Hard shelters provide occupants with desirable insulation from the outside environment, but such protection comes with a price. Hard shelters are generally rigid, making transportation difficult, are expensive to manufacture, are heavy to transport, and are difficult to augment. In the field of transportable hard shelters for recreational purposes, there are generally three common types: self-propelled recreational vehicles (RVs); self-contained campers (slide-in/slide-out for use with pickup trucks); and towed trailers.
Government restrictions on the size of vehicles generally limits a vehicle's width to 8 feet or less, unless special permits are obtained. Moreover, practical limits associated with access roads and the like effectively limit the width of RVs, campers and trailers. Therefore, until recently enthusiasts were limited to hard shelters having a width no greater than 8 feet. As intimated above, however, the configuration necessary for travel on the roads is not mandated for times wherein the RV, camper or trailer is at rest. “Slide outs” have become popular options for many RVs and some campers. Slide outs take advantage of the fact that the width dimension can be increased when the RV or camper is at rest. Slide outs have rigid extension walls (upper, lower, front, rear and side) in addition to suitable operational hardware.
While slide outs advantageously increase the interior volume of the hard shelter, they do so at the expense of economy, simplicity and weight. For large Class A RVs, which can cost in excess of $100,000, economy, simplicity and weight considerations are minimal. However, where such considerations are important, slide outs may not be a viable option. Therefore, a need exists to create an interior volume enhancing extension that is simple, inexpensive when compared to rigid slide outs, and light in weight so that non-specialized vehicles can carry/tow them.
The invention is directed to soft shelter extensions from hard shelters, such as vehicles, campers and trailers. The hard shelters are characterized as having a side wall defining an opening, preferably sealable by a substantially rigid and horizontally hinged deck, which operates as a side wall portion when in the vertical position. The soft shelters of the invention comprise a flexible outer covering that operates to define a partially enclosed volume, and substantially rigid supporting infrastructure that operates to provide a frame in order to maintain the desired shape and volume of the shelter.
Preferably, the soft shelter extension is externally mounted to the hard shelter for enhanced interior weather resistance, with minimal to no intrusion into the interior space of the hard shelter, and expands to a generally functional state upon opening of the hinged deck.
The invention comprises apparatus, systems and methods for creating soft shelter extensions. For context purposes only, embodiments of the invention engage with both a substantially vertical portion or side wall of a hard shelter, and a horizontally pivoting member or deck that forms a part of the vertical portion or side wall of the hard shelter when not in use. Apparatus embodiments of the invention comprise a supporting infrastructure and a flexible covering. The supporting infrastructure in turn comprises a plurality of hoops or bows, each having a first end and a second end, wherein the first ends are linkable to each other, either directly or indirectly, and the second ends are linkable to each other, either directly or indirectly. Each bow or hoop approximates an arch (substantially curvilinear, rectilinear or a combination of the two), and operates to establish a volume in conjunction with the flexible covering, which is preferably robustly associated therewith to minimize differential movement between the two components.
Unlike bow systems of the prior art which rigidly link the bows to one of the side wall or the deck, embodiments of the invention preferably use a floating bow assembly that is not rigidly linked to the hard shelter but is nevertheless continuously linked to the side wall and to the deck. This arrangement advantageously permits gravity to cause the bows to depend into the volume defined by the perimeter of the opening in the side wall during stowage, and therefore avoid interference with the operation of the deck. To establish requisite rigidity, removable struts are used to link the bows to the hard shelter. In certain preferred embodiments, the struts are lever struts, which permit a user to engage the strut with the bow(s) and the hard shelter, and then axially extend the strut to impart the desired degree of stiffness to the assembly.
A consequence to using a floating bow arrangement is that during expansion of the soft shelter extension, the weight of the bow arrangement requires a user to prop up the same before engaging the struts. A feature of select embodiments of the invention employing a floating bow assembly provides for a deployment assistance means that causes the bows to distend from the hard shelter as the deck is rotated from the hard shelter and prior to engagement with the struts. The deployment assistance means in certain embodiments comprises a pair of tension members linking the side wall of the hard shelter to the deck. When first ends of such tension members are linked at opposing sides of the side wall perimeter and second ends linked opposing sides of the deck, and when the bow assembly is slidingly engaged therewith, the bow assembly is caused to elevate away from the deck when the tension members are brought into tension. Beneficially, the tension members, which are preferably cables, also function to arrest over-rotation of the deck in the event of failure of the soft shelter flexible panel. In addition, the tension members may also function to restrain complete collapse of the bow members towards the deck when the deck is in the stowed position.
The apparatus embodiments further comprise at least one flexible panel of material that substantially forms fitted sections of material between the bows or hoops when the shelter is in an expanded or deployed state, as is convention in the art. The at least one flexible panel may be linked to the plurality of bows or hoops, which is preferable, or may be fitted over the bows or hoops. In addition, the at least one panel includes a hard shelter engaging portion and a deck engaging portion. The hard shelter engaging portion preferably interfaces with the hard shelter side wall or perimeter thereof defining the opening therein. In so doing, a generally sealing arrangement is created between the perimeter defining the opening and the soft shelter. In a series of preferred embodiments, this sealing arrangement, which uses a “J” track at least at an upper perimeter of the opening, takes place at three of the four sides of a conventional four-sided rectilinear opening. The deck engaging portion preferably interfaces with an inner perimeter portion of the deck, and includes a skirt that shields the interface from exposure to the elements. Thus, when fully interfaced with the hard shelter and the deck, and in the deployed state, an enclosed structure is created that has a primary inner opening positioned at the opening defined by the side wall of the hard shelter.
System embodiments of the invention comprise the apparatus and the hard shelter. Thus, in addition to the plurality of bows or hoops and the at least one flexible panel, systems comprise a hard shelter having at least one sidewall defining an opening, and a deck horizontally hinged to a lower portion of the opening such that when in a closed position, the deck is generally coplanar to the sidewall (a depth difference between the deck and the sidewall of up to several inches is considered to be a generally coplanar arrangement), and when in a deployed position with the apparatus operatively engaged with the hard shelter, the deck is generally orthogonal to the sidewall.
Turning then to the several Figures, wherein like numbers reference like parts, soft shelter 10 and its association with hard shelter 12 are shown. Soft shelter 10 generally comprises bow assembly 60, which includes bows 62a-c, and flexible panel 150, while hard shelter 12 generally comprises side wall 20 and deck 30. Bow assembly 60 and components related to providing structural integrity to soft shelter 10 are preferably constructed from a suitable rigid material such as a metal (galvanized steel or aluminum being preferred) or composite (fiberglass or carbon fiber composites being preferred), while flexible panel 150 is preferably constructed from a coated polyester or similar fabric material having substantial fluid impervious characteristics. Both side wall 20 and deck 30 are constructed from materials conventionally used in hard shelters found in RVs, including wood framing with metal or fiberglass skins.
Sidewall 20 defines perimeter opening 14, which includes upper perimeter portion 22, lower perimeter portion 24 and lateral perimeter portions 26a and 26b. At or adjacent to lower perimeter portion 24 is hinge 16, which functions to rotationally link deck 30 to side wall 20. Deck 30, which in the stowed position functions to sealingly close perimeter opening 14, includes upper or distal perimeter portion 32, lower or proximal perimeter portion 34 and lateral perimeter portions 36a and 36b. While a variety of over-rotation prevention means may be used, the illustrated embodiment uses cables 90a and 90b linked to attachment points 28a and 38a, and 28b and 38b, respectively as shown. As will be shown in greater detail below, these cables both provide suitable support for deck 30 as well as provide extension assistance to bow assembly 60.
Turning then to bow assembly 60 as best shown in
Lastly, a rigid deployment is considered desirable. To this end, lever struts 100a (not shown) and 100b (shown in
To facilitate the user's ability to impart sufficient extension of bow assembly 60, a compounding lever arrangement is used as shown in
As previously touched upon, bow assembly 60 is preferably linked to cables 90a and 90b. The linkage is a sliding one, which permits bow assembly 60 to self-position during deployment while still being subject to the bias provided by cables 90a and 90b. To accomplish this desired linkage, slide guides 80 are linked to respective attachment flanges 70, and cables 90a and 90b passed there through, as shown best in
To fully appreciate the operation of the illustrated embodiment, reference is made to
In addition to the advantages provided by bow assembly 60 and it's interface with hard shelter 12, several aspects of flexible panel 150 merit discussion. Moisture and particularly liquid water intrusion into the interior of the hard shelter is of primary concern when a soft shelter is extended there from. A primary location for such intrusion is the interface between the soft shelter and the hard shelter. To mitigate this locus of intrusion, embodiments of the invention provide for a “J” track at least at upper perimeter 22 of side wall 20. Through this arrangement, an effective water tight seal is created that also permits installation and removal of panel 150 with relative ease. Thus, both manufacturing and assembly costs are reduced, as well as repair and/or replacement costs.
This is a continuation-in-part application that claims benefit, under 35 USC §119(e), of U.S. Provisional Application 60/715,549, filed on 8 Sep. 2005, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1854377 | Mahr | Apr 1932 | A |
1919603 | Stinson | Jul 1933 | A |
2628862 | Packman | Feb 1953 | A |
2634162 | Beynon | Apr 1953 | A |
2689579 | Sartori | Sep 1954 | A |
3161231 | Dawson et al. | Dec 1964 | A |
4402544 | Artim et al. | Sep 1983 | A |
6216714 | Tucker | Apr 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
60715549 | Sep 2005 | US |