the invention, as hereinafter claimed.

Claims
  • 1. A breast implant comprising: an elastomeric shell comprising a first region and a second region, and an outer surface;the first region defined by a first textured surface; andthe second region defined by a second textured surface, the second textured surface defined by open pores extending no greater than about one pore deep into the shell outer surface;the first textured surface being defined by interconnected pores extending about two to about five pores deep to a depth of between about 0.2 mm to about 5.0 mm into the shell outer surface.
  • 2. The implant of claim 1 wherein the pores have a diameter of between about 100 micron to about 1000 micron.
  • 3. The implant of claim 1 wherein at least about 70% of the pores have a diameter of between about 100 micron to about 1000 micron.
  • 4. The implant of claim 1 wherein at least about 90% of the pores have a diameter of between about 100 micron to about 1000 micron.
  • 5. The implant of claim 1 wherein the pores have a diameter of between about 200 micron to about 800 micron.
  • 6. The implant of claim 1 wherein the pores have a diameter of between about 300 micron to about 700 micron.
  • 7. The implant of claim 1 wherein the pores have a diameter of between about 400 micron to about 600 micron.
  • 8. The implant of claim 1 wherein at least about 90% of the pores have a diameter of between about 400 micron to about 600 micron.
  • 9. The implant of claim 1 wherein the first textured surface is defined by interconnected pores extending two to five pores deep.
  • 10. The implant of claim 1 wherein the comprise negative impressions of texturing particles.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/714,058, filed on May 15, 2015, which claims priority to, and the benefit of, U.S. Provisional Patent Application No. 61/994,772, filed on May 16, 2014, the entire disclosure of each of which is incorporated herein by this specific reference.

US Referenced Citations (314)
Number Name Date Kind
2324735 Spanel Jul 1943 A
2805208 Roche Sep 1957 A
3189921 Pangman Jun 1965 A
3293663 Cronin Dec 1966 A
3366975 Pangman Feb 1968 A
3559214 Pangman Feb 1971 A
3600718 Boone Aug 1971 A
3665520 Perras May 1972 A
3700380 Kitrilakis Oct 1972 A
3852832 McGhan et al. Dec 1974 A
3934274 Hartley Jan 1976 A
4034751 Hung Jul 1977 A
4157085 Austad Jun 1979 A
4231979 White Nov 1980 A
4237237 Jarre et al. Dec 1980 A
4264990 Hamas May 1981 A
4298997 Rybka Nov 1981 A
4298998 Naficy Nov 1981 A
4329385 Banks May 1982 A
4428082 Naficy Jan 1984 A
4433440 Cohen Feb 1984 A
4470160 Cavon Sep 1984 A
4482577 Goldstein Nov 1984 A
4499211 Walch Feb 1985 A
4531244 Hamas Jul 1985 A
4573999 Netto Mar 1986 A
4584324 Bauman et al. Apr 1986 A
4592755 Penton Jun 1986 A
4608396 Bauman et al. Aug 1986 A
4610690 Tiffany Sep 1986 A
4636213 Pakiam Jan 1987 A
4643733 Becker Feb 1987 A
4647618 Bauman et al. Mar 1987 A
4648880 Brauman Mar 1987 A
4650487 Chaglassian Mar 1987 A
4651717 Jakubczak Mar 1987 A
4681587 Eberl Jul 1987 A
4740208 Cavon Apr 1988 A
4772285 Ksander Sep 1988 A
4773908 Becker Sep 1988 A
4773909 Chaglassian Sep 1988 A
4790848 Cronin Dec 1988 A
4795464 Eberl Jan 1989 A
4803025 Brockmeyer Feb 1989 A
4828560 Heyler May 1989 A
4840628 Cavon Jun 1989 A
4841992 Sasaki Jun 1989 A
4859383 Dillon Aug 1989 A
4859712 Cox Aug 1989 A
4889744 Quaid Dec 1989 A
4899764 Gauger Feb 1990 A
4902294 Gosserez Feb 1990 A
4906423 Frisch Mar 1990 A
4936858 O'Keeffe Jun 1990 A
4944749 Becker Jul 1990 A
4944750 Cox Jul 1990 A
4950292 Audretsch Aug 1990 A
4955907 Ledergerber Sep 1990 A
4955909 Ersek et al. Sep 1990 A
4960425 Yan Oct 1990 A
4963150 Brauman Oct 1990 A
4965430 Curtis Oct 1990 A
4969899 Cox Nov 1990 A
5002572 Picha Mar 1991 A
5007929 Quaid Apr 1991 A
5007940 Berg Apr 1991 A
5011494 von Recum et al. Apr 1991 A
5022942 Yan et al. Jun 1991 A
5026394 Baker Jun 1991 A
5034422 Triolo et al. Jul 1991 A
5035249 Sasaki Jul 1991 A
5092348 Dubrul Mar 1992 A
5092882 Lynn Mar 1992 A
5104409 Baker Apr 1992 A
5116370 Foglietti May 1992 A
5116387 Berg May 1992 A
5128088 Shimomura et al. Jul 1992 A
5135959 Hill Aug 1992 A
5146933 Boyd Sep 1992 A
5147398 Lynn Sep 1992 A
5158571 Picha Oct 1992 A
5158573 Berg Oct 1992 A
5171269 Bark Dec 1992 A
5185297 Park Feb 1993 A
5207709 Picha May 1993 A
5219361 von Recum et al. Jun 1993 A
5236453 Picha Aug 1993 A
5236454 Miller Aug 1993 A
5236457 Devanathan Aug 1993 A
5246454 Peterson Sep 1993 A
5282856 Ledergerber Feb 1994 A
5296069 Robert Mar 1994 A
5348788 White Sep 1994 A
5354338 Ledergerber Oct 1994 A
5356429 Seare Oct 1994 A
5358521 Shane Oct 1994 A
5376117 Pinchuk Dec 1994 A
5383929 Ledergerber Jan 1995 A
5437824 Carlisle Aug 1995 A
5441919 Park Aug 1995 A
5447535 Muller Sep 1995 A
5455100 White Oct 1995 A
5480430 Carlisle Jan 1996 A
5496367 Fisher Mar 1996 A
5496370 Hamas Mar 1996 A
5507808 Becker Apr 1996 A
5522896 Prescott Jun 1996 A
5525275 Iversen et al. Jun 1996 A
5534023 Henley Jul 1996 A
5545217 Offray Aug 1996 A
5545220 Andrews et al. Aug 1996 A
5549671 Waybright Aug 1996 A
5571179 Manders Nov 1996 A
5589176 Seare, Jr. Dec 1996 A
5605693 Seare Feb 1997 A
5607473 Weber-Unger Mar 1997 A
5624674 Seare Apr 1997 A
5630843 Rosenberg May 1997 A
5630844 Dogan May 1997 A
5653755 Ledergerber Aug 1997 A
5658330 Carlisle Aug 1997 A
5674285 Quaid Oct 1997 A
5681572 Seare Oct 1997 A
5776159 Young Jul 1998 A
5779734 Ledergerber Jul 1998 A
5798065 Picha Aug 1998 A
5824081 Knapp Oct 1998 A
5843189 Perouse Dec 1998 A
5855588 Young Jan 1999 A
5871497 Young Feb 1999 A
5895423 Becker et al. Apr 1999 A
5935164 Iversen Aug 1999 A
5961552 Iversen et al. Oct 1999 A
5964803 Iversen et al. Oct 1999 A
5965076 Banks Oct 1999 A
5984943 Young Nov 1999 A
5993716 Draenert Nov 1999 A
6071309 Knowlton Jun 2000 A
6074421 Murphy Jun 2000 A
6083262 Caravel Jul 2000 A
6099565 Sakura Aug 2000 A
6113634 Weber-Unger Sep 2000 A
6146418 Berman Nov 2000 A
6183514 Becker Feb 2001 B1
6187043 Ledergerber Feb 2001 B1
6203570 Baeke Mar 2001 B1
6206930 Burg Mar 2001 B1
6214045 Corbitt, Jr. et al. Apr 2001 B1
6214926 Winn Apr 2001 B1
6232374 Liu et al. May 2001 B1
6315796 Eaton Nov 2001 B1
6340648 Imura et al. Jan 2002 B1
6387133 Perouse May 2002 B1
6432138 Offray Aug 2002 B1
6464726 Heljenek Oct 2002 B1
6520989 Eaton Feb 2003 B1
6531523 Davankov Mar 2003 B1
6544287 Johnson et al. Apr 2003 B1
6602452 Schuessler Aug 2003 B2
6605116 Falcon et al. Aug 2003 B2
6638308 Corbitt Oct 2003 B2
6673285 Ma Jan 2004 B2
6692527 Bellin et al. Feb 2004 B1
6743254 Guest et al. Jun 2004 B2
6755861 Nakao Jun 2004 B2
6802861 Hamas Oct 2004 B1
6811570 Gehl Nov 2004 B1
6818673 Ferguson Nov 2004 B2
6875233 Turner Apr 2005 B1
6881226 Corbitt Apr 2005 B2
6900055 Fuller et al. May 2005 B1
6913626 McGhan Jul 2005 B2
6916339 Missana Jul 2005 B1
6921418 Ledergerber Jul 2005 B2
6932840 Bretz Aug 2005 B1
7081135 Smith Jul 2006 B2
7081136 Becker Jul 2006 B1
7105116 Bellin et al. Sep 2006 B2
7169180 Brennan Jan 2007 B2
7192450 Brauker Mar 2007 B2
7244270 Lesh Jul 2007 B2
7268169 Hirayma et al. Sep 2007 B2
7323208 Ma Jan 2008 B2
7476249 Frank Jan 2009 B2
7520896 Benslimane Apr 2009 B2
7547393 Ramaswamy Jun 2009 B2
7625405 Purkait Dec 2009 B2
7632228 Brauker Dec 2009 B2
7632291 Stephens Dec 2009 B2
7641688 Lesh Jan 2010 B2
7645475 Prewett Jan 2010 B2
8043373 Schuessler Oct 2011 B2
8202317 Becker Jun 2012 B2
8313527 Powell et al. Nov 2012 B2
8409279 Freund Apr 2013 B2
8487012 Goraltchouk et al. Jul 2013 B2
8506627 Van Epps et al. Aug 2013 B2
8546458 Thompson et al. Oct 2013 B2
8556968 Hamas et al. Oct 2013 B2
8685296 Liu et al. Apr 2014 B2
8728159 Kim May 2014 B2
8765039 Ledergerber Jul 2014 B1
8801782 Nofrey et al. Aug 2014 B2
8877822 Liu et al. Nov 2014 B2
D723162 Brogan et al. Feb 2015 S
9050184 Van Epps Jun 2015 B2
9205577 Liu et al. Dec 2015 B2
9539086 Schuessler Jan 2017 B2
20010010024 Ledergerber Jul 2001 A1
20020038147 Miller Mar 2002 A1
20020062154 Ayers May 2002 A1
20020143396 Falcon et al. Oct 2002 A1
20020193885 Legeay Dec 2002 A1
20030036803 McGhan Feb 2003 A1
20030093151 Zhang May 2003 A1
20030105469 Karmon Jun 2003 A1
20030205846 Bellin et al. Nov 2003 A1
20030208269 Eaton Nov 2003 A1
20040010225 Schuessler Jan 2004 A1
20040115241 Calhoun Jun 2004 A1
20040127985 Bellin Jul 2004 A1
20040143327 Ku Jul 2004 A1
20040148024 Williams Jul 2004 A1
20040153151 Gonzales de Vicente Aug 2004 A1
20040176493 Ferguson Sep 2004 A1
20040213986 Kim Oct 2004 A1
20050055093 Brennan Mar 2005 A1
20050070124 Miller Mar 2005 A1
20050122169 Watanabe Jun 2005 A1
20050196452 Boyan Sep 2005 A1
20050216094 Prewett Sep 2005 A1
20050251083 Carr-Brendel et al. Nov 2005 A1
20060002810 Grohowski Jan 2006 A1
20060036266 Sulamanidze Feb 2006 A1
20060036320 Job Feb 2006 A1
20060136056 Wohl Jun 2006 A1
20060224239 Tiahrt Oct 2006 A1
20060229721 Ku Oct 2006 A1
20060235094 Habibi-Naini Oct 2006 A1
20060246121 Ma Nov 2006 A1
20070038310 Guetty Feb 2007 A1
20070093911 Fricke Apr 2007 A1
20070104693 Quijano May 2007 A1
20070104695 Quijano May 2007 A1
20070116735 Calhoun May 2007 A1
20070135916 Maxwell Jun 2007 A1
20070154525 Calhoun Jul 2007 A1
20070190108 Datta Aug 2007 A1
20070198085 Benslimane Aug 2007 A1
20080009830 Fujimoto Jan 2008 A1
20080071371 Elshout Mar 2008 A1
20080075752 Ratner et al. Mar 2008 A1
20080154366 Frank Jun 2008 A1
20080241212 Moses Oct 2008 A1
20080268019 Badylak Oct 2008 A1
20080312739 Agerup Dec 2008 A1
20090030515 Schuessler Jan 2009 A1
20090045166 Li Feb 2009 A1
20090082864 Chen Mar 2009 A1
20090087641 Favis Apr 2009 A1
20090093878 Glicksman Apr 2009 A1
20090118829 Powell May 2009 A1
20090125107 Maxwell May 2009 A1
20090148829 Ecker Jun 2009 A1
20090169716 Linhardt Jul 2009 A1
20090198331 Kesten et al. Aug 2009 A1
20090198332 Becker Aug 2009 A1
20090198333 Becker Aug 2009 A1
20090254179 Burnett Oct 2009 A1
20100042211 Van Epps et al. Feb 2010 A1
20100292790 Stroumpoulis et al. Nov 2010 A1
20110035004 Maxwell Feb 2011 A1
20110054605 Becker Mar 2011 A1
20110093069 Goraltchouk et al. Apr 2011 A1
20110106249 Becker May 2011 A1
20110117267 Powell et al. May 2011 A1
20110184531 Goraltchouk et al. Jul 2011 A1
20110196488 Goraltchouk et al. Aug 2011 A1
20110196489 Van Epps et al. Aug 2011 A1
20110270392 Schuessler Nov 2011 A1
20110276133 Liu et al. Nov 2011 A1
20110276134 Manesis et al. Nov 2011 A1
20110278755 Liu et al. Nov 2011 A1
20110282444 Liu et al. Nov 2011 A1
20110309541 Thompson et al. Dec 2011 A1
20110313073 Goraltchouk et al. Dec 2011 A1
20120004722 Goraltchouk et al. Jan 2012 A1
20120041555 Manesis et al. Feb 2012 A1
20120077010 Manesis et al. Mar 2012 A1
20120077012 Liu et al. Mar 2012 A1
20120077891 Liu et al. Mar 2012 A1
20120101574 Goraltchouk et al. Apr 2012 A1
20120142798 Thompson et al. Jun 2012 A1
20120165934 Schuessler Jun 2012 A1
20120185041 Mortarino et al. Jul 2012 A1
20120221105 Altman et al. Aug 2012 A1
20120245685 Yu Sep 2012 A1
20120277858 Brinon Nov 2012 A1
20120321777 Stroumpoulis et al. Dec 2012 A1
20130013062 Thompson et al. Jan 2013 A1
20130023987 Liu et al. Jan 2013 A1
20130032962 Liu et al. Feb 2013 A1
20130053956 Powell et al. Feb 2013 A1
20130158657 Nofrey et al. Jun 2013 A1
20130178699 Saint et al. Jul 2013 A1
20130209661 Goraltchouk et al. Aug 2013 A1
20130245148 Thompson et al. Sep 2013 A1
20130261745 Van Epps Oct 2013 A1
20130295379 Goraltchouk et al. Nov 2013 A1
20130302511 Goraltchouk et al. Nov 2013 A1
20140005783 Van Epps et al. Jan 2014 A1
20140039617 Maxwell Feb 2014 A1
20140180412 Nieto et al. Jun 2014 A1
20150327987 Schuessler Nov 2015 A1
Foreign Referenced Citations (25)
Number Date Country
2587376 Nov 2003 CN
0230672 Aug 1987 EP
0293256 Nov 1988 EP
0315814 May 1989 EP
0522585 Jan 1993 EP
1532942 May 2005 EP
1847369 Dec 2008 EP
2840617 Dec 2003 FR
2003-062062 Apr 2003 JP
2007-029717 Aug 2007 JP
2012012801 May 2014 MX
2340308 Dec 2008 RU
9810803 Mar 1998 WO
0024437 May 2000 WO
2004037318 May 2004 WO
2004062531 Jul 2004 WO
2006133366 Dec 2006 WO
2009061672 May 2009 WO
2009110917 Sep 2009 WO
2010019292 Feb 2010 WO
2010019761 Feb 2010 WO
2010136840 Dec 2010 WO
2011094155 Aug 2011 WO
2011097499 Aug 2011 WO
20130184569 Dec 2013 WO
Non-Patent Literature Citations (13)
Entry
Alvarez, Sonia et al, Synthesis of Macro/Mesoporous Silica and Carbon Monoliths by Using a Commercial Polyurethane Foam as Sacrificial Template, Material Letters, 2007, 2378-2381, 61.
Barnsley, Philip et al., Textured Surface Breast Implants in the Prevention of Capsular Contracture Among Breast Augmentation Patients: A Meta-Analysis of Randomized Controlled Trials, Plastic and Reconstructive Surgery, 2006, 2182-2190, 117(7).
Barr, S. et al., Current Implant Surface Technology: An Examination of Their Nanostructure and Their Influence on Fibroblast Alignment and Biocompatibility, Elastic, 2009, 198-217, 9.
Brauker, James et al., Neovascularization of Synthetic Membranes Directed by Membrane Microarchitecture, Journal of Biomedical Materials Research, 1995, 1517-1524, 29, John Wiley & Sons, Inc.
Brohim, Robert et al., Early Tissue Reaction to Textured Breast Implant Surfaces, Annals of Plastic Surgery, Apr. 1992, 354-362, vol. 28, No. 4.
Inamed Aesthetics Brochure, Silicone-Filled Breast Implants, Directions for Use Style 410, 2003, 23 pages, www.inamedaesthetics.com.
Ma, Peter, Scaffolds for Tissue Fabrication, Materials Today, 2004, 30-40, 7.
Mikos, Antonius et al., Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering, Electronic Journal of Biotechnology, 2000, 114-119, 3(2).
Minami, Eliza, The Composition and Behavior of Capsules Around Smooth and Textured Breast Implants in Pigs, Plast Reconstr. Surg., 2006, 874-884, 118.
Murphy, William L. et al., Salt Fusion: An Approach to Improve Pore Interconnectivity Within Tissue Engineering Scaffolds, Tissue Engineering, 2002, 43-52, 8 (1), US.
Sharkawy, Adam et al., Engineering the Tissue Which Encapsulates Subcutaneous Implants. II. Plasma-Tissue Exchange Properties, Journal of Biomedical Materials Research, 1998, 586-597, 40, John Wiley & Sons, Inc.
Wei, Guobao et al., Macroporous and Nanofibrous Polymer Scaffolds and Polymer/Bone-Like Apatite Composite Scaffolds Generated by Sugar Spheres, Journal of Biomedical Materials Research, 2006, 306-315, 78A.
Zhang, et al., Macroporous Alumina Monoliths Prepared by Filling Polymer Foams with Alumina Hydrogels, Journal of Materials Science, 2009, 931-938, 44, Springer Science.
Related Publications (1)
Number Date Country
20170020657 A1 Jan 2017 US
Provisional Applications (1)
Number Date Country
61994772 May 2014 US
Continuations (1)
Number Date Country
Parent 14714058 May 2015 US
Child 15282587 US