The present invention belongs to the technical field of soft exoskeleton robots, lower limb exoskeletons and soft actuators, and particularly relates to a soft knee exoskeleton driven by a negative-pressure linear actuator.
In 1992, the World Health Organization stated that walking is the best exercise in the world and has special benefits for health. Since people spent 6 million years to evolve from apes to men, and the entire human body structure is the result of walking evolution, the human body structure is most suitable for walking from the perspective of human anatomy and physiological structure. When people walk, the weight born by the hip joint, the knee joint and the ankle joint is 3 to 5 times the total weight of the body; and the hip joint and the knee joint are two joints that are easily injured. According to a survey of 2500 persons by the Peking University Health Science Center, the prevalence of knee arthritis in the elderly over the age of 60 is 27.6%, while the prevalence of hip arthritis in the elderly is 0.8%. Obviously, the knee arthritis and injury rates are higher. According to incomplete statistics, there are more than 500 million people with knee joint injuries in the world. Daily walking will increase the stress on the knee joint of people with knee joint injuries and accelerate knee joint injuries. Without daily walking exercises, muscles will atrophy due to disuse. People with knee joint injuries have certain walking ability. Appropriate walking assistance can reduce the stress on the knee joint, strengthen leg muscle strength, maintain mobility of the knee joint, protect the knee joint, and help to improve the living quality of the people.
At present, the traditional lower limb exoskeleton mainly adopts a rigid exoskeleton for enhancing the weight-bearing capacity of soldiers, and to provide support for paralyzed patients, a rigid mechanism is used to drive the patients to walk. The traditional lower limb exoskeleton equipment has the disadvantages of inconvenient wearing, bulkiness, short working time, high selling price, danger of mechanical inertia, and lack of psychological recognition. In conclusion, the traditional lower limb walking-assisting exoskeleton is not suitable for people with knee joint injuries that require only partial walking assistance and have poor walking ability.
The purpose of the present invention is to provide a soft knee exoskeleton driven by a negative-pressure linear actuator with respect to the defects of the prior art. The soft knee exoskeleton mainly uses a miniature vacuum negative pressure pump as an air pressure power source. The soft knee exoskeleton acquires parameters such as muscle force, a knee joint angle and human-machine interaction force by a sensing system of a soft knee exoskeleton formed by an inertial measurement unit (IMU) component, a force sensor and a surface myoelectric sensor (sEMG). A DSP embedded control system performs real-time processing on the data detected by the sensing system, estimates a human-machine cooperation state, and performs real-time control on the switching of the negative pressure flow and an air channel of the miniature vacuum negative pressure pump. The pressure control is performed on the corresponding negative-pressure linear actuator drivers on a left leg knee joint soft actuator and a right leg knee joint soft actuator based on a human-machine cooperation state. In the walking process, the torque which assists the knee joint in bending and extending is provided for the left and right legs, thereby achieving the purpose of providing soft walking assistance for the elderly people with knee joint motion injuries and weak walking ability.
In order to achieve the above purpose, the technical solution adopted by the present invention is as follows:
A soft knee exoskeleton driven by a negative-pressure linear actuator includes:
an exoskeleton controller including a control part and a pneumatic power output part;
a left leg knee joint soft actuator worn on a left leg knee joint and capable of assisting knee joint motion of a left leg;
a right leg knee joint soft actuator worn on a right leg knee joint and capable of assisting knee joint motion of a right leg,
wherein the left leg knee joint soft actuator and the right leg knee joint soft actuator include a pneumatic driving mechanism and a sensing system;
the pneumatic driving mechanism can accept the power outputted by the exoskeleton controller to provide a torque for the knee joints;
the sensing system can detect human-machine interaction state data; and the control part can process the data detected by the sensing system and control the power output of the left leg knee joint soft actuator and the right leg knee joint soft actuator.
Preferably, the exoskeleton controller includes: a controller body, an end cover, a miniature vacuum negative pressure pump, a mounting plate, a T-type three-way adapter, a vacuum solenoid valve A, a vacuum solenoid valve B, a driver, a DSP embedded control system, a lithium battery pack, a wireless receiving and transmitting module, a switch, a right air tube R, a left air tube L, a heat sink block A, a heat sink block B and a soft belt.
Preferably, each of the left leg knee joint soft actuator and the right leg knee joint soft actuator includes a knee joint elastic sheath, a soft torque execution component A, a soft torque execution component B, a Y-type three-way adapter, an air tube component, an inertial measurement unit (IMU) component, a force sensor, a surface myoelectric sensor (sEMG) and elastic cloth.
Preferably, the soft torque execution component A includes a left thigh brace, a left calf brace, a negative-pressure linear actuator driver, a rotating shaft, a connector, a screw, a fastener, a pressing piece component, a latex rubber band and an air tube connecting end.
A triangular structural form with fixed lengths on both sides and a variable length on the third side is formed by the left thigh brace, the left calf brace and the negative-pressure linear actuator driver. The relative rotation of the other two fixed sides is achieved by the change in the length of the third side.
The soft torque execution component A is stitched to a position corresponding to a left knee joint of a knee joint elastic sheath by the elastic cloth.
Preferably, the soft torque execution component B includes a right thigh brace, a right calf brace, a negative-pressure linear actuator driver, a rotating shaft, a connector, a screw, a fastener, a pressing piece component, a latex rubber band and an air tube connecting end.
A triangular structural form with fixed lengths on both sides and a variable length on the third side is formed by the right thigh brace, the right calf brace and the negative-pressure linear actuator driver. The relative rotation of the other two fixed sides is achieved by the change in the length of the third side.
The soft torque execution component B is stitched to a position corresponding to a right knee joint of a knee joint elastic sheath by the elastic cloth.
Preferably, the left leg knee joint soft actuator and the right leg knee joint soft actuator provide the auxiliary torque for the knee joints through the simultaneous action of the soft torque execution component A and the soft torque execution component B.
Preferably, when the negative-pressure linear actuator driver has a negative-pressure input, the driver has shorter linear displacement, a tensile force, and basically unchanged size in the direction perpendicular to the linear displacement. On the contrary, when the negative pressure of the negative-pressure linear actuator driver gradually disappears, the driver has an elastic acting force in a process of restoring from a contraction state to a natural state.
Preferably, during the process that the negative pressure action of the negative-pressure linear actuator driver gradually disappears, the latex rubber band on the end faces of the braces on both sides of the thigh and the braces on both sides of the calf is no longer subjected to an external force, and thus, jointly acts with the negative-pressure elastomer to drive the relative rotation of the braces on both sides of the thigh and the braces on both sides of the calf, and an extended torque is generated, thereby realizing the function of the soft torque execution component A and the soft torque execution component B to provide an auxiliary extension torque for the knee joints.
Preferably, the negative-pressure linear actuator driver includes an upper half part and a lower half part which are basically symmetrical, wherein the upper half part has a vent hole with the outside used to connect the air tubes to realize the negative pressure input or positive pressure input to the entire negative-pressure linear actuator driver.
The upper half part and the lower half part of the negative-pressure linear actuator driver respectively include an air chamber of a hexagonal prism structure. Grooves are formed on each air chamber to form an airflow channel of the negative-pressure linear actuator driver. Six air chamber beams of the side surface of a single air chamber are different in thickness, wherein the thickness of the second air chamber beam is three times the first air chamber beam. Grooves are formed on four adjacent first air chamber beams of the upper and lower adjacent air chambers to form the airflow channel of the negative-pressure linear actuator driver, and no groove is formed on the other four nonadjacent first air chamber beams; and no groove is formed on the second air chamber beam to ensure airtightness. When the air chamber is under negative pressure, the first air chamber beam is deformed by the negative pressure force and contracts in an X axis direction to form a linear displacement; the second air chamber beam is not deformed and has no contraction displacement in a Y axis direction. Therefore, when the negative pressure acts, the negative-pressure linear actuator driver can form a horizontal linear displacement. When the external negative pressure action disappears, the first air chamber beam disappears due to the negative pressure force and extends in the opposite direction of the X axis, and gradually restores to the initial state of being not subjected to stress, and a horizontal displacement is formed in the process which is controllable; and the second air chamber beam is not deformed and has no contraction or extension displacement in a Y direction.
Preferably, the inertial measurement unit (IMU) component is a sensor that detects the change of a knee joint angle and/or angular velocity; the surface myoelectric sensor (sEMG) is a sensor that detects a muscle force and a joint torque; the force sensor is a sensor that acquires a human-machine interaction force between the soft knee exoskeleton and a human leg; the sensing system of the soft knee exoskeleton is formed by the inertial measurement unit (IMU) component, the surface myoelectric sensor (sEMG) and the force sensor; and the wireless receiving and transmitting module is a communication module between the DSP embedded control system and the sensing system.
The DSP embedded control system performs real-time processing on the parameters of the knee joint angle and/or angular velocity of the left and right legs acquired by the inertial measurement unit module, estimates and predicts a muscle force, a joint torque and a human-machine interaction force detected by the force sensor and the surface myoelectric sensor (sEMG performs real-time control on the output flow of the miniature vacuum negative pressure pump and switches an air channel of a vacuum solenoid valve A and a vacuum solenoid valve B. The real-time negative pressure input and positive pressure input control is performed on the negative-pressure linear actuator drivers in a soft torque execution component A and a soft torque execution component B on the left leg knee joint soft actuator and the right leg knee joint soft actuator based on a human-machine cooperation state, thereby controlling the torque output of the left leg knee joint soft actuator and the right leg knee joint soft actuator in real time.
Preferably, the left thigh brace, the right thigh brace, the left calf brace and the right calf brace are made of high-strength synthetic resin materials or carbon fibers and other non-metal materials, or light-weight alloy materials such as aluminum-magnesium alloy and hard aluminum alloy.
Beneficial Effects
Traditional hydraulic drive and motor drive have the disadvantages of noise and low power density. The current exoskeleton system is generally based on DC servo motor drive and harmonic reducer drive. However, since the power density of the traditional motor decreases rapidly with the decrease of the volume, and transmission errors and friction forces exist, the improvement of the power density and the overall response performance of a drive system is limited; the power density is relatively low; the structure is complex; compliance control is difficult to achieve; and essential compliance is lacked. In addition, soft drivers such as pneumatic artificial muscles have higher power density ratio and power volume ratio, but have the disadvantages of friction, nonlinear deformation, difficulty in precise modeling, and difficulty in motion control. The present invention adopts the negative-pressure linear actuator as the soft driving element, has higher power density ratio and power volume ratio, has the characteristic of linear deformation, and is easy to realize human-machine coordinated control of the soft knee exoskeleton.
Since the soft knee exoskeleton driven by the negative-pressure linear actuator adopts the sensing system of the soft knee exoskeleton formed by the inertial measurement unit component, the force sensor and the surface myoelectric sensor (sEMG), the sEMG contains a variety of muscular activity information, which can directly reflect the functional state and motion information of the muscle. By establishing a muscle-skeletal model driven by the surface myoelectric sensor (forward dynamics) and combining the inertial information of the inertial measurement unit module, the parameter identification is performed; the muscle force, the knee joint angle, the knee joint angular velocity and the human-machine interaction force are estimated and predicted; and the human-machine cooperation state is estimated to improve the coordination and safety of the soft exoskeleton.
Compared with the prior art, a pneumatic driving mode is adopted for the left leg knee joint soft actuator and the right leg knee joint soft actuator in the soft knee exoskeleton driven by the negative-pressure linear actuator in the present invention, which overcomes the disadvantages of large inertia, easy mechanical inertia damage of the knee joint, poor safety and poor comfort of general leg power assisting equipment or an exoskeleton robot and other rigid mechanisms, thereby significantly improving the safety and comfort of the equipment.
Therefore, the present invention uses a miniature vacuum negative pressure pump as an air pressure power source. The sensing system of the soft knee exoskeleton is formed by the inertial measurement unit component, the force sensor and the surface myoelectric sensor (sEMG) to detect the muscle force, the knee joint angle, the knee joint angular velocity and the human-machine interaction force. The DSP embedded control system performs real-time processing on the data detected by the sensing system, estimates the human-machine cooperation state, and performs real-time control on the switching of the negative pressure flow and the air channel of the miniature vacuum negative pressure pump. The pressure control is performed on the corresponding negative-pressure linear actuator drivers on the left leg knee joint soft actuator and the right leg knee joint soft actuator based on the human-machine cooperation state. In the walking process, the torque which assists the knee joint in bending and extending is provided for the left and right legs, thereby achieving the purpose of providing soft walking assistance for the elderly people with knee joint motion injuries and weak walking ability.
The present invention is further described below in combination with the drawings and specific embodiments, but is not limited.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The control box mounting housing is a main mounting carrier of components, such as the miniature vacuum negative pressure pump 103, the mounting plate 104, the T-type three-way adapter 105, the vacuum solenoid valve A 106, the vacuum solenoid valve B 107, the DSP embedded control system 108, the driver 109, the right air tube R 110, the left air tube L 111, the lithium battery pack 112, the wireless receiving and transmitting module 113, the switch 114, the heat sink block A 115, the heat sink block B 116, and the soft belt 117.
As shown in
The soft torque execution component A 202 is stitched to a position corresponding to a left knee joint of the knee joint elastic sheath 201 by an elastic cloth; and the soft torque execution component B 203 is stitched to a position corresponding to a right knee joint of the knee joint elastic sheath 201 by the elastic cloth. The left leg knee joint soft actuator 2 and the right leg knee joint soft actuator 3 provide the auxiliary torque for the knee joint through the simultaneous action of the soft torque execution component A 202 and the soft torque execution component B 203.
As shown in
The upper half negative-pressure linear actuator 501 and the lower half negative-pressure linear actuator 502 are internally of a hexahedral structure. As shown in
In combination with
Conversely, since the vacuum solenoid valve A 106 and the vacuum solenoid valve B 107 are three-way vacuum air valves, when the DSP embedded control system 108 controls the miniature vacuum negative pressure pump 103 to stop working and is closed by controlling the vacuum solenoid valve A 106 or the vacuum solenoid valve B 107, outside air can enter the negative-pressure linear actuator driver 303 through the vacuum solenoid valve A 106 via the air tube A 209 and the air tube B 210; or enter the negative-pressure linear actuator driver 303 through the vacuum solenoid valve B 107 via the air tube 211 and the air tube 212. In this process, the DSP embedded control system 108 can realize the real-time control to a length change and an elastic restoring force of the negative-pressure linear actuator driver 303 from a contraction process to an extension process by controlling a closing process of the vacuum solenoid valve A 106 or the vacuum solenoid valve B 107; and in this process, the elastic restoring forces of the latex rubber band 310 on the end faces of the left thigh brace 301 and the left calf brace 302 and the latex rubber band 310 on the end faces of the right thigh brace 301 and the right calf brace 302 act on the left thigh brace 301 and the left calf brace 302 as well as the right thigh brace 301 and the right calf brace 302 together with the negative-pressure linear actuator driver 303, to form an extended torque of the left leg knee joint soft actuator 2. The DSP embedded control system 108 achieves the real-time control in the process that the left leg knee joint soft actuator 2 and the right leg knee joint soft actuator 3 provide the extension torque for the knee joint of the user by controlling the closing process of the miniature vacuum negative pressure pump 103 and the vacuum solenoid valve A 106 or the vacuum solenoid valve B 107.
The working principle of the soft knee exoskeleton in a gait cycle is described in conjunction with
When the right leg begins to lift gradually, the right leg knee joint is stepped gradually from stretching to bending. In this process, the right leg knee joint needs a bending torque. The DSP embedded control system 108 estimates and predicts the human-machine cooperation state by performing real-time processing on parameters detected by the sensing system of the soft knee exoskeleton, such as the change in the knee joint angle and the angular velocity, the human-machine acting force, the muscle force and the joint torque, and controls the start of the miniature vacuum negative pressure pump 103. The negative pressure force generated by the miniature vacuum negative pressure pump 103 is transmitted to the vacuum solenoid valve A 106 and the vacuum solenoid valve B 107 through the T-type three-way adapter 105. The DSP embedded control system 108 controls the vacuum solenoid valve A 106 to open and the vacuum solenoid valve B 107 to close, and the negative pressure force acts on the negative-pressure linear actuator driver 303 on the soft torque execution component A 202 and the soft torque execution component B 203 of the right leg knee joint soft actuator 3 successively through the vacuum solenoid valve A 106, the right air tube R 110, the Y-type three-way adapter A 207, the air tube A 209 and the air tube B 210. The negative-pressure linear actuator driver 303 is subjected to the negative pressure force to generate a linear displacement and an elastic force with shortened contraction, while driving the left calf brace 302 to rotate around the rotating shaft 304 with respect to the left thigh brace 301, and driving the right calf brace 402 to rotate around the rotating shaft 304 with respect to the right thigh brace 401, thereby providing a bending driving force for the soft torque execution component A 202 and the soft torque execution component B 203. The DSP embedded control system 108 realizes the real-time control on the soft knee joint actuator 2 worn on the right leg by real-time control of the length change of the negative-pressure linear actuator driver 303 according to the estimation and prediction of the human-machine cooperation state, thereby enabling the right leg knee joint soft actuator 3 to assist the right leg knee joint in bending in real time according to the change of the right leg knee joint angle.
Then, the right leg transits from a vacant period to a support period, a right foot gradually touches the ground, and the right leg knee joint is gradually extended by the bending. In this process, the right leg knee joint needs the extended torque. The DSP embedded control system 108 controls the miniature vacuum negative pressure pump 103 to stop working by the estimation and prediction of the human-machine cooperation state. The DSP embedded control system 108 controls the vacuum solenoid valve A 106 to close, and the outside air (an atmospheric pressure) can enter the negative-pressure linear actuator driver 303 (namely, the positive pressure input) through the vacuum solenoid valve A 106 via the air tube 209 and the air tube 210, and the elastic force of the negative-pressure linear actuator driver 303 acts together with the elastic restoring force of the latex rubber band 310 to drive the left calf brace 302 of the right leg to rotate around the rotating shaft 304 with respect to the left thigh brace 301 of the right leg and drive the right calf brace 402 of the right leg to rotate around the rotating shaft 304 with respect to the right thigh brace 301 of the right leg, thereby providing the extended driving force for the soft torque execution component A 202 and the soft torque execution component B 203. The DSP embedded control system 108 realizes the real-time control for the execution process of the right leg knee soft joint actuator 3 by performing the real-time control on the linear displacement of the negative-pressure linear actuator driver 303, restoration from the contraction state to the natural state and the elastic restoring force of the latex rubber band 310 according to the estimation and prediction of the human-machine cooperation state, thereby enabling the right leg knee joint soft actuator 3 to assist the right leg knee joint in extending in real time according to the change of the right leg knee joint angle.
Then, a left foot is gradually lifted, the left leg transits from the support period to the vacant period, and the left leg knee joint is stepped gradually from extending to bending. In this process, the left leg knee joint needs a bending torque. The DSP embedded control system 108 controls the start of the miniature vacuum negative pressure pump 103 by the estimation and prediction of the human-machine cooperation state. The negative pressure force generated by the miniature vacuum negative pressure pump 103 is transmitted to the vacuum solenoid valve A 106 and the vacuum solenoid valve B 107 through the T-type three-way adapter 105. The DSP embedded control system 108 controls the vacuum solenoid valve B 107 to open and the vacuum solenoid valve A 106 to close, and the negative pressure force acts on the negative-pressure linear actuator driver 303 on the soft torque execution component A 202 and the soft torque execution component B 203 of the left leg knee joint soft actuator 2 successively through the vacuum solenoid valve B 107, the right air tube R 111, the Y-type three-way adapter A 208, the air tube 211 and the air tube 212. The negative-pressure linear actuator driver 303 is subjected to the negative pressure force to generate a linear displacement and an elastic force with shortened contraction, while driving the left calf brace 302 to rotate around the rotating shaft 304 with respect to the left thigh brace 301, and driving the right calf brace 402 to rotate around the rotating shaft 304 with respect to the right thigh brace 401, thereby providing a bending driving force for the soft torque execution component A 202 and the soft torque execution component B 203. The DSP embedded control system 108 realizes the real-time control on the left leg knee joint soft actuator 2 by performing real-time control on the length change of the negative-pressure linear actuator driver 303 according to the estimation and prediction of the human-machine cooperation state, thereby enabling the left leg knee joint soft actuator 2 to assist the left leg knee joint in bending in real time according to the change of the left leg knee joint angle.
Finally, the left leg transits from the vacant period to the support period, the left foot gradually touches the ground, and the left leg knee joint is gradually extended by the bending. In this process, the left leg knee joint needs the extended torque. The DSP embedded control system 108 controls the miniature vacuum negative pressure pump 103 to stop working by the estimation and prediction of the human-machine cooperation state. The DSP embedded control system 108 controls the vacuum solenoid valve B 107 to close, and the outside air (an atmospheric pressure) can enter the negative-pressure linear actuator driver 303 (namely, the positive pressure input) through the vacuum solenoid valve B 107 via the air tube 211 and the air tube 212, and the elastic force of the negative-pressure linear actuator driver 303 acts together with the elastic restoring force of the latex rubber band 310 to drive the left calf brace 302 of the left leg to rotate around the rotating shaft 304 with respect to the left thigh brace 301 of the left leg and drive the right calf brace 402 of the left leg to rotate around the rotating shaft 304 with respect to the right thigh brace 301 of the left leg, thereby providing the extended driving force for the soft torque execution component A 202 and the soft torque execution component B 203. The DSP embedded control system 108 realizes the real-time control on the left leg knee joint soft actuator 2 by performing the real-time control on the linear displacement of the negative-pressure linear actuator driver 303, restoration from the contraction state to the natural state and the elastic restoring force of the latex rubber band 310 according to the estimation and prediction of the human-machine cooperation state, thereby enabling the left leg knee joint soft actuator 2 to assist the left leg knee joint in extending in real time according to the change of the left leg knee joint angle.
The above describes a walking-assisting function of the soft knee exoskeleton driven by the negative-pressure linear actuator to realize a gait cycle. In this repeated cycle, the soft knee exoskeleton can acquire parameters such as the muscle force, the knee joint angle and the human-machine interaction force by the sensing system of the soft knee exoskeleton formed by the inertial measurement unit component, the force sensor and the surface myoelectric sensor in the walking process of the human. The DSP embedded control system performs the real-time processing on the data detected by the sensing system, estimates the human-machine cooperation state, and performs real-time control on the switching of the negative pressure flow and the air channel of the miniature vacuum negative pressure pump. The pressure control is performed on the corresponding negative-pressure linear actuator drivers on the left leg knee joint soft actuator and the right leg knee joint soft actuator based on the human-machine cooperation state. In the walking process, the torque which is consistent with the gait and assists the knee joint in bending and extending is provided for the left and right legs, thereby achieving the purpose of providing soft walking assistance for the elderly people with knee joint motion injuries and weak walking ability.
The soft knee exoskeleton of the human-machine cooperation in the present invention adopts the negative-pressure linear actuator as the soft driving element, and thus has the characteristics of high power-to-density ratio and power-to-volume ratio and linear deformation, and is easy to realize linear control. Secondly, the present invention uses an inertial measurement unit component, the force sensor and the surface myoelectric sensor to form the sensing system of the soft knee exoskeleton. The sEMG contains a variety of muscular activity information, which can directly reflect the functional state and motion information of the muscle. By establishing a muscle-skeletal model driven by the surface myoelectric sensor (forward dynamics) and combining the inertial information of the inertial measurement unit component, the parameter identification is performed; the muscle force and the knee joint angle are estimated and predicted; and the human-machine cooperation state is estimated to improve the coordination and safety of the soft exoskeleton. Furthermore, the wearable soft actuator in the present invention adopts a pneumatic driving mode, which overcomes the disadvantages of large inertia, easy mechanical inertia damage of the knee joint, poor safety and poor comfort of general leg power assisting equipment or an exoskeleton robot and other rigid mechanisms, thereby significantly improving the safety and comfort of the equipment.
The above-mentioned embodiment is only one of preferred specific embodiments of the present invention, and the general changes and substitutions made by those skilled in the art within the scope of the technical solution of the present invention shall be included in the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201810000925.4 | Jan 2018 | CN | national |
This application is a continuation of International Patent Application No. PCT/CN2018/074330 with a filing date of Jan. 26, 2018, designating the United States, and further claims priority to Chinese Patent Application No. 201810000925.4 with a filing date of Jan. 2, 2018. The content of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
10377036 | Namoun et al. | Aug 2019 | B2 |
10576620 | Chou | Mar 2020 | B1 |
20040158175 | Ikeuchi | Aug 2004 | A1 |
20070179416 | Obrien | Aug 2007 | A1 |
20110166489 | Angold | Jul 2011 | A1 |
20140100493 | Craig et al. | Apr 2014 | A1 |
20140358053 | Triolo | Dec 2014 | A1 |
20150158175 | Kim | Jun 2015 | A1 |
20150359698 | Popovic | Dec 2015 | A1 |
20160215864 | Kim | Jul 2016 | A1 |
20160339506 | Blacket et al. | Nov 2016 | A1 |
20170143517 | Sankai | May 2017 | A1 |
20170202724 | De Rossi | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
104401419 | Mar 2015 | CN |
205391322 | Jul 2016 | CN |
106420279 | Dec 2016 | CN |
106420279 | Feb 2017 | CN |
106491319 | Mar 2017 | CN |
0254522 | Jan 1998 | EP |
Entry |
---|
Attachment of English translation for CN106420279A description and claims; 2016. |
Internation Search Report of PCT/CN2018/074330, dated Sep. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20200206064 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2018/074330 | Jan 2018 | US |
Child | 16812278 | US |