Soft stabilization assemblies with pretensioned cords

Information

  • Patent Grant
  • 10383660
  • Patent Number
    10,383,660
  • Date Filed
    Monday, May 7, 2012
    12 years ago
  • Date Issued
    Tuesday, August 20, 2019
    5 years ago
  • Inventors
  • Examiners
    • Robert; Eduardo C
    • Eckman; Michelle C
    Agents
    • Polsinelli PC
Abstract
A soft dynamic stabilization assembly includes a core, typically in the form of a tensioned cord, at least one pair of bone anchors, a spacer surrounding the core located between the bone anchors, typically, at least one elastic bumper and at least one fixing or blocking member. The core is slidable with respect to at least one of the bone anchors and cooperating spacer.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to soft or dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members for such assemblies, the connecting members being attached to at least two bone fasteners.


Historically, it has been common to fuse adjacent vertebrae that are placed in fixed relation by the installation therealong of bone screws or other bone anchors and cooperating longitudinal connecting members or other elongate members. Fusion results in the permanent immobilization of one or more of the intervertebral joints. Because the anchoring of bone screws, hooks and other types of anchors directly to a vertebra can result in significant forces being placed on the vertebra, and such forces may ultimately result in the loosening of the bone screw or other anchor from the vertebra, fusion allows for the growth and development of a bone counterpart to the longitudinal connecting member that can maintain the spine in the desired position even if the implants ultimately fail or are removed. Because fusion has been a desired component of spinal stabilization procedures, longitudinal connecting members have been designed that are of a material, size and shape to largely resist flexure, extension, torsion, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused. Thus, longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially rigid support in all planes.


An alternative to fusion, which immobilizes at least a portion of the spine, and the use of more rigid longitudinal connecting members or other rigid structure has been a “soft” or “dynamic” stabilization approach in which a flexible loop-, S-, C- or U-shaped member or a coil-like and/or a spring-like member is utilized as an elastic longitudinal connecting member fixed between a pair of pedicle screws in an attempt to create, as much as possible, a normal loading pattern between the vertebrae in flexion, extension, distraction, compression, side bending and torsion. Another type of soft or dynamic system known in the art includes bone anchors connected by flexible cords or strands, typically made from a plastic material. Such a cord or strand may be threaded through cannulated spacers that are disposed between adjacent bone anchors when such a cord or strand is implanted, tensioned and attached to the bone anchors. The spacers typically span the distance between bone anchors, providing limits on the bending movement of the cord or strand and thus strengthening and supporting the overall system. Such cord or strand-type systems have typically required specialized bone anchors and tooling for tensioning and holding the cord or strand in the bone anchors.


The complex dynamic conditions associated with spinal movement create challenges for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and that allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member. A further challenge are situations in which a portion or length of the spine requires a more rigid stabilization, possibly including fusion, while another portion or length may be better supported by a more dynamic system that allows for protective movement.


SUMMARY OF THE INVENTION

Longitudinal connecting member assemblies according to the invention for use between at least two bone anchors provide soft or dynamic, protected motion of the spine and may be extended to provide additional soft or dynamic sections or more rigid support along an adjacent length of the spine, with fusion, if desired. A longitudinal connecting member assembly according to the invention has an inner segment or core typically made from a cord or cords, the core being fixed at either end to substantially rigid segments or structures, including but not limited to rods, tubes, sleeves, blocking structures or stops. The core is typically surrounded by a spacer that is usually elastomeric but may be hard and rigid. Furthermore elastomeric bumpers may be used at locations along the connector to provide a continuous axial load. The longitudinal connecting member assembly is typically dynamically loaded prior to being operatively attached to at least a pair of bone anchors along a patient's spine. The tensioned inner core or cord and one or more compressed spacers or bumpers cooperate dynamically, such features also having some flexibility in bending, with the outer spacer protecting and limiting flexing movement of the inner core. The spacer may include one or more grooves or other features to aid in compression upon installation between the rigid elongate segments.


The illustrated inner core cords of the invention are slidable with respect to illustrated sleeves that are attached to the bone anchor. However, such cords may also may be utilized in sleeveless embodiments wherein the cord is slidable with respect to one or more bone anchor with the cord being fixed to blockers located outside of such an anchor. Thus, also, a dynamic stabilization assembly according to the invention for attachment to at least two bone anchors includes an elongate inner core, preferably a tensioned cord, with at least one spacer, typically in the form of an elastic spacer, surrounding the core, the core and spacer disposed between the at least two bone anchors. One or more elastic bumpers and one or more fixing structures or blockers are disposed on opposite sides of one of the bone anchors, (and/or between certain bone anchors) the bumper or bumpers in compression by cooperation between one or more of the bone anchors and the blocker.


In a method of one aspect of the invention, a cord and surrounding spacer are inserted between first and second implanted bone anchors with a spacer being in contact with both of the bone anchors. The cord is fixed to the first bone anchor or to a blocker located outside the bone anchor. A bumper and a fixing structure or blocker are threaded along the cord until the bumper abuts the second bone anchor and the blocker abuts the bumper. The cord is tensioned and the blocker is crimped or otherwise fixed to the cord, for example, using a set screw, resulting in a tensioned cord with both the bumper and the spacer being in compression. The cord remains in sliding engagement with the second bone anchor, or with both the first and second bone anchors when there are two blockers, advantageously allowing for some elastic distraction of the system with elongation between the screw heads once implanted, as well as compression and bending in response to spinal flexion and extension. In some embodiments according the invention, there is no overlap between bumpers and blockers while in others, there is some overlap. In some embodiments, blockers may be utilized without bumpers. Soft stabilization assemblies according to the invention may be utilized with both open and closed monoaxial bone screws as well as polyaxial bone screws. In some embodiments, the core cord member may be replaced by relatively hard stiff rods or bars or relatively soft, deformable or non elastic rods or bars, or other longitudinal connecting members of different shapes and materials, including PEEK and other polymers and metal cables. Assemblies of the invention may include mono- and polyaxial open and closed screws that may be used with a first locking fastener or closure top that fixes against the core member (cord, cable, rod or bar), or alternatively with a second locking limited travel closure top that is fixed to the bone screw and captures the core (cord, cable, rod or bar) in the screw, but allows such core member to be in sliding engagement with the bone screw. In the case of a polyaxial screw, the polyaxial mechanism is configured to be locked by this second closure top while allowing the core to travel through the screw head. Such polyaxial screws may include inserts that cooperate directly with closure tops to press down upon the bone screw shank and lock the polyaxial mechanism without pressing on the inner core member. Open bone screws with no set screw may also be utilized.


A variety of embodiments according to the invention are possible. Rods or other substantially rigid structures having different measures of rigidity may be connected according to embodiments of the invention. Either rigid lengths or flexible cords may be of greater or lesser lengths for attaching to one or a plurality of bone anchors.


It is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone anchors and a soft (or soft and hard combination) longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.


Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.


The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a dynamic fixation longitudinal connecting member according to the invention including first and second rigid rod portions, an inner core, an outer spacer and a pair of support rings, and shown attached to a pair of polyaxial bone screws.



FIG. 2 is an enlarged exploded perspective view of the rigid rod portions of the connecting member of FIG. 1.



FIG. 3 is an enlarged exploded front elevational view of the connecting member of FIG. 1.



FIG. 4 is an enlarged perspective view of the spacer of FIG. 1.



FIG. 5 is an enlarged side elevational view of the spacer of FIG. 1.



FIG. 6 is an enlarged perspective view of the spacer of FIG. 1 with portions removed to show the detail thereof.



FIG. 7 is an enlarged perspective view of one of the support rings of FIG. 1.



FIG. 8 is an enlarged and partial front elevational view of the connecting member of FIG. 1 with portions broken away to show the detail thereof.



FIG. 9 is a perspective view of a second embodiment of a dynamic fixation longitudinal connecting member according to the invention shown with three bone screws.



FIG. 10 is an enlarged perspective view of a rigid rod portion of the connecting member of FIG. 9.



FIG. 11 is an enlarged perspective view of three rigid rod portions and connecting inner core ties of the connecting member of FIG. 9.



FIG. 12 is a front elevational view of a third embodiment of a dynamic fixation longitudinal connecting member according to the invention including first and second rigid rod portions, an inner core, an outer spacer, an elastic bumper and a crimping ring, and shown attached to a pair of polyaxial bone screws.



FIG. 13 is an enlarged perspective view of the first rigid rod portion of FIG. 12.



FIG. 14 is an enlarged perspective view of the second rigid rod portion of FIG. 12.



FIG. 15 is an enlarged exploded perspective view of the connecting member of FIG. 12, the spacer having a portion broken away to show the detail thereof.



FIG. 16 is an enlarged exploded front elevational view of the connecting member of FIG. 12, the spacer having a portion broken away to show the detail thereof.



FIG. 17 is an enlarged front elevational view of the connecting member of FIG. 12 with portions broken away to show the detail thereof.



FIG. 18 is an enlarged side elevational view of the spacer shown in FIG. 12.



FIG. 19 is an opposed side elevational view of the spacer of FIG. 18.



FIG. 20 is a front elevational view of a fourth embodiment of a dynamic fixation longitudinal connecting member according to the invention shown with three bone screws.



FIG. 21 is an enlarged exploded perspective view of rigid rod portions, a bumper and a crimping ring of the connecting member of FIG. 20.



FIG. 22 is an enlarged perspective view of one of the spacers of the connecting member of FIG. 20.



FIG. 23 is a front elevational view of a fifth embodiment of a dynamic fixation longitudinal connecting member according to the invention, similar to that shown in FIG. 20, but including an additional spacer.



FIG. 24 is a front elevational view of a sixth embodiment of a dynamic fixation longitudinal connecting member according to the invention, also similar to that shown in FIG. 20, but including an additional spacer and bumper.



FIG. 25A is a front elevational view of a seventh embodiment of a dynamic fixation longitudinal connecting member according to the invention, shown in a first state or position.



FIG. 25B is another front elevational view of the seventh embodiment of a dynamic fixation longitudinal connecting member according to the invention, shown in a second state or position.



FIG. 26A is another front elevational view of the embodiment shown in FIGS. 25A and B, showing the embodiment in another state or position.



FIG. 26B is another front elevational view of the embodiment shown in FIGS. 25A and B and 26A, showing the embodiment in another state or position.



FIG. 27A is a front elevational view of an eighth embodiment of a dynamic fixation longitudinal connecting member according to the invention, shown in a first state or position.



FIG. 27B is a front elevational view of the eighth embodiment of a dynamic fixation longitudinal connecting member according to the invention, shown in a second state or position.



FIG. 28 is a partial perspective view of another soft dynamic stabilization connector of the invention having an inner cord, an outer spacer, an elastic bumper and a fixing structure or blocker, shown as a crimping structure, the connector shown with a pair of open monoaxial bone screws, one with a cord travel or sliding closure top and one with a cord compressing and locking closure top.



FIG. 29 is a partial and reduced and exploded front elevational view of the connector and bone screws of FIG. 28, shown without the closure tops.



FIG. 30 is a partial front elevational view, similar to FIG. 29 showing a stage of assembly of the connector and bone screws of FIG. 28, showing use of a driving tool for fixing one of the first closure tops against the cord.



FIG. 31 is a partial top plan view with portions broken away to show the detail thereof, showing use of a crimping tool in a further stage of assembly of the connector and bone screws of FIG. 28.



FIG. 32 is an enlarged and partial cross-sectional view taken along the line 32-32 of FIG. 28.



FIG. 33 is an exploded perspective view of an alternative bone screw for use with the invention of FIG. 28, shown with a cord and a cord sliding limited travel closure top.



FIG. 34 is a partial perspective view of an alternative bar for use with the bone screw and closure top of FIG. 33.



FIG. 35 is an enlarged and partial cross-sectional view of the bone screw of FIG. 33 taken along the line 35-35 of FIG. 33 and showing a portion of the cord in phantom.



FIG. 36 is an enlarged and partial cross-sectional view taken along the line 36-36 of FIG. 35 and also showing the mated closure top in cross section, a portion of the cord in phantom and an alternative closure top possibility, such top having an upper cap or stop shown in phantom.



FIG. 37 is an exploded perspective view of the bone screw of FIG. 33 shown with a second locking closure top and a deformable rod.



FIG. 38 is a partial cross-sectional view taken along the line 38-38 of FIG. 37 and showing the second locking closure top in an early stage of assembly.



FIG. 39 is a partial cross-sectional view, similar to FIG. 38, showing the second closure top fully assembled within the bone screw and engaged with and compressing a deformable rod.



FIG. 40 is an enlarged and partial cross-sectional view of the bone screw of FIG. 37 taken along the line 38-38, with a portion of the deformable rod being shown in phantom.



FIG. 41 is an enlarged and partial cross-sectional view, taken along the line 41-41 of FIG. 40, also showing the mated closure top and a portion of the deformable rod in cross-section.



FIG. 42 is a perspective view of another alternative embodiment of a soft dynamic stabilization connector of the invention having an inner rod, an elastic bumper and a blocking structure, the connector shown with a pair of open polyaxial bone screws.



FIG. 43 is an enlarged and partial side elevational view of one of the bone screws of the embodiment of FIG. 42 with portions broken away to show the detail thereof and also showing an alternative cap portion in phantom.



FIG. 44 is a front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, an elastic bumper and a blocking structure, two spacers and shown with three open monoaxial screws and cooperating closure tops.



FIG. 45 is another front elevational view of the connector of FIG. 44 with portions broken away to show the detail thereof.



FIG. 46 is another front elevational view of the connector of FIG. 44 shown in a compressed state.



FIG. 47 is a front elevational view of the connector of FIG. 46 with portions broken away to show the detail thereof.



FIG. 48 is another front elevational view of the connector of FIG. 44 shown in a distracted state.



FIG. 49 is a front elevational view of the connector of FIG. 48 with portions broken away to show the detail thereof.



FIG. 50 is a front elevational view with portions broken away to show the detail thereof of a replacement assembly wherein the soft cord, blocker, bumper and spacers of the connector of FIG. 44 have been removed and replaced with a hard rod.



FIG. 51 is a front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, an elastic bumper and a blocking structure, a spacer, a rod/cord connector, a rod and shown with four open monoaxial screws and cooperating closure tops.



FIG. 52 is another front elevational view of the connector of FIG. 51 with portions broken away to show the detail thereof.



FIG. 53 is a front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, an elastic bumper and a blocking structure, two lordotic spacers, and shown with three open monoaxial screws and cooperating closure tops.



FIG. 54 is another front elevational view of the connector of FIG. 53 with portions broken away to show the detail thereof.



FIG. 55 is an enlarged, exploded and perspective view of the blocker and cooperating set screw shown in FIG. 44.



FIG. 56 is a top plan view of the blocker of FIG. 55.



FIG. 57 is a bottom plan view of the blocker of FIG. 55.



FIG. 58 is a cross-sectional view taken along the line 58-58 of FIG. 56.



FIG. 59 is an enlarged perspective view of one of the spacers shown in FIG. 44.



FIG. 60 is a reduced, exploded, perspective view of one of the open bone screws shown in FIG. 44, shown with both a slip and a grip closure top.



FIG. 61 is an enlarged, exploded perspective view of the rod/cord connector and cooperating set screws shown in FIG. 51.



FIG. 62A is a partial and enlarged front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, an elastic bumper and a blocking structure, two spacers and shown, with three closed monoaxial screws, one with a cooperating set screw, the figure shows the connector in a distracted state.



FIG. 62B is a partial and enlarged front elevational view, similar to FIG. 62A, showing the connector of FIG. 62A in a compressed state.



FIG. 62C is a partial and enlarged front elevational view, similar to FIG. 62A, showing the connector of FIG. 62A in a nominal state.



FIG. 63A is a partial front elevational view with portions broken away of the connector of FIG. 62A.



FIG. 63B is a partial front elevational view with portions broken away of the connector of FIG. 62B.



FIG. 63C is a partial front elevational view with portions broken away of the connector of FIG. 62C.



FIG. 64 is a front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, two elastic bumpers, two blocking structures, two spacers and shown with three closed monoaxial screws with no set screws.



FIG. 65 is a partial front elevational view with portions broken away of the connector of FIG. 64.



FIG. 66 is a partial front elevational view of another soft dynamic stabilization connector of the invention having an inner cord, one elastic bumper, two blocking structures, one having a break-off head, two spacers and shown with three closed monoaxial screws with no set screws.



FIG. 67 is another partial front elevational view of the connector of FIG. 66, showing the spacer compressed and the blocking structure break-off head removed.



FIG. 68 is a partial front elevational view with portions broken away of the connector of FIG. 67.



FIG. 69 is a reduced, exploded, perspective view of the closed bone screw and cooperating set screw shown in FIGS. 62A-68.



FIG. 70 is an exploded side elevational view of the bone screw and set screw of FIG. 69.



FIG. 71 is an enlarged side elevational view of the bone screw of FIG. 70 with portions broken away to show the detail thereof.





DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. It is also noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of the connecting member assemblies of the application and cooperating bone anchors in actual use.


With reference to FIGS. 1-8, the reference numeral 1 generally designates a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention. The connecting member assembly 1 is elongate and substantially cylindrical, having a central axis A. The connecting member assembly 1 generally includes first and second substantially rigid members 6 and 7 with a central, dynamic connection or transition portion or segment, generally 8, disposed therebetween. A tie or a plurality of ties 10 link the rigid members 6 and 7 at the central segment 8. The ties 10 may be any flexible elongate material that fastens, secures or unites the rigid members 6 and 7, including, but not limited to cords, threads, strings, bands, or fibers that may be single or multiple strands, including twisted, braided or plaited materials. The illustrated central segment 8 further includes an outer sleeve or spacer 14 and a pair of support rings 16.


Each of the illustrated rigid members 6 and 7 are substantially cylindrical with one or more circular cross-sections along a length thereof. However, it is foreseen that the members 6 and 7 may have other forms, including but not limited to oval, square and rectangular cross-sections as well as other curved or polygonal shapes. It is foreseen that the member 6 and 7 may be of different materials, different shapes or different sizes, and thus one member may be more rigid or more flexible than the other member. The members 6 and 7 each are of a length for cooperating with at least one and up to a plurality of bone attachment members, such as bone screws or hooks. The member 6 is substantially solid, rigid and cylindrical and further includes a buttress or plate 20 having a plurality of apertures in the form of through bores 22. The member 7 is also substantially solid, rigid and cylindrical and includes a buttress or plate 24 similar or identical to the plate 20. The plate 24 also has a plurality of apertures in the form of through bores 26 running therethrough that are identical or similar to the apertures 22. Each of the bores 22 and 26 extends through the respective plate 20 and 24 at an oblique angle with respect to the axis A. It is foreseen that according to the invention the bores 22 and 26 may also run parallel to the axis A. It is foreseen that the cord, cords, strands or fibers could be embedded into or adhered on the ends of the members 6 and 7.


With particular reference to FIG. 2, in the illustrated embodiment, there is shown six bores 22a, 22b, 22c, 22d, 22e and 22f and six cooperating bores 26a, 26b, 26c, 26d, 26e and 26f, each oriented substantially uniformly about the axis A. With reference to both FIGS. 2 and 3, in the illustrated embodiment, the ties 10 are in the form of six independent closed loops, 10a, 10b, 10c, 10d, 10e and 10f, oriented in a cris-cross pattern, that attach or tether the rigid members 6 and 7 together at the respective plates 20 and 24. The loops are installed individually, with the individual cords 10 being at least one of knotted, adhered, bonded or melted, to form such a closed loop after threading though two adjacent bores in each of the plates 20 and 24. For example, one looped cord 10 extends through the bores 22a and 22b, looping about the plate 20 at a location between the bores 22a and 22b, and also extends through the bores 26d and 26e, looping about the plate 24 at a location between the bores 26d and 26e. While, in similar fashion, another cord 10 loops about the plate 22 by extending through the bores 22d and 22e and also about the plate 24 by extending through the bores 26a and 26b. As illustrated in FIG. 3, orienting the individual loops 10a-10f in such a cris-cross pattern provides a resulting dynamic corded section 8 that slopes or angles inwardly toward the axis A at or near a central location 28 thereof, providing adequate clearance and ready acceptance of the spacer 14 as will be described in greater detail below. It is foreseen that the cords 10 may be individually looped in a configuration substantially parallel to the axis A or a variety of other orientations.


The ties 10 making up the individual or closed loops may be made from a variety of materials, including polyester or other plastic fibers, strands or threads, such as polyethylene-terephthalate. Such cord and cord-like materials usually are placed under axial tension prior to final installation, for example, the loops 10a-10f that are attached to the plates 20 and 24 may be tensioned along the axis A for a selected time prior to installation of the spacer 14 to allow the cords 10 to lengthen and otherwise deform during a primary creep stage. As will be described in more detail below, after the cords 10 reach secondary or steady-state creep, further tension is then placed on the cords 10 in preparation for installation of the spacer 14 between the plates 20 and 24 to ensure dynamic pre-loading of the connector 1, with the corded loops 10a-10f being in tension along the axis A while at the same time the spacer 14 is in compression along the axis A. It is also foreseen that in alternative embodiments of the invention, greater or fewer than six discrete loops or even a single tie 10 may be laced through numerous apertures in the plates 20 and 24 to connect the member 6 to the member 7.


Cords 10 of the invention typically do not illustrate elastic properties, such as any significant additional axial distraction after the assembly 1 is operatively assembled. However, it is foreseen that in some embodiments, the ties or cords 10 may be made of a plastic or rubber (natural or synthetic) having elastic properties, allowing for some further distraction of the central connection portion 8 at the ties 10 during operation thereof.


Returning to the longitudinal connecting member rigid members 6 and 7, each of the plates 20 and 24 include respective outer planar surfaces or faces 30 and 34 that operatively face toward one another. Furthermore, each plate 20 and 24 has a respective opposed face 36 and 38. The bores 22a-f open at both the faces 30 and 36 and the bores 26a-f open at both the faces 34 and 38. As illustrated in FIGS. 3 and 8, the cords 10 that form the six discrete closed loops, contact the faces 36 and 38 and attach the plate 20 to the plate 24 with the substantially planar surfaces 30 and 34 facing each other. Extending from the faces 36 and 38 are respective elongate cylindrical portions 40 and 42 of the rigid members 6 and 7. The portion 40 terminates at an end 44 and the portion 42 terminates at an end 46. The portions 40 and 42 are each sized and shaped to attach to at least one bone anchor as will be described in greater detail below. The illustrated portions 40 and 42 are approximately the same size, but it is foreseen that different sizes, lengths and shapes are possible, as well as making the portions 40 and 42 from different materials and also making the plates 20 and 24 from materials that are different than the portions 40 and 42. In the illustrated embodiment, the plates 20 and 24 are integral with respective elongate portions 40 and 42 with the members 6 and 7 being made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber.


With particular reference to FIGS. 3-6 and 8, the sleeve or spacer 14 advantageously cooperates with the cords 10 of the central connection or transition portion 8, providing limitation and protection of movement of the cords 10. The spacer 14 also protects patient body tissue from damage that might otherwise occur in the vicinity of the corded central portion 8. The spacer 14 is substantially cylindrical and made from a plastic, such as a thermoplastic elastomer made from a polyurethane or polyurethane blend. The spacer 14 has an external substantially cylindrical outer surface 50 and an internal surface 52 defining a through bore. The internal surface 52 is further defined by a centrally located surface 53 having a circular cross section and a pair of outwardly extending substantially conical surfaces 56 and 57 running from the surface 53 to respective substantially planar end surfaces 60 and 62. When cooperating with the looped cords 10, the end surfaces 60 and 62 are substantially perpendicular to the axis A and the cris-cross orientation of the looped cords 10 follow the conical inner surfaces 56 and 57 of the spacer 14 with the central portion 28 of the looped cords being substantially aligned with the inner surface 53. It is foreseen that in some embodiments, the spacer may be of circular, square, rectangular or other cross-section including curved or polygonal shapes. In the illustrated embodiment, the spacer 14 further includes a compression groove 64 and a pair of grooves 66 on either side of the groove 64 sized and shaped to receive the support rings or bands 16. Spacers according to the invention may include one, none or any desired number of grooves. The illustrated grooves 64 and 66 are substantially uniform and circular in cross-section, being formed in the external surface 50 and extending radially toward the internal surface 52. The size of the internal surface 52 allows for some axially directed sliding movement of the spacer 14 with respect to the cords 10 of the section 8. The spacer 14 further includes a radially directed elongate slit or gap opening 68 extending therethrough between the outer surface 50 and the inner surface 52 and through the end surfaces 60 and 62. With reference to FIG. 3, the slit or gap 68 allows for opening the spacer 14 and placing the spacer 14 onto the cords 10 of the section 8 with the gap or slit 68 widening or expanding to receive the cords 10 and then elastically returning the spacer 14 to an original cylindrical shape as shown in FIG. 8, but now positioned with the inner cylindrical surface 52 in sliding, rotating engagement with the cords 10 of the section 8. Also, as shown in FIG. 8, when the spacer 14 is initially placed on the cords 10, the spacer 14 completely surrounds the cords 10 and abuts against the buttress plate surfaces 30 and 34. The cords 10 and cooperating compressible spacer 14 allows for some twist or turn, providing some relief for torsional stresses. The spacer 14, however limits such torsional movement as well as bending movement, providing spinal support, as well as allowing for further compression of the assembly 1 at the transition segment 8. It is noted that in addition to limiting the bendability of the central connection portion 8 and thus providing strength and stability to the assembly 1, the spacer 14 also keeps scar tissue from growing into the portion 8 through the cords 10, thus eliminating the need for a sheath-like structure to be placed, adhered or otherwise applied to the cords 10 on the central connection portion 8. In order to reduce the production of any micro wear debris, that in turn may cause inflammation, the spacer 14 inner surfaces and/or cooperating cord 10 surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.


With reference to FIGS. 3 and 7, the support rings or bands 16 are annular and sized and shaped to encircle the spacer 14 and be closely received in the grooves 66. Support rings 16 may be made from a variety of materials, including metals, metal alloys and plastics. A preferred material is tantalum. In the illustrated embodiment, the rings 16 are of circular cross-section and each include a slit or gap 70. The slit or gap 70 allows for opening the ring 16 and placing the ring 16 about the spacer 14 and into one of the grooves 66 with the gap or slit 70 widening or expanding to receive the spacer 14 and then elastically returning the ring 16 to an original circular orientation as shown in FIG. 8, but now positioned about the spacer 14 and within one of the grooves 66. A spot weld, adhesive, or other attachment is then applied to close the slit 70 and secure the ring 16 to itself and about the spacer 14. The pair of rings 16 thus uniformly surround the spacer 14 about the axis A and near each end surface 60 and 62, preventing a gap or gaps from forming at the slit 68. It is foreseen that according to the invention, the support rings or bands may be made of a tough elastic material and therefore not require the slit 70. During installation, the member 6 or 7 would be received by such a band and then the band would be stretched about the spacer 14 and allowed to return to its original form in one of the grooves 66. In a preferred connector 1 of the invention wherein the members 6 and 7 are made from PEEK and cooperate with polyethylene cords 10 and a polyurethane spacer 14, an assembly 1 that is radiolucent results. In such an embodiment, it may be desirable to make the support rings 16 from a metal or metal alloy, such as tantalum, to provide x-ray orientation markers.


The dynamic connecting member assembly 1 cooperates with at least a pair of bone anchors, such as polyaxial bone screws, generally 75, and cooperating closure structures 77 shown in FIG. 1, the assembly 1 being captured and fixed in place at the rigid end portions 40 and 42 by cooperation between the bone screws 75 and the closure structures 77. The dynamic section 8, that is pre-loaded and pre-tensioned, is disposed between the bone screws 75.


It is noted that an advantageous connecting member 1 according to the invention includes a portion 42 made from a metal alloy such as stainless steel that is elongate and intended for fusion along a major portion or section of the spine, for example, the portion 42 may be sized to extend from the sacrum to the thoracic spinal segment T10. Such an elongate portion 42 is thus connectable to a plurality of bone anchors along the spine. Such a connecting member further includes a dynamic section 8, having cords 10 and spacer 14 that is sized for placement, for example, between T9 and T8. Such an embodiment is believed to minimize rapid degeneration and compressive fractures that tend to occur near ends of such elongate connecting member assemblies.


Because the portions 40 and 42 are substantially solid and cylindrical, the connecting member assembly 1 may be used with a wide variety of bone anchors already available for cooperation with rigid rods including fixed, monoaxial bone screws, hinged bone screws, polyaxial bone screws, and bone hooks and the like, with or without compression inserts, that may in turn cooperate with a variety of closure structures having threads, flanges, or other structure for fixing the closure structure to the bone anchor, and may include other features, for example, break-off tops and inner set screws. The bone anchors, closure structures and the connecting member assembly 1 are then operably incorporated in an overall spinal implant system for correcting degenerative conditions, deformities, injuries, or defects to the spinal column of a patient.


The illustrated polyaxial bone screws 75 each include a shank 80 for insertion into a vertebra (not shown), the shank 80 being pivotally attached to an open receiver or head 81. The shank 80 includes a threaded outer surface and may further include a central cannula or through-bore disposed along an axis of rotation of the shank to provide a passage through the shank interior for a length of wire or pin inserted into the vertebra prior to the insertion of the shank 80, the wire or pin providing a guide for insertion of the shank 80 into the vertebra. The receiver 81 has a pair of spaced and generally parallel arms 85 that form an open generally U-shaped channel therebetween that is open at distal ends of the arms 85. The arms 85 each include radially inward or interior surfaces that have a discontinuous guide and advancement structure mateable with cooperating structure on the closure structure 77. The guide and advancement structure may take a variety of forms including a partial helically wound flangeform, a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structure for operably guiding under rotation and advancing the closure structure 77 downward between the receiver arms 85 and having such a nature as to resist splaying of the arms 85 when the closure 77 is advanced into the U-shaped channel. For example, a flange form on the illustrated closure 77 and cooperating structure on the arms 85 is disclosed in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference.


The shank 80 and the receiver 81 may be attached in a variety of ways. For example, a spline capture connection as described in Applicant's U.S. Pat. No. 6,716,214, and incorporated by reference herein, may be used for the embodiment disclosed herein. Polyaxial bone screws with other types of capture connections may also be used according to the invention, including but not limited to, threaded connections, frictional connections utilizing frusto-conical or polyhedral capture structures, integral top or downloadable shanks, and the like. Also, as indicated above, polyaxial and other bone screws for use with connecting members of the invention may have bone screw shanks that attach directly to the connecting member portion or segment 40 or 42, or may include compression members or inserts that cooperate with the bone screw shank, receiver and closure structure to secure the connecting member assembly 1 to the bone screw and/or fix the bone screw shank at a desired angle with respect to the bone screw receiver that holds the longitudinal connecting member assembly 1. It is foreseen that if the connecting member portions 40 and 42 are fabricated from a plastic such as polyetheretherketone (PEEK), it may be desirable to utilize bone screws that include one or both upper and lower compression inserts that have a saddle or U-shape configuration to closely engage such segments within the bone screw receiver. Although the closure structure 77 of the present invention is illustrated with the polyaxial bone screw 75 having an open receiver or head 81, it is also foreseen that a variety of closure structures may be used in conjunction with any type of medical implant having an open or closed head, including monoaxial bone screws, hinged bone screws, hooks and the like used in spinal surgery.


To provide a biologically active interface with the bone, the threaded shank 80 may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.


With reference to FIG. 1, the closure structure 77 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the interior surface of the upstanding arms 85 of the receiver 81. The illustrated closure structure 77 is rotatable between the spaced arms 85, but could be a slide-in closure structure. As described above, the illustrated closure structure 77 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form 88 that operably joins with the guide and advancement structure disposed on the interior of the arms 85. The illustrated closure structure 77 includes a lower or bottom surface that is substantially planar and may include a point and/or a rim protruding therefrom for engaging the portion 40 or 42 outer cylindrical surface. The closure structure 77 has a top surface 90 with an internal drive feature 92, that may be, for example, a star-shaped drive aperture sold under the trademark TORX. A driving tool (not shown) sized and shaped for engagement with the internal drive feature 92 is used for both rotatable engagement and, if needed, disengagement of the closure 77 from the arms 85. The tool engagement structure 92 may take a variety of forms and may include, but is not limited to, a hex shape or other features or apertures, such as slotted, tri-wing, spanner, two or more apertures of various shapes, and the like. It is also foreseen that the closure structure 77 may alternatively include a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 70 to 140 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal.


In use, at least two bone screws 75 are implanted into vertebrae for use with the longitudinal connecting member assembly 1. Each vertebra may be pre-drilled to minimize stressing the bone. Furthermore, when a cannulated bone screw shank is utilized, each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for the bone screw cannula of the bone screw shank 80 and provides a guide for the placement and angle of the shank 80 with respect to the cooperating vertebra. A further tap hole may be made and the shank 80 is then driven into the vertebra by rotation of a driving tool (not shown) that engages a driving feature on or near a top portion of the shank 80. It is foreseen that the screws 75 and the longitudinal connecting member assembly 1 can be inserted in a percutaneous or minimally invasive surgical manner.


With particular reference to FIGS. 2, 3 and 8, the longitudinal connecting member assembly 1 is factory assembled to include the looped ties 10 that are initially tensioned to steady state and thereafter further tensioned to receive the spacer 14 that is cut to a desired size so that the spacer 14 is axially compressed between the plates 20 and 24 after insertion of the spacer 14 about the cords or ties 10 and between such plates 20 and 24. In such process, the spacer 14 is opened or expanded at the slit 68 and moved into position over the cords 10 of the central portion 8 and between the plates 20 and 24 and then allowed to elastically return to an original cylindrical form as shown in FIG. 8. The spacer 14 is also axially compressed during insertion such that the spacer 14 easily slides and is received between the surfaces 30 and 34. Thereafter, the rings or bands 16 are expanded at the respective slits 70 and moved into position in the grooves 66, followed by spot welding thereof to result in closed rings 16 encircling the spacer 14. The resulting connecting member assembly 1 is thus dynamically loaded with the cords 10 in tension and the spacer 14 in compression. In some embodiments according to the invention it may be desirable to place one or more pins through the plates 20 and 24 and into the spacer 14 to prevent rotation of the spacer 14 about the axis A relative to the plates 20 and 24. It may also be desirable to use such pins as x-ray markers.


With further reference to FIG. 1, the pre-loaded connecting member assembly 1 is eventually positioned in an open or percutaneous manner in cooperation with the at least two bone screws 75 with the cords 10 and the spacer 14 disposed between and spaced from the two bone screws 75 and with the portions 40 and 42 each being within a U-shaped channel of a cooperating bone screw 75. It is noted that the portions 40 and/or 42 near respective ends 44 and 46 may be selectively trimmed or cut to size before or at the time of surgery, or if longer, attached to the spine with additional bone anchors. Once a desired position is attained, a closure structure 77 is then inserted into and advanced between the arms 85 of each of the bone screws 75. The closure structure 77 is rotated, using a tool (not shown) engaged with the inner drive 92 until a selected pressure is reached at which point the section 40 or 42 is urged toward, but not completely seated in the U-shaped channel of the bone screw 75. For example, about 80 to about 120 inch pounds pressure may be required for fixing the bone screw shank 80 with respect to the receiver 81 at a desired angle of articulation.


The assembly 1 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 1 and the two connected bone screws 75. The looped cords 10 and the spacer 14 allow for some twisting or turning, providing some relief for torsional stresses. Furthermore, the compressed spacer 14 places some limits on torsional movement as well as bending movement, to provide spinal support. The pre-loaded cords 10 (in tension) and spacer 14 (in compression) allow for compression and some extension of the assembly 1 located between the two bone screws 75, e.g., shock absorption.


If removal of the assembly 1 from any of the bone screw assemblies 75 is necessary, or if it is desired to release the assembly 1 at a particular location, disassembly is accomplished by using the driving tool (not shown) with a driving formation cooperating with the closure structure 77 internal drive 92 to rotate and remove the closure structure 77 from the receiver 81. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.


Eventually, if the spine requires more rigid support, the connecting member assembly 1 according to the invention may be removed and replaced with another longitudinal connecting member, such as a solid rod, having the same diameter as the portions 40 and 42, utilizing the same receivers 81 and the same or similar closure structures 77. Alternatively, if less support is eventually required, a less rigid, more flexible assembly, for example, an assembly 1 having portions 40 and 42 made of a more flexible material, but with the same diameter as the rigid portions 40 and 42, may replace the assembly 1, also utilizing the same bone screws 75.


With reference to FIGS. 9-11, an alternative longitudinal connecting member assembly according to the invention, generally 101, has a central axis B and includes rigid members 105, 106 and 107 and first and second dynamic connection portions or sections 108 and 108A. The dynamic sections 108 and 108A include respective closed looped cords 110 and 110A, respective spacers 114 and 114A and respective support rings 116 and 116A. The connecting member assembly 101 provides for two dynamic support sections between a plurality of vertebrae. The illustrated embodiment is shown attached to three bone screws 75 and cooperating closure structures 77 previously described herein. The illustrated rigid members 105, 106 and 107 are each sized for attachment to a single bone anchor or screw. However, it is noted that each such rigid member 105, 106 and 107 may be of greater length (along the axis B) for operative attachment to two or more bone anchors. Furthermore, more than one rigid member 105 may be disposed between rigid members 106 and 107 to provide a plurality of dynamic sections.


The illustrated members 106 and 107 are identical or substantially similar to respective members 6 and 7 previously described herein with respect to the connecting member 1, the member 106 having an end plate 120 and a plurality of bores 122 similar to the plate 20 and bores 22 previously described herein and the member 107 having an end plate 124 and a plurality of bores 126 similar to the plate 24 and bores 26 previously described herein with respect to the member 7. Also, the closed looped cords 110 and 110A are identical or substantially similar to the closed looped cords 10 previously described herein with respect to the connecting member 1 with the cooperating spacers 114 and 114A being identical or substantially similar to the spacer 14 previously described herein with respect to the connecting member 1. Also, the support rings 116 and 116A are identical or substantially similar to the support rings 16 previously described herein with respect to the connecting member 1. However, in the connecting member 101, rather than having closed looped cords that directly attach the members 106 and 107 as previously described with respect to the members 6 and 7, the closed looped cords 110 attach the member 105 with the member 106 and the closed looped cords 110A attach the member 105 with the member 107 in a manner substantially identical to what has been described herein with respect to the close looped cords 10 of the connecting member 1.


Thus, the member 105 may also be considered to be an extender member that is disposed between the members 106 and 107 and is attached to each of such members with the respective closed looped cords 110 and 110A to provide an additional dynamic segment to the assembly 101. The illustrated member 105 includes a pair of opposed end plates 182 and 183 and an integral cylindrical mid-portion 184 extending therebetween. The end plates 182 and 183 are identical or substantially similar to the plates 20 and 24 previously described herein with respect to the members 6 and 7. Thus, the end plates 182 and 183 include respective apertures or through bores 186 and 187 for receiving the respective closed looped cords 110 and 110A. In the illustrated embodiment there are six bores 186 cooperating with the six bores 122 of the member 6 and six bores 187 for cooperating with the six bores 126 of the member 107. The looped cords 110 loop through the bores 122 and the bores 186 while the looped cords 110A loop through the bores 126 and the bores 187. The illustrated cylindrical mid-portion 184 is sized to be received between arms 85 of at least one bone screw 75.


In use, the closed looped cords 110 and 110A are installed in the same manner as previously described herein with respect to the closed looped cords 10 and the spacers 114 and 114A and cooperating support rings 116 and 116A are installed in the same manner as previously described herein with respect to the spacer 14 and the rings 16. Thereafter, the pre-tensioned, pre-compressed connecting member 101 is positioned in an open or percutaneous manner in cooperation with the at least three bone screws 75 with the cords 110 and 110A and cooperating spacers 114 and 114A each disposed between and spaced from such bone screws 75 and portions of the members 105, 106 and 107 each being within a U-shaped channel of a cooperating bone screw 75. A closure structure 77 is then inserted into and advanced between the arms 85 of each of the bone screws 75 to capture and lock the connecting member 101 in a desired location and position along the spine. Disassembly, removal and replacement of the connecting member assembly 101 with a more or less rigid connecting member may be performed in a manner as previously described herein with respect to the connecting member assembly 1.


With reference to FIGS. 12-19, another alternative longitudinal connecting member assembly according to the invention, generally 201 is elongate and substantially cylindrical, having a central axis C. The connecting member assembly 201 generally includes a first rigid anchor member 206 and a second rigid terminal member 207. A central, dynamic connection or transition portion or segment, generally 208, is disposed between the members 206 and 207. A tie, cord or a plurality of ties or cords 210 loop about and through apertures of the anchor member 206 and extend through a bore in the terminal member 207. The ties 210 may be any flexible elongate material that fastens, secures or unites the rigid members 206 and 207, including, but not limited to cords, threads, strings, bands, or fibers that may be single or multiple strands, including twisted, braided or plaited materials. The illustrated central segment 208 further includes a closed, non-slitted outer sleeve or spacer 214. The assembly 201 further includes an elastic bumper 217 and a crimping ring 219.


Each of the illustrated rigid members 206 and 207 are substantially cylindrical with one or more circular cross-sections along a length thereof. However, it is foreseen that the members 206 and 207 may have other forms, including but not limited to oval, square and rectangular cross-sections as well as other curved or polygonal shapes. It is foreseen that the members 206 and 207 may be of different materials, different shapes or different sizes, and thus one member may be more rigid or more flexible than the other member. The members 206 and 207 each are of a length for cooperating with at least one and up to a plurality of bone attachment members, such as bone screws or hooks.


With particular reference to FIGS. 12, 13 and 17, the anchor member 206 is substantially solid, rigid and cylindrical and further includes a buttress or plate 220 having a plurality of apertures in the form of through bores 222. The member 206 is identical or substantially similar to the member 6 previously described herein with respect to the connecting member assembly 1. The illustrated anchor member 206 has six bores 222 that extend through the plate 220 at an oblique angle with respect to the axis C as best shown in FIG. 17. It is foreseen that according to the invention the bores 222 may also run parallel to the axis C. The ties or cords 210 are in the form of six independent open loops installed individually by looping through pairs of adjacent bores 222 and then extending outwardly away from the plate 220 as shown in FIGS. 15 and 16. Similar to the cords 10 discussed previously herein, the cords 210 are placed under axial tension along the axis C for a selected time prior to final, fixed installation with the other components 214, 207, 217 and 219 to lengthen and otherwise deform the cords 210 during a primary creep stage. After the cords 210 reach secondary or steady-state creep, further tension is then placed on the cords 210 in preparation for final tightening and crimping of the ring 219 as will be described in greater detail below. It is also foreseen that in alternative embodiments of the invention, greater or fewer than six discrete open loops may be laced through apertures in the plate 220 and pulled through the member 207.


The cords 210 of the invention typically do not illustrate elastic properties, such as any significant additional axial distraction after the assembly 201 is operatively assembled. However, it is foreseen that in some embodiments, the ties or cords 210 may be made of a plastic or rubber (natural or synthetic) having elastic properties, allowing for some further distraction of the central connection portion 208 at the ties 210 during operation thereof.


With particular reference to FIG. 14, the terminal member 207 includes a buttress or plate 224 and in inner surface 226 that forms a through bore extending through the entire member 207 in an axial direction, sized and shaped for receiving a length of the bundled cords 210. When operatively connected to the member 206, the bore formed by the inner surface 226 extends along the axis C. With further reference to FIGS. 15-17, each of the plates 220 and 224 include respective outer planar surfaces or faces 230 and 234 that operatively face toward one another. Furthermore, each plate 220 and 224 has a respective opposed face 236 and 238. The bores 222 open at both the faces 230 and 236. The inner surface 226 forming the bore of the member 207 opens at the outer planar surface 234 and also at an end 239. The cords 210 that form the discrete open loops, loop about and contact the face 236, extend along the axis C within the inner surface 226 and extend through the end 239. Extending from and integral to the faces 236 and 238 are respective elongate cylindrical portions 240 and 242 of the respective anchor member 206 and the terminal member 207. The portion 240 terminates at an end 244. The open cords 210 extend completely through the elongate cylindrical portion 242 and into the bumper 217 and the crimping ring 219.


The portions 240 and 242 are each sized and shaped to attach to at least one bone anchor as will be described in greater detail below. The illustrated portions 240 and 242 are approximately the same size and length, but it is foreseen that different sizes, lengths and shapes are possible, as well as making the portions 240 and 242 from different materials and also making the plates 220 and 224 from materials that are different than the portions 240 and 242. In the illustrated embodiment, the plates 220 and 224 are integral with respective elongate portions 240 and 242 with the members 206 and 207 being made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber.


With particular reference to FIGS. 15-19, the sleeve or spacer 214 advantageously cooperates with the cords 210 of the central connection or transition portion 208, providing limitation and protection of movement of the cords 210. The spacer 214 also protects patient body tissue from damage that might otherwise occur in the vicinity of the corded central portion 208. The spacer 214 is substantially cylindrical and made from a plastic, such as a thermoplastic elastomer made from a polyurethane or polyurethane blend. The spacer 214 has an external substantially cylindrical outer surface 250 and an internal surface 252 defining a through bore. The internal surface 252 is further defined by a substantially cylindrical surface 253 having a circular cross section and an outwardly extending substantially conical surface 256 running from the surface 253 to a substantially planar end surface 260. The spacer 214 further includes an opposed planar end surface 262. The inner cylindrical surface 253 opens to the end surface 262.


When operatively cooperating with the looped cords 210, the end surfaces 260 and 262 of the spacer 214 are substantially perpendicular to the axis C. Also, when installed within the inner cylindrical surface 226, the cords 210 are drawn inwardly from the bores 222 and toward the axis C. The conical inner surface 256 of the spacer 214 provides clearance for the cords 210 at the plate surface 230 while the cylindrical inner surface 253 aligns the cords 210 with the inner bore formed by the inner surface 226 of the terminal member 207. It is also foreseen that the cords 210 may be twisted or otherwise connected to form a substantially cylindrical unit prior to insertion in the spacer 214 and the terminal member 207. It is foreseen that in some embodiments, the spacer 214 may be of circular, square, rectangular or other cross-section including curved or polygonal shapes. In the illustrated embodiment, the spacer 214 further includes a compression groove 264. Spacers according to the invention may include one, none or any desired number of grooves. The illustrated groove 264 is substantially uniform and circular in cross-section, being formed in the external surface 250 and extending radially toward the internal surface 252. The size of the internal surface 252 allows for some axially directed sliding movement of the spacer 214 with respect to the cords 210. The cords 210 and cooperating compressible spacer 214 allow for some twist or turn, providing some relief for torsional stresses. The spacer 214, however limits such torsional movement as well as bending movement, providing spinal support, as well as allowing for further compression of the assembly 1 at the flexible central connection portion 208. It is noted that in addition to limiting the bendability of the central connection portion 208 and thus providing strength and stability to the assembly 201, the spacer 214 also keeps scar tissue from growing into the portion 208 through the cords 210, thus eliminating the need for a sheath-like structure to be placed, adhered or otherwise applied to the cords 210 on the central connection portion 208. In order to reduce the production of micro wear debris, that in turn may cause inflammation, the spacer 214 inner surfaces and/or cooperating cord 210 surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.


With particular reference to FIGS. 15 to 17, the bumper 217 is substantially cylindrical, including an outer surface 270 and an inner surface 272 forming a substantially cylindrical through bore that opens at planar end surfaces 274 and 276 and operatively extends along the axis C. The bumper 217 further includes a compression groove 278 that is similar in form and function to the compression groove 264 of the spacer 214. The bumper 217 is sized and shaped to receive the elongate cords 210 through the inner surface 272. The bumper 217 is preferably made from an elastomeric material such as polyurethane. The bumper 217 provides axial elastic distraction of the cords 210 as will be described in greater detail below.


Also with reference to FIGS. 15 to 17, the crimping ring 219 is substantially cylindrical and includes an outer surface 280 and an inner surface 282 forming a substantially cylindrical through bore that opens at planar end surfaces 284 and 286 and operatively extends along the axis C. The crimping ring 219 is sized and shaped to receive the elongate cords 210 through the inner surface 282. The crimping ring 219 further includes a pair of crimp or compression grooves 288 that are pressable and deformable inwardly toward the axis C upon final tensioning of the cords 210 during assembly of the connector 201 to engage and hold the cords 210 in tension and thereby transmit compressive force to the elastic spacer 214. The crimping ring 219 is preferably made from a stiff, but deformable material, including metals and metal alloys. As will be discussed with respect to a further embodiment of the invention described below, the cords 210 may be threaded through two crimping rings 219 placed adjacent to one another, with a preliminary crimping ring being at a terminal end of the assembly 201. Such a preliminary ring is crimped to initially lock the assembly together with the cords 210 in tension. If further creep and deformation of the cords 210 decreases the axial tension on the cords 210 within the assembly 201, the cords 210 may be re-tensioned and locked into place with the second or final crimping ring. The preliminary crimping ring may then be sliced off of the assembly 201 and discarded.


With reference to FIG. 12, the dynamic connecting member assembly 201 cooperates with at least a pair of bone anchors, such as the polyaxial bone screws, generally 75, and cooperating closure structures 77 described previously herein, the assembly 201 being captured and fixed in place at the rigid portions 240 and 242 by cooperation between the bone screws 75 and the closure structures 77. The dynamic section 208, that is pre-loaded and pre-tensioned, is disposed between the bone screws 75.


With particular reference to FIGS. 12 and 15-17, the longitudinal connecting member assembly 201 is factory assembled by looping six ties 210 about and through the bores 222 of the plate 220 of the anchor member 207 to form the twelve strands or cords 210 that are then threaded through the remaining components of the assembly 201. It is noted that the ties 210 may be initially tensioned to steady state and thereafter further tensioned after assembly with the other components. Alternatively, the twelve cords or strands 210 that are anchored to the member 206 are initially passed through the spacer 214 inner surface 252, followed by the terminal member 207 internal surface 226, then the bumper 217 inner surface 272 and finally the crimping ring 219 inner surface 282 and out the end 286. Thereafter, the spacer 214, the terminal member 207, the bumper 217 and the crimping ring 219 are snugged up against the plate 220 of the anchor member 206 and tension is applied to the bundle of twelve cords 210. Tension is increased on the cord bundle 210 until the elastic spacer 214 and the elastic bumper 217 are compressed and the cords 210 have stopped stretching. Thereafter, the crimping ring 219 is crimped using a tool (not shown) that presses on the opposed grooves 288 and deforms toward the axis C to make contact and firmly grip the cords 210, keeping the cords 210 in the desired tension and locking the components of the assembly 201 in place. The resulting connecting member assembly 201 is thus dynamically loaded with the cords 210 in tension and the spacer 214 and elastic bumper 217 in compression. In some embodiments according to the invention it may be desirable to place one or more pins through the plates 220 and 224 and into the spacer 214 to prevent rotation of the spacer 214 about the axis C relative to the plates 220 and 224. It may also be desirable to use such pins as x-ray markers.


With further reference to FIG. 12, the pre-loaded connecting member assembly 201 is eventually positioned in an open or percutaneous manner in cooperation with the at least two bone screws 75 with the spacer 214 disposed between and spaced from the two bone screws 75 and with the portions 240 and 242 each being within a U-shaped channel of a cooperating bone screw 75. A closure structure 77 is then inserted into and advanced between the arms 85 of each of the bone screws 75. The closure structure 77 is rotated, using a tool (not shown) engaged with the inner drive 92 until a selected pressure is reached at which point the section 240 or 242 is urged toward, but not completely seated in the U-shaped channel of the bone screw 75. For example, about 80 to about 120 inch pounds pressure may be required for fixing the bone screw shank 80 with respect to the receiver 81 at a desired angle of articulation.


The assembly 201 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 201 and the two connected bone screws 75. The looped cords 210 and the spacer 214 allow for some twisting or turning, providing some relief for torsional stresses. Furthermore, the compressed spacer 214 places some limits on torsional movement as well as bending movement, to provide spinal support. The pre-loaded cords 210 (in tension) and spacer 214 (in compression) allow for compression and some extension of the assembly 201 located between the two bone screws 75, e.g., shock absorption. Disassembly, removal and replacement of the connecting member assembly 201 with a more or less rigid connecting member may be performed in a manner as previously described herein with respect to the connecting member assembly 1.


With reference to FIGS. 20-22, another longitudinal connecting member assembly according to the invention, generally 301, has a central axis D and includes an intermediate rigid member 305, a rigid anchor member 306, a rigid terminal member 307 and first and second dynamic connection portions or sections 308 and 308A. An open loop cord bundle 310 extends through both the sections 308 and 308A. The dynamic sections 308 and 308A further include respective spacers 314 and 314A. The connecting member assembly 301 provides for two dynamic support sections between a plurality of vertebrae. The illustrated embodiment is shown attached to three bone screws 75 and cooperating closure structures 77 previously described herein. The illustrated rigid members 305, 306 and 307 are each sized for attachment to a single bone anchor or screw. However, it is noted that each such rigid member 305, 306 and 307 may be of greater length (along the axis D) for operative attachment to two or more bone anchors. Furthermore, more than one rigid member 305 may be disposed between rigid members 306 and 307 to provide a plurality of dynamic sections.


The connecting member assembly 301 is substantially similar to the connecting member assembly 201 previously described herein with the exception of three components: the additional intermediate rigid member 305, the additional spacer 314A and the additional crimping ring 319A. The illustrated members 306 and 307 are identical or substantially similar to respective members 206 and 207 previously described herein with respect to the connecting member 201, the member 306 having an end plate 320 and a plurality of bores 322 similar to the plate 220 and bores 222 previously described herein and the member 307 having an end plate 324 and a through bore 326 similar to the plate 224 and bore 226 previously described herein with respect to the member 207. Also, the open looped cord bundle 310 is identical or substantially similar to the open looped cord bundle 210, with the exception that the bundle 310 is of greater axial length (along the axis D) as compared to the corded bundle 210 previously described herein with respect to the connecting member 201. The spacer 314 that is disposed between the member 306 and the member 305 is identical or substantially similar to the spacer 214 previously described herein with respect to the connecting member 201. Also, the elastic bumper 317 and both crimping rings 319 and 319A are identical or substantially similar to the respective bumper 217 and crimping ring 219 previously described herein with respect to the connecting member 201.


With particular reference to FIGS. 20 and 21, the intermediate rigid member 305 is disposed between the members 306 and 307 and provides for an additional dynamic connection section 308A. In particular, the member 301 includes a pair of opposed end plates 382 and 383 and an integral cylindrical mid-portion 384 that extends therebetween. The end plates 382 and 383 are identical or substantially similar to the plate 324 of the member 307. The member 305 further includes a through bore 386 running through the entire member 305, from the end plate 382 to the end plate 383 and axially centrally through the cylindrical mid-portion 384. The illustrated cylindrical mid-portion 384 is sized to be received between arms 85 of at least one bone screw 75.


The spacer 314 receives the cord bundle 310 at a location between the plate 320 of the anchor member 306 and the plate 382 of the intermediate rigid member 305. The spacer 314A receives the cord bundle 310 at a location between the plate 383 of the member 305 and the plate 324 of the terminal member 307. The illustrated spacer 314A is substantially similar to the spacer 314 and the spacer 214 previously described herein with respect to the connecting member assembly 201, having an outer cylindrical surface 390, an inner surface 392 defining a through bore running between planar surfaces 394 and 395 and at least one outer compression groove 396. However, unlike the spacers 214 and 314, the inner surface 392 of the spacer 314A is cylindrical and defines a bore of constant circular cross-section sized and shaped to receive a length of the cord bundle 310.


In use, the open looped cord bundle 310 is installed on the anchor member 306 by looping through the apertures 322 in the same manner as previously described herein with respect to the installation of the open looped cord bundle 210 through the apertures 222. The twelve cords or strands 310 that are anchored to the member 306 are initially passed through the bore in the spacer 314, followed by the bore formed by the intermediate member 305 internal cylindrical surface 386, then the bore formed by the spacer 314A internal surface 392, followed by the bore formed by the terminal member 307 internal surface 326, then the bore of the bumper 317, the bore of the crimping ring 319 and finally through the bore of the crimping ring 319A. Thereafter, the spacer 314, the intermediate member 305, the spacer 314A, the terminal member 307, the bumper 317, the crimping ring 319 and the crimping ring 319A are snugged up against the plate 320 of the anchor member 306 and tension is applied to the bundle of twelve cords 310. Tension is increased on the cord bundle 310 until the elastic spacers 314 and 314A and the elastic bumper 317 are compressed and the cords 310 have stopped stretching. Thereafter, the end crimping ring 319A is crimped using a tool (not shown) that presses on opposed grooves of the ring 319A and deforms the ring toward the axis D to make contact and firmly grip the cords 310. If viscoelastic changes decrease the axial tension in the cord bundle 310, the assembly 301 may be re-tensioned by pulling the cords 310 away from the anchor member 306 until a desired tension is again reached. At that time, the other crimping ring 319 is crimped using a tool (not shown) that presses on opposed grooves of the ring 319 and deforms the ring toward the axis D to make contact and firmly grip the cords 310. Thereafter, the crimping ring 319A is sliced off of the assembly 301. The resulting connecting member assembly 301 is thus dynamically loaded with the cords 310 in tension with the spacers 314 and 314A and the elastic bumper 317 in compression.


With further reference to FIG. 20, the pre-loaded connecting member assembly 301 is eventually positioned in an open or percutaneous manner in cooperation with the at least three bone screws 75 with the spacers 314 and 314A disposed between and spaced from the bone screws 75 and with cylindrical portions of each of the members 305, 306 and 307 being within a U-shaped channel of a cooperating bone screw 75. A closure structure 77 is then inserted into and advanced between the arms 85 of each of the bone screws 75. The closure structure 77 is rotated, using a tool (not shown) engaged with the inner drive 92 until a selected pressure is reached, for example, about 80 to about 120 inch pounds pressure may be required for fixing the bone screw shank 80 with respect to the receiver 81 at a desired angle of articulation.


The assembly 301 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 301 and the three connected bone screws 75. The cords 310 and the spacers 314 and 314A allow for some twisting or turning, providing some relief for torsional stresses. Furthermore, the compressed spacers 314 and 314A place some limits on torsional movement as well as bending movement, to provide spinal support. The pre-loaded cords 310 (in tension) and spacers 314 and 314A (in compression) allow for compression and some extension of the assembly 301 located between the two bone screws 75, e.g., shock absorption. Disassembly, removal and replacement of the connecting member assembly 301 with a more or less rigid connecting member may be performed in a manner as previously described herein with respect to the connecting member assembly 1.


With reference to FIGS. 23 and 24, dynamic or soft stabilization assemblies are shown that are almost identical to that shown in FIG. 20 with some exceptions. FIG. 23 shows the use of an additional spacer 314 located outside of the bone screw 75′. FIG. 24 illustrates both an additional spacer 314 and an additional elastomeric bumper 317 located outside of the bone screw 75″.


With reference to FIGS. 25A and 25B, a soft stabilization assembly is shown that is substantially similar to that shown in FIG. 20, with the exception that only two bone screws are shown and the member 306 is replaced by a plate Q that fixes the cord or cord bundle 310′ at an end of the assembly while the cord is allowed to be slidable with respect to the bone screw 75″. FIGS. 25A and B illustrate the assembly in two states of dynamic stabilization that occur without the cord 310′ changing length. In state “A” shown in FIG. 25A, both the spacers 314 are compressed, while the bumper 317 is allowed to expand to a neutral state. In state “B” shown in FIG. 25B, the bumper 317 is compressed and the spacers 314 are in an expanded state.



FIGS. 26A and 26B illustrate the same assembly as in FIGS. 25A and 25B, also in two states of dynamic stabilization. In state “C” shown in FIG. 26A, the bumper 317 is expanded or neutral and both of the spacers 314 are compressed. In state “D” shown in FIG. 26B, the bumper 317 is compressed while the central spacer 314 expands to a neutral or near neutral state, while the end spacer 314 remains compressed.


With reference to FIGS. 27A and 27B, a soft stabilization assembly is shown that is substantially similar to that shown in FIGS. 25A and B, with the exception that there is no end spacer 314 and an alternative plate or fixer/blocker member Q′ fixes the cord or cord bundle 310′ at an end of the assembly adjacent one of the bone screws 75″. FIGS. 27A and B illustrates the assembly in two states of dynamic stabilization that occur without the cord 310′ changing length. In state “E” shown in FIG. 27A, the spacer 314A is compressed, while the bumper 317 is allowed to expand to a neutral state. In state “F” shown in FIG. 27B, the bumper 317 is compressed and the spacer 314A expands.


With reference to FIGS. 28-32, the reference numeral 1001 generally designates a non-fusion, soft or dynamic longitudinal stabilization connector assembly of the invention. The illustrated assembly 1001 includes the following components: an elongate bendable and flexible core in the form of a cord 1004; at least one cannulated spacer 1006; an elastic bumper 1008; and a fixing structure or blocking member, such as a crimping structure 1010. The assembly 1001 is shown with a pair of open monoaxial bone screws, generally 1012, the assembly 1001 extending substantially linearly along a central axis A in FIG. 30, for example. For purposes of this application, the identical bone screws 1012 are identified as 1012A and 1012B as the one bone screw 1012A cooperates with a first locking and cord pressing closure top 1014 and the other bone screw 1012B cooperates with a second locking limited travel closure top 1015 that allows for slip or slide of the cord 1004 within the bone screw 1012B. The closure tops 1014 and 1015 are substantially similar to one another with the exception that the top 1015 is sized and shaped to bottom out on a lower seating surface 1017 of a run-out of an inner guide and advancement structure 1018 of the bone screw 1012 that mates with the outer guide and advancement structure of the closure top 1014 or the closure top 1015. The closure top 1014 further includes an end or bottom portion 1019 that extends beyond the run-out seating surface 1017 and abuts against and fixes the cord to the bone screw. The guide and advancement run-out seating surface 1017 is best shown and described with respect to an alternative bone screw 1112 and 1112′ described in greater detail below with reference to FIGS. 33-41. Also, as will be described in more detail below, the bone screw 1012A cooperates with the closure top 1014 to fix a portion of the cord 1004 to the bone screw 1012A while the bone screw 1012B engages and fixes the closure top 1015 to the screw 1012B to capture a portion of the cord 1004 within the bone screw 1012B, but allow for sliding movement of the cord 1004 with respect to the bone screw 1012B. The elongate inner cord core 1004 is slidingly received within the spacer 1006 and the bumper 1008, and initially within the blocker or crimping structure 1010, as will be described in greater detail below. The cord 1004 is eventually tensioned and fixed in such tensioned state by the crimping structure or blocker 1010 and the bone screw 1012A. In other embodiments according to the invention, the structure 1010 may include a threaded aperture (not shown) and further include a cooperating set screw in addition to or in lieu of crimping. In such embodiments, as shown in other embodiments of the invention described in more detail below, the set screw rotatably mates with the structure 1010 at the threaded aperture and is rotated until a bottom surface of the screw presses against and, in some embodiments, penetrates the cord, fixing the cord within the structure 1010. As will be described in greater detail below, when fully assembled and all the components are fixed in position as shown in FIGS. 28 and 32, for example, the cord 1004 is in tension, the spacer 1006 may be in compression or in a neutral state, and the bumper 1008 is in compression.


It is noted that in other embodiments according to the invention, both the bone screws 1012A and 1012B may be mated with a locking limited travel closure top 1015 and at least one additional blocker or crimping structure is included generally opposite the crimping structure 1010 in the overall assembly to result in a cord that is tensioned along the assembly but in sliding cooperation with two or more bone anchors of such assembly. It is also noted that additional spacers 1006 and bone screws 1012 cooperating with closure tops 1015 may be utilized according to the invention, providing longer assemblies of the invention with one of the spacers 1006 placed between each bone screw and the bumper 1008 and the crimping structure 1010 placed at one or both ends of such assembly next to a bone screw 1012 cooperating with a closure top 1015 or two such closure tops 1015. Also, as described in greater detail below, bone screws, spacers, bumpers and crimping structures or other blockers of the invention may be sized, shaped and used with hard or deformable rods and bars, alternatively to the cord 1004.


Although the screws 1012 are illustrated, it is noted that the assembly 1001 may cooperate with a variety of bone screws and other bone anchors, including closed bone screws, hinged bone screws, polyaxial bone screws, with or without compression inserts, and bone hooks that may in turn cooperate with a variety of closure structures having threads, flanges, or other structure for fixing the closure structure to the bone anchor, and may include other features, for example, external or internal drives, break-off tops and inner set screws. A closed bone anchor with or without a set screw may also be used in the invention to capture the cord 1004 in sliding, but not fixed engagement. The bone anchors, closure structures and the connecting member 1001 are then operably incorporated in an overall spinal implant system for correcting degenerative conditions, deformities, injuries, or defects to the spinal column of a patient.


The connecting member assembly 1001 is elongate, with the inner core 1004 being any soft elongate material including, but not limited to cords, threads, strings, bands, cables or fibers that may be single or multiple strands, including twisted, braided or plaited materials. The illustrated cord 1004 has a substantially uniform body 1020 of substantially circular cross-section, a first end 1022 and an opposed second end 1024, the cord 1004 being cut to length as required by the surgeon. Initially, the cord 1004 is typically of a length longer than shown in the drawings to allow for gripping of the cord 1004 during assembly with the other components of the assembly 1001 and also for tensioning and attachment to the bone screws 1012A and 1012B as will be described in greater detail below. The cord 1004 may be made from a variety of materials, including polyester or other plastic fibers, strands or threads, such as polyethylene-terephthalate. The cord 1004 may be placed under axial tension prior to final installation between the bone screws 1012A and 1012B, for example by being tensioned along the axis A for a selected time to lengthen and otherwise deform the cord 1004 during a primary creep stage. After the cord 1004 reaches a secondary or steady-state creep, further tension is placed on the cord 1004 in preparation for fixing between the bone screw 1012A and the crimping structure 1010 as will be described in greater detail below. It is noted that the cord 1004 typically does not illustrate elastic properties, such as any significant additional lengthening with axial traction, after the assembly 1001 is operatively assembled within a human body, but the elastic bumper 1008 will allow for relative movement between the fully stretched cord 1004 and the bone screw 1012B in response to spinal flexion, extension and any movement that may draw the bone screw 1012B away from the bone screw 1012A.


With particular reference to FIGS. 28, 29 and 32, the spacer 1006 is sized and shaped to be slidingly received over the cord 1004 and may be made from a variety of elastic and more rigid materials, including, but not limited to natural or synthetic elastomers such as polyisoprene (natural rubber), and synthetic polymers, copolymers, and thermoplastic elastomers, for example, polyurethane elastomers such as polycarbonate-urethane elastomers. In order to have low or no wear debris, the spacer 1006 inner and side surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments. The illustrated spacer 1006 has an external substantially cylindrical outer surface 1028 and an internal substantially cylindrical surface 1030. The surface 1030 is sized and shaped to closely cooperate and fit about the cord 1004 and yet allow some sliding movement of the cord 1004 with respect to the spacer 1006 along the axis A. The spacer 1006 includes opposed substantially planar and annular end surfaces 1032 and 1034 that are sized and shaped to abut against planar surfaces of the bone screws 1012A and 1012B, respectively. When initially assembled with the other components of the connecting member assembly 1001, the surfaces 1032 and 1034 are substantially perpendicular to the axis A. It is foreseen that in some embodiments, the spacer 1006 may be of smaller or larger outer circular cross section, or of a square, rectangular or other inner or outer cross-section including other curved or polygonal shapes. The spacer 1006 may further include one or more compression grooves that allow for some additional compression of the spacer 1006 when pressed upon in an axial direction between the bone anchors 1012A and 1012B. Typically, such a compression groove is substantially uniform and circular in cross-section, being formed in the external surface 1028 and extending radially toward the internal surface 1030. The spacer can have an off-axial lumen.


Also with particular reference to FIGS. 28, 29 and 32, the elastic bumper 1008 is annular and includes an outer cylindrical surface 1040, an inner cylindrical surface 1042, an end surface 1044 and an opposed end surface 1046. The illustrated bumper 1008 further includes a compression groove 1048 that allows for some additional compression of the bumper 1008 when pressed upon in an axial direction A between the bone anchor 1012B and the crimping ring 1010. The compression groove 1048 is substantially uniform and circular in cross-section, being formed in the external surface 1040 and extending radially toward the internal surface 1042. Bumpers of the invention may include one, none or a plurality of compression grooves. The inner cylindrical surface 1042 forms a bore sized and shaped for closely receiving the cord 1004 therethrough as shown, for example, in FIG. 32. The end surfaces 1044 and 1046 are substantially parallel to one another, but can also be non-parallel.


The bumper 1008 may be made from a variety of elastic materials, including, but not limited to natural or synthetic elastomers such as polyisoprene (natural rubber), and synthetic polymers, copolymers, and thermoplastic elastomers, for example, polyurethane elastomers such as polycarbonate-urethane elastomers. The bumper 1008 is typically shorter in length and more elastic than the spacer 1006, but may be equal to or longer than the spacer and of the same, greater or lesser durometer than the spacer 1006. In order to have low or no wear debris, the bumper 1008 inner and side surfaces may also be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.


The fixing structure or blocker, illustrated as the crimping structure or ring 1010 is substantially cylindrical and includes an outer surface 1050 and an inner surface 1052 forming a substantially cylindrical through bore that opens at planar end surfaces 1054 and 1056 and operatively extends along the axis A. The crimping ring 1010 is sized and shaped to receive the elongate cord 1004 through the inner surface 1052. The crimping ring 1010 further includes a pair of opposed crimp or compression grooves 1058 that are pressable and deformable inwardly toward the axis A upon tensioning of the cord 1004 and pre-compression of the bumper 1008 during assembly of the assembly 1001. The crimping ring 1010 is preferably made from a stiff, but deformable material, including metals and metal alloys. It is foreseen that in lieu of or addition to the crimping surface, the blocker could include a threaded aperture and a mating locking set screw for engaging and pressing into the cord 1004.


The bone screws generally 1012, and in particular the illustrated screws 1012A and 1012B are open, fixed, monoaxial screws, each having an upper cord receiving portion 1062 integral with a threaded bone attachment portion or shank 1064. The portion 1062 further includes a substantially U-shaped channel 1066 for closely receiving the cord 1004 therethrough, the channel 1066 further having an upper closure top receiving portion with the helically wound guide and advancement structure 1018 thereon for receiving and mating with the closure top 1014 or the closure top 1015. The upper, receiving portion 1062 further includes opposed, substantially parallel side surfaces 1070 that abut against side surfaces of the spacer 1006 or the bumper 1008. However, it is foreseen that according to the invention, other embodiments of the invention may include side surfaces 1070 that angle away or towards one another for lordosing or kyphosing controlling embodiments as previously described in applicant's application U.S. Ser. No. 11/328,481, incorporated by reference herein.


To provide a biologically active interface with the bone, the threaded shanks 1064 of the bone screws 1012A and 1012B may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.


With particular reference to FIGS. 28, 29 and 32, the closure structures 1014 and 1015 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the interior surface of the receiver 1062 of the open bone screws 1012. The illustrated closure structures 1014 and 1015 are each rotatable between the spaced arms forming the receiver 1062 and are substantially cylindrical, including an outer helically wound guide and advancement structure in the form of a flange form that operably joins with the guide and advancement structure 1018. A driving tool 1072 illustrated in FIG. 30 is sized and shaped for engagement with an internal drive feature 1074 and is used for both rotatable engagement and, if needed, disengagement of the closure 1014 and/or closure 1015 from one of the receivers 1062. The internal drive feature 1074 may take a variety of forms and may include, but is not limited to, a hex shape (as shown), TORX or other features or apertures, such as slotted, tri-wing, spanner, two or more apertures of various shapes, and the like. As stated above, the closure 1014 and the closure 1015 are substantially identical with the exception of a height or depth dimension in the form of the portion or knob 1019 that extends operatively perpendicular to the axis A. The closure structure 1014 that includes the portion 1019 is sized and shaped to be long enough to compress against the cord 1004 and frictionally fix the cord 1004 in the receiver 1062 when fully seated and mated with the guide and advancement structure 1018. (See, e.g., FIG. 41 that shows a similar closure 1114 that abuts against a run-out seat 1117′ and has an extended portion 1119 for pressing down on a core, such as a cord or rod or bar). The illustrated closure top 1014 may further include points or projections for piercing into the cord 1004 to provide enhanced contact and fixing of the cord 1004 to the receiver 1062. The closure 1015 is sized and shaped to be long enough to fully seat within the receiver 1062 and mate with the guide and advancement structure 1018 run-out seating surface 1017 in order to fix the closure 1015 in the bone screw and capture the cord 1004 within the receiver 1062. However, the closure 1015 is too short to fix the cord 1004 against the receiver 1062. Rather, when the closure 1015 is fully seated and mated in the receiver 1062, the cord 1004 remains in slidable relationship with the bone screw 1012B and is not fixed against a surface of the receiver 1062. See, e.g., FIG. 36 that shows a similar closure 1115 that abuts against a run-out seat 1117 and is spaced from or in sliding engagement with a core, such as a cord or cable or rod or bar. In other embodiments, the closure 1115 may include an upper stop or cap portion 1187 (shown in phantom) and the receiver run-out seat 1117 need not extend inwardly to the extent shown in FIG. 36. In such an alternative embodiment, the cap portion 1187 abuts the receiver top surface which keeps the closure in a desired location spaced from or in sliding engagement with a cord, cable, rod or bar.


In use, the two bone screws 1010 and 1012 are implanted into vertebrae for use with the dynamic connecting member 1001. Each vertebra may be pre-drilled to minimize stressing the bone. Furthermore, if a cannulated bone screw shank and/or closure top is utilized (as illustrated), each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for the bone screw cannula of the bone screw shank 1064 and provides a guide for the placement and angle of the shank 1064 with respect to the cooperating vertebra. A further tap hole may be made and the shank 1064 is then driven into the vertebra by rotation of a driving tool (not shown) that engages a driving feature on or near the top portion 1062 of the screw 1012. It is foreseen that the screws 1012A and 1012B and the dynamic connector 1001 can be inserted in a percutaneous or minimally invasive surgical manner.


With particular reference to FIGS. 29-31, the dynamic connector assembly 1001 is assembled by inserting the cord 1004 into the through bore formed by the internal surface 1030 of the spacer 1006. Also as indicated in FIGS. 29 and 30, the cord 1004 is first received into the U-shaped opening 1066 of the open bone screw 1012A and the U-shaped opening 1066 of the bone screw 1012B, with the spacer 1006 being disposed between facing surfaces 1070 of bone screws 1012A and 1012B. The closure top 1014 is rotated and driven into the receiver 1062 of the bone screw 1012A until the closure top 1014 frictionally engages the cord 1004 and fixes the cord 1004 to the screw 1012A. Before or after the closure top 1014 is tightened, the closure top 1015 may be inserted and rotated into the receiver 1062 of the bone screw 1012B until the top 1015 is fully seated and engaged with such receiver run-out surface 1017, capturing but not fixing the cord 1004 to the bone screw 1012B. The bumper 1008 is threaded along the cord 1004 with the cord sliding through the through-bore formed by the inner surface 1042 until the bumper face 1044 abuts against the surface 1070 of the bone screw 1012B located opposite the spacer 1006. The crimping structure or blocker 1010 is threaded along the cord 1004 with the cord sliding through the through-bore formed by the inner surface 1052 until the crimper face 1054 abuts against the bumper face 1046.


The cord 1004 is tensioned and the bumper 1008 is compressed against the bone screw 1012B by axial movement of the crimping structure 1010 against the bumper 1008, squeezing the bumper 1008 between the bone screw 1012B and the crimping structure 1010. The spacer 1006 also may be compressed at this time. With particular reference to FIG. 31, a crimping tool 1080 is used to frictionally attach the tensioned cord 1004 to the crimping structure 1010, thereby holding the cord 1004 in tension between the bone screw 1012A and the crimping structure 1010 and also compressing the bumper 1008 against the bone screw 1012B.


The resulting connecting member assembly 1001 is loaded with the cord 1004 in tension and the bumper 1008 and optionally the spacer 1006 in compression. The assembly 1001 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement in response to spinal flexion and extension, and further responding to distractive or tensioning forces as well as to compressive forces.


If removal of the dynamic connector assembly 1001 from the bone screws 1012A and/or 1012B is necessary, or if it is desired to release the assembly 1001 at a particular location, disassembly is accomplished by using the driving tool 1072 with a driving formation cooperating with the closure tops 1014 and 1015 to rotate and remove the closure top from the bone screw 1012A and/or 1012B. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.


With reference to FIGS. 33-36, a bone screw 1112 is illustrated that is identical to the bone screw 1012 of the assembly 1001 with the exception that the U-shaped channel 1066 formed by inner surfaces of the screw 1012 has been replaced with a substantially rectangular channel 1166 formed by opposed planar surfaces 1167 and a bottom planar surface 1168. The bone screw 1112 has a receiver 1162 and a shank 1164, the receiver 1162 having a discontinuous guide and advancement structure 1118 that is formed in the opposed surfaces 1167. The bone screw 1112 may be utilized in an assembly 1101 substantially similar to the assembly 1001 that includes a cord 1104 identical or substantially similar to the cord 1004 and further includes the spacer 1006, elastic bumper 1008, crimping structure 1010 of the assembly 1001 previously described herein. Because of the squared off shape of the channel 1166, the bone screw 1112 may also be readily used with other longitudinal connecting members, such as the bar 1105 shown in FIG. 34 and the rod 1106 shown in FIG. 37. The bar 1105 and the rod 1106 may be made of a variety of materials ranging from deformable plastics to hard metals, depending upon the desired application. Thus, bars and rods of the invention may be made of materials including, but not limited to metal, metal alloys or other suitable materials, plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber, natural or synthetic elastomers such as polyisoprene (natural rubber), and synthetic polymers, copolymers, and thermoplastic elastomers, for example, polyurethane elastomers such as polycarbonate-urethane elastomers. Whether the longitudinal connecting member of the invention is a cord, rod or bar; hard-surfaced or soft and deformable; or elastic or non-elastic, the combination of a limited travel closure top that allows the connecting member some movement within the bone screw further cooperating with a bumper and a connector holding structure or blocker such as the crimping structure 1010, advantageously allows for limited movement of the connector with respect to the bone screw, creating a dynamic connection between spinal assembly and cooperating vertebrae.


With particular reference to FIGS. 35 and 36, the bone screw 1112 guide and advancement structure 1118 that receives and mates with the limited travel closure 1115 includes a run-out aperture or groove partially defined by a bottom or lower seating surface 1117 sized and shaped for frictional engagement with a portion of the closure 1115. As shown in FIG. 36, the closure 1115 minor diameter is slightly bigger than the run-out groove so the closure 1115 abuts against the surface 1117 when driven downward into the receiver. The seating surface 1117 terminates at the opposed planar surfaces 1167.


With further reference to FIG. 33, the bone screw receiver 1162 further includes opposed, substantially parallel outer side surfaces 1170. It is foreseen that according to the invention, other embodiments of the invention may include side surfaces that angle away or towards one another for lordosing or kyphosing controlling embodiments as previously described in applicant's application U.S. Ser. No. 11/328,481, the disclosure of which is incorporated by reference herein. It is also noted that the bone screw 1112 is identical or substantially similar to the bone screws described in described in detail in Applicant's U.S. patent application Ser. No. 12/584,980, the disclosure of which is incorporated by reference herein.


Specifically, the closure top 1115 is substantially cylindrical and includes a top surface 1180, a bottom surface 1182, a drive feature 1184 formed in the top surface 1180 and an outer guide and advancement structure 1186 sized and shaped to mate with the guide and advancement structure 1118 of the bone screw 1112. A cylindrical surface 1188 represents the minor diameter of a major portion of the closure 1115. The illustrated closure top 1115 is rotatable between the spaced arms forming the receiver 1162 of the screw 1112. The illustrated helically wound guide and advancement structure 1186 is in the form of a flange form that operably joins with respective guide and advancement structure 1118. A driving tool or tools (not shown) sized and shaped for engagement with the internal drive feature 1184 is used for both rotatable engagement and, if needed, disengagement of the closure 1115 from the screw 1112. The internal drive feature 1184 may take a variety of forms and may include, but is not limited to, a hex shape, TORX or other features or apertures, such as slotted, tri-wing, spanner, two or more apertures of various shapes, and the like.


With particular reference to FIG. 36, the closure top 1115 is sized and shaped to cooperate with the run-out surface 1117 to lock the closure 1115 on the bone screw 1112 independent of any pressure being placed by the closure 1115 on the cord 1104. Due to the size of the surface 1188, the bottom surface 1182 near the surface 1188 forms a radially extending shelf or abutment seat. When the closure 1115 is tightened by rotation into the screw 1112, the bottom 1182 abuts against the surface 1117, allowing the closure to be tightened in the screw receiver 1162 independent of whatever size cord 1104 or other core, such as the bar 1105 might be. Stated in another way, the closure 1115 is prohibited from entering the space between the planar surfaces 1167 that support the cord 1104 or other core therebetween. Thus, it is not possible for the closure 1115 to press upon the cord 1104, allowing such cord to slide between the closure top 1115 and the surfaces 1167 and 1168. Also shown in FIG. 36 is an alternative feature or cap portion 1187 (shown in phantom) that may be used in lieu of providing the surface 1117 of the bone screw 1112. In such an embodiment, the cap portion 1187 of the closure 1115 abuts against a top surface of the bone screw 1112 when the closure 1115 is fully mated and locked with the bone screw 1112 guide and advancement structure 1118, prohibiting the closure 1115 from being wound down into contact with a cord or other inner core member.


With reference to FIGS. 37-41, a bone screw 1112′ is illustrated that is identical to the bone screw 1112, having a receiver 1162′, a shank 1164′, a rectangular channel 1166′ formed by opposed planar surfaces 1167′ and a bottom surface 1168′, the same or substantially similar to the receiver 1162, shank 1164, channel 1166, opposed planar surfaces 1167 and bottom surface 1168 previously described herein with respect to the bone screw 1112. Further, the bone screw 1112′ includes a lower seat 1117′ of a guide and advancement structure 1118′ and side surfaces 1170′, the same or similar to the lower seat 1117, guide and advancement structure 1118 and side surfaces 1170 of the bone screw 1112. The bone screw 1112 is shown with the plastic, deformable rod 1106 and a locking closure top 1114 having a lower extension portion 1119 that is the same or similar to the closure top 1014 having the extended bottom portion 1019 previously described herein with respect to the assembly 1001.


The closure top 1114 is substantially cylindrical and includes a top surface 1180′, a bottom surface 1182′, a drive feature 1184′ formed in the top surface 1180′ and an outer guide and advancement structure 1186′ sized and shaped to mate with the guide and advancement structure 1118′ of the bone screw 1112′. A cylindrical surface 1188′ represents the minor diameter of a major portion of the closure 1114. The illustrated closure top 1114 is rotatable between the spaced arms forming the receiver 1162′ of the screw 1112′. The illustrated helically wound guide and advancement structure 1186′ is in the form of a flange form that operably joins with respective guide and advancement structure 1118′. A driving tool or tools (not shown) sized and shaped for engagement with the internal drive feature 1184′ is used for both rotatable engagement and, if needed, disengagement of the closure 115 from the screw 1112. The internal drive feature 1184 may take a variety of forms and may include, but is not limited to, a hex shape, TORX or other features or apertures, such as slotted, tri-wing, spanner, two or more apertures of various shapes, and the like.


With particular reference to FIG. 41, the closure top 1114 is sized and shaped to cooperate with the run-out surface of the guide and advancement structure 1118′ to lock the closure 1114 on the bone screw 1112′ independent of any pressure being placed by the closure 1114 on the deformable rod 1106. In the illustrated embodiment, the closure 1114 includes a second cylindrical surface 1190 located adjacent to and below the surface 1188′ that defines the minor diameter of most of the closure 1114. The second cylindrical surface 1190 has a second diameter smaller than the minor diameter of the surface 1188′. The outer surface 1190 partially defines the extended portion 1119. The surface 1190 is located near the bottom surface 1182′ of the closure 1114 that contacts and presses against the deformable rod 1106 or other longitudinal connecting member core located within the bone screw receiver 1162′ during operation. As shown in FIGS. 39 and 41, the portion 1119 presses against and partially deforms the rod 1106. A radially extending shelf or abutment seat 1192 is formed between the cylindrical surface 1188′ and the cylindrical surface 1190. When the closure 1114 is tightened by rotation into the screw 1112′, the seat 1192 abuts against the surface 1117′, allowing the closure to be tightened in the screw receiver 1162′ independent of the rod 1106. The rod 1106 is pressed upon and held in place by the bottom surface 1182′ of the screw, with some deformation of the rod 1106 being acceptable and even desirable. In the illustrated embodiment, some of the rod material is allowed to flow up into an inner bore 1195 of the closure 1114. However, because of the cooperation between the seat 1192 and the screw surface 1117′, the rod 1106 is protected against over-deformation or crushing that might lead to instability and failure. Furthermore, if the rod 1106 exhibits creep or other deformation during operation, loosening or lessening of the contact engagement between the closure bottom surface 1182′ and the rod 1106 will not result in loosening of the closure 1114 from the screw 1112′.


With reference to FIGS. 42 and 43, an assembly 1201′ according to the invention is illustrated that provides for dynamic stabilization similar to the assembly 1001 utilizing polyaxial bone screws. The illustrated assembly 1201 includes a solid, hard-surfaced rod 1204, a spacer 1206, an elastic bumper 1208, a crimping structure 1210 and a pair of polyaxial bone screws 1212A and 1212B. The bone screws 1212A and 1212B are identical or substantially similar to those described in Applicant's U.S. patent application Ser. No. 12/229,207, filed Aug. 20, 2008 entitled “Polyaxial Bone Anchor Assembly With One-Piece Closure, Pressure Insert and Plastic Elongate Member,” (hereafter, the '207 application), the disclosure of which is incorporated by reference herein. A closure top 1214 fixes the rod 1204 in the bone screw 1212A and a closure top 1215 captures the rod 1204 in the bone screw 1212B, but a bottom surface 1282 thereof does not fix the rod 1204 with respect to the bone screw 1212B as illustrated in FIG. 43. (See, e.g., FIGS. 15-18 of the '207 application for illustrations of fixing of a rigid or deformable rod with a bone screw the same or similar to the screw 1212A). Each screw 1212A and 1212B further includes a receiver 1203 for slidingly pivotally receiving a bone screw shank upper portion, and a lower pressure insert 1205 having surfaces for engaging the shank upper portion and surfaces for closely receiving the rod 1204. With reference to FIG. 43, the closure top 1215 lower surface 1282 engages upper arm surfaces 1283 of the pressure insert 1205 to capture the rod 1204 and lock the polyaxial mechanism of the bone screw 1212B. Thus, the captured rod 1204 is in sliding engagement with the screw 1212B. The spacer 1206, elastic bumper 1208 and the blocker crimping structure 1210 are the same or similar in form and function to the spacer 1006, bumper 1008 and crimping structure 1010 previously described herein with respect to the assembly 1001, with the crimping structure 1210 directly engaging the rod 1204. In alternative embodiments, a cord or deformable rod may be utilized in lieu of the illustrated rigid rod 1204. The pressure insert 1205 may also be configured to receive a square or rectangular bar. Also, FIG. 43 illustrates an alternative cap closure 1215B (shown in phantom) having an upper outer portion that extends about a top portion of the receiver 1212B and cooperates with a lip thereof to lock the closure to the receiver 1212B at a desired position with the lower surface 1282 of the closure pressing down on the pressure insert 1205 to lock the polyaxial mechanism without pressing of the rod, cord or other longitudinal connecting member captured between the insert and the closure.


With reference to FIGS. 44-49, the reference numeral 2001 generally designates another non-fusion, soft or dynamic longitudinal stabilization connector assembly of the invention. The illustrated assembly 2001 includes the following components: an elongate bendable and soft, flexible core in the form of a cord 2004; at least one cannulated spacer 2006; an elastic bumper 2008; and a fixing structure or blocking member, such as a blocker 2010 with cooperating set screw 2011. The assembly 2001 is shown with three open monoaxial bone screws, generally 2012, the assembly 2001 extending substantially linearly along a central axis AA. The assembly 2001 is also shown with two different closure tops for cooperating with the bone screws 2012: a cord gripping closure top 2014 and a non-gripping closure top 2015. The bone screws 2012 and closure tops 2014 and 2015 are also shown in greater detail in FIG. 60. Furthermore, the blocker 2010 and cooperating set screw 2011 are shown in greater detail in FIGS. 55-58. The spacer 2006 is also shown in FIG. 59. It is noted that the spacers 2006 and bumper 2008 are shown as being made from a transparent plastic. However, in some embodiments of the invention, spacers and bumpers may also be opaque.


The cord 2004 is identical or substantially similar in form, function and materials to the cord 1004 previously described herein and the cord or cord bundles previously described herein with respect to the assembly 1. Similarly, the spacers 2006 are the same or similar in form, function and materials to the spacers 1006 and the spacers 214 and 314 previously described herein with the exception that, as best shown in FIG. 59, the spacer 2006, although tubular, is also shaped to provide more spacer material below the cord 2004. Spacers of the invention could also be cylindrical or have other shapes. The bumper 2008 is a cylindrical tube and is the same or similar in form, function and materials as the bumper 1008 previously described herein.


The blocker 2010 and set screw 2011 combination functions similarly to the crimping blocking member 1010, for example, previously described herein and may also be made from the same hard materials. Rather thank crimping the blocker 1010 to attach the blocker to the cord, the blocker 2010 is attached to the cord 2004 by action of the set screw 2011 being rotated and moved downwardly against the cord 2004 until the cord 2004 is fixed against the blocker 2010. With reference to FIGS. 55-58, the blocker 2010 advantageously includes opposed grooves 2020 that allow for ease in holding the blocker 2010 during assembly and also during surgery. The blocker 2010 advantageously has a more narrow profile as measured along the length of the cord 2004 than the crimping blocker 1010 previously described herein as the set screw 2011 rather than blocker material is required for pressing against the cord 2004. The blocker 2010, bumper 2008, bone screws 2012 and spacers 2006 advantageously include planar end surfaces that are also space saving and provide easy compatibility, changeability and substitution between the assembly components.


The open bone screws 2012 are the same or similar to the bone screws 1012 previously described herein. Each bone screw 2012 is compatible with the gripping closure top 2014 that includes a lower projection 2030 for pressing against the cord 2004 and also compatible with the slipping closure top 2015 that does not have a projection 2030, but otherwise locks in the screw 2012 in a manner previously described herein with respect to the screws 1012 and the closure top 1015. The bone screw 2012 also cooperates with a closure top 2016 that further includes a point or a point and rim for cooperating with a hard rod as shown, for example, in FIG. 50.


With further reference to FIGS. 44 and 45, the assembly 2001 is shown in a nominal state, as, for example, the assembly would be in after the cord 2004 is tensioned (in some embodiments, after the cord 2004 has had some extension after creep and wherein the cord 2004 may have been re-tensioned and recaptured at either the bumper 2010 or the closure top 2014). As shown, tensioning of the cord 2004 also results in some compression placed on the bumper 2008 as well as the two spacers 2006. As best shown in FIG. 45, the cord 2004 is in tension between the blocker 2010 and the end screw 2012 that has the closure top 2014 pressing against the cord 2004. The cord 2004 is free to slide with respect to the other two screws 2012 that are mated with the slip closure tops 2015. With reference to FIGS. 46 and 47, the assembly 2001 is shown responding to a compressive force on vertebrae (not shown) attached to the three bone screws 2012. In such instance, the elastic bumper 2008 is allowed to expand to a near neutral state, with the cord 2004 and spacers 2006 moving in response to such force. With reference to FIGS. 48 and 49, the assembly 2001 is shown responding to a distractive force, pushing the bumper 2008 into further compression and resulting in only a slight gap between the spacers 2006 and the bone screws 2012.


With reference to FIG. 50, the assembly 2001 has been modified to create the assembly 2001′ wherein the cord 2004, the spacers 2006, the bumper 2009 and the blocker 2010 are replaced with a hard rod 2040 and each of the bone screws 2012 are attached to the rod 2040 with the closure top 2016.



FIGS. 51 and 52 illustrated an alternative assembly 2002 wherein a cord 2004 is attached to a hard rod 2040 using a rod/cord connector or blocker 2050 that cooperates with a set screw 2051 and a set screw 2052. The rod/cord blocker 2050 is sized and shaped like a double-wide blocker 2010 with a first bore for slidingly receiving the cord 2004 at an end thereof communicating with a larger bore for receiving the rod 2040 at an end thereof. Running perpendicular to the cord and rod through bore are two threaded apertures allowing for connection and capture of the cord 2004 by rotation and downward movement of the longer set screw 2041 and connection and capture of the hard rod 2040 by downward rotation of the shorter set screw 2052 (see also FIG. 61). It is noted that the set screw 2051 and the set screw 2011 may be identical. The cord is tensioned between the set screw 2051 and rod/cord connector 2050 and the blocker 2010 with set screw 2011. A bumper 2008 is located next to the blocker and is also adjacent to a closed bone screw 2012′ that will be described in greater detail below. On the other side of the screw 2012′ is a small on-axis tubular spacer 2006′ (that will also be described in more detail below) that in turn is adjacent to the rod/cord blocker 2050. The hard rod 2040 is then shown attached to three bone screws 2012, each cooperating with a closure top 2016. Thus, the cord 2004 is in slidable cooperating with the bone screw 2012′, providing some soft stabilization in an otherwise more hard or rigid assembly 2002.


With reference to FIGS. 53 and 54, a soft stabilization connector 2003 is illustrated that includes the cord 2004, bumper 2008, blocker 2010 and bone screws 2012 previously described herein. In this embodiment the spacers 2006 of the assembly 2001 are replaced with lordotic spacers 2006′. The spacers 2006′ are identical to the spacers 2006 with the exception of planar end surfaces 2060 that are formed or cut at an angle, resulting in a desired lordotic arrangement of the assembly components.


With reference to FIGS. 62-63, another soft stabilization connector 3001 is shown. The assembly 3001 is identical to the assembly 2001 with the exception that tubular on-axis spacers 2006′ replace the off-axis spacers 2006 and closed screws 2012′ replace the open screws 2012. The closed screw 2012′ with cooperating set screw 2011′ is shown in greater detail in FIGS. 69-71. The closed screws 2012′ differ from the open screws 2012 in that the closed screws 2012′ cooperate with the smaller set screw 2011′ (that may be identical to the blocker set screw 2011), requiring threading of the cord 2004 through a through bore 3010 of the screw 2012′ as opposed to the open channel provided by the open screw 2012 that receives the cord 2004 through an upper opening of the channel. The closed screws 2012′ however, advantageously allow for complete capture of the cord 2004 as well as slidable movement between the cord 2004 and the screw 2012′. Thus, no set screw is needed when a slidable relationship between the cord 2004 and the screw 2012′ is desired.


The assembly 3001 shown in FIGS. 62 (A-C) and 63 (A-C) includes a pre-tensioned cord 2004 fixed between the blocker 2010 and the bone screw 2012′ that is cooperating with the set screw 2011′. The cord is slidable with respect to the other two bone screws 2012′ that are not cooperating with any set screws 2011′. Pre-tensioning of the cord 2004 also results in some compression of the bumper 2008 and the two spacers 2006′. Also, with further reference to FIGS. 62 (A-C- and 63 (A-C), three states or positions of the assembly components are shown in these figures. In the state or position identified by the letter X in FIGS. 62A and 63A, a distracted state or position of the vertebrae (not shown) is demonstrated wherein the bumper 2008 is fully compressed while the spacers 2006′ are axially extended to a near neutral or nominal state. In the state or position identified by the letter Y in FIGS. 62B and 63B, the vertebrae (not shown) are compressed together, resulting in the bumper 2008 expanding to a near neutral state with the spacers 2006′ being fully compressed. The state or position identified by the letter Z in FIGS. 62C and 63C is a nominal or neutral position in which the bumper 2008 and the spacers 2006′ are slightly compressed and are holding the cord 2004 in a steady-state tension.


With reference to FIGS. 64 and 65, another embodiment of a soft stabilization connector 3002 is shown that includes a blocker 2010/set screw 2011 combination on either side thereof, the blockers holding a pre-tensioned cord 2004 in tension along and with respect to three closed bone screws 2012′, none of which are cooperating with a set screw. Thus, the cord 2004 is in slidable relationship with each of the three bone screws 2012′. Located adjacent each blocker 2010 is a bumper 2008 and on-axis spacers 2006′ are located between each of the screws 2012′. It is noted that one or both of the bumpers 2008 may be omitted in certain embodiments.


With reference to FIGS. 66-68, another embodiment of a soft stabilization connector 3002′ is shown that includes a blocker 2010/set screw 2011 combination on one side thereof and a blocker 2010″/break-off head set screw 2011″ on the other side thereof, the blockers holding a pre-tensioned cord 2004 in tension along and with respect to three closed bone screws 2012′, none of which are cooperating with a set screw. Thus, the cord 2004 is in slidable relationship with each of the three bone screws 2012′. Located adjacent the blocker 2010″ is a bumper 2008″ and on-axis spacers 2006′ are located between each of the screws 2012′. It is noted that there is no bumper between the blocker 2010 and the bone screw 2012′. However, in some embodiments, such a bumper may be included. The bumper 2008″ overlaps an inner portion of the blocker 2010″ as best shown in FIG. 68. FIG. 66 illustrates the connector 3002′ prior to tensioning the cord 2004. FIGS. 67 and 68 illustrate the connector 3002′ in a tensioned state with the bumper 2008″ in compression and the blocker break-off head already removed, exposing an inner drive of the set screw 2011″ if loosening and removal or repositioning and further tightening of the cord 2004 is required.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. A longitudinal connecting member assembly for supporting a portion of a spine of a patient, the longitudinal connecting member assembly comprising: a longitudinal connecting member comprising a solid rod connected to a tensionable cord at one end thereof, wherein the tensionable cord comprises a core member that is compressible and when not compressed has a diameter that is less than a diameter of the solid rod;at least a first and a second bone anchor, each including a closure for locking the respective bone anchor, wherein the solid rod is secured to the first bone anchor by the respective closure, the tensionable cord extending between the first and second bone anchor and being in slidable relation with respect to the second bone anchor when the bone anchors are locked by the respective closures;an adjustable multi-part end structure configured to allow tensioning and retensioning of the tensionable cord, wherein the adjustable multi-part end structure comprises a non-threaded through-bore to receive the tensionable cord therethrough; andan elastomeric bumper, wherein the elastomeric bumper is slidably positioned on the tensionable cord between the adjustable multi-part end structure and the second bone anchor, and wherein the elastomeric bumper is compressible when the tensionable cord is tensioned and secured to the multi-part end structure;the tensionable cord being tensionable by securement to the adjustable multi-part end structure prior to attachment to the spine of the patient and retensionable before and after attachment to the spine of a patient by securement to the adjustable multi-part end structure, the tensionable cord being tensionable and retensionable only from the end that is received through the adjustable multi-part end structure.
  • 2. The assembly of claim 1, wherein the adjustable multi-part end structure is configured as a blocker.
  • 3. The assembly of claim 2, wherein the blocker and the bumper are configured in an overlapping orientation.
  • 4. The assembly of claim 1, further comprising a sleeve in slidable relation with the tensioned cord secured to the adjustable multi-part end structure and securable to the second bone anchor, wherein after the second bone anchor is locked by the closure and secured to the sleeve, the sleeve and the second bone anchor are in slidable relation with respect to the tensioned cord.
  • 5. The assembly of claim 4, wherein the elastomeric bumper is positioned between the sleeve secured to the second bone anchor and the adjustable multi-part end structure, and the elastomeric bumper is spaced apart from the second bone anchor by the sleeve.
  • 6. The assembly of claim 4, wherein the sleeve engages the spacer positioned on the tensionable cord at a location between the first and second bone anchors in an overlapping orientation.
  • 7. The assembly of claim 6, wherein the spacer has a width and a height, the height running from a top surface to a bottom surface, the height being greater than the width and the through-bore being located closer to the top surface than to the bottom surface.
  • 8. The assembly of claim 4, wherein the sleeve when secured to the second bone anchor by the closure extends outside of a receiver connected to the second bone anchor.
  • 9. The assembly of claim 1, further comprising a spacer having a through-bore that slidingly receives the tensionable cord therethrough, wherein the spacer is positioned at a location between the first and second bone anchors.
  • 10. The assembly of claim 9, wherein the spacer is compressible.
  • 11. The assembly of claim 9, wherein the spacer is elastic.
  • 12. The assembly of claim 9, wherein the spacer is substantially tubular and the spacer through-bore runs along a central axis thereof.
  • 13. The assembly of claim 1, wherein the adjustable multi-part end structure comprises a releasable setscrew.
  • 14. The assembly of claim 13, wherein the adjustable multi-part end structure has a first non-treaded through-bore for receiving the tensionable cord therethrough and a second threaded through-bore configured to threadably receive the releasable setscrew therein.
  • 15. The assembly of claim 1, wherein the second bone anchor is a polyaxial bone screw.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/518,421 filed May 5, 2011 that is incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/385,212 filed Feb. 8, 2012 that claims the benefit of U.S. Provisional Patent Application Ser. No. 61/463,037 filed Feb. 11, 2011, both of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/136,331 filed Jul. 28, 2011 that claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/400,504 filed Jul. 29, 2010, and 61/403,915 filed Sep. 23, 2010, all of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/802,849 filed Jun. 15, 2010 that claims the benefit of the following U.S. Provisional Patent Application Ser. Nos. 61/268,708, filed Jun. 15, 2009; 61/270,754, filed Jul. 13, 2009; 61/336,911 filed Jan. 28, 2010; 61/395,564 filed May 14, 2010; 61/395,752 filed May 17, 2010; and 61/396,390 filed May 26, 2010; all of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/148,465 filed Apr. 18, 2008 that claims the benefit of U.S. Provisional Patent Application Ser. No. 60/927,111 filed May 1, 2007, both of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/584,980 filed Sep. 15, 2009 that claims the benefit of U.S. Provisional Patent Application Ser. No. 61/192,312 filed Sep. 17, 2008 and Provisional Patent Application Ser. No. 61/210,058 filed Mar. 13, 2009, all of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/661,042 filed Mar. 10, 2010 that claims the benefit of U.S. Provisional Patent Application Ser. No. 61/210,058 filed Mar. 13, 2009, both of which are incorporated by reference herein.

US Referenced Citations (1227)
Number Name Date Kind
854956 Martin May 1907 A
2243717 Moreira May 1941 A
2346346 Anderson Apr 1944 A
2362999 Elmer Nov 1944 A
2531892 Reese Nov 1950 A
2813450 Dzus Nov 1957 A
3013244 Rudy Dec 1961 A
3236275 Smith Feb 1966 A
3604487 Gilbert Sep 1971 A
3640416 Temple Feb 1972 A
4033139 Frederick Jul 1977 A
4041939 Hall Aug 1977 A
4190091 Colognori Feb 1980 A
4373754 Bollfrass et al. Feb 1983 A
4448191 Rodnyansky et al. May 1984 A
4484570 Sutter et al. Nov 1984 A
4600224 Blose Jul 1986 A
4653486 Coker Mar 1987 A
4703954 Ortloff et al. Nov 1987 A
4707001 Johnson Nov 1987 A
4743260 Burton May 1988 A
4748260 Marlett May 1988 A
4759672 Nilsen et al. Jul 1988 A
4790297 Luque Dec 1988 A
4836196 Park et al. Jun 1989 A
4877020 Vich Oct 1989 A
4887596 Sherman Dec 1989 A
4946458 Harms et al. Aug 1990 A
4950269 Gaines, Jr. Aug 1990 A
5005562 Cotrel Apr 1991 A
5019080 Hemer May 1991 A
5020519 Hayes et al. Jun 1991 A
5022791 Isler Jun 1991 A
5034011 Howland Jul 1991 A
5042982 Harms et al. Aug 1991 A
5067955 Cotrel Nov 1991 A
5084048 Jacob et al. Jan 1992 A
5092635 DeLange et al. Mar 1992 A
5092866 Breard et al. Mar 1992 A
5102412 Rogozinski Apr 1992 A
5129388 Vignaud et al. Jul 1992 A
5147363 Harle Jul 1992 A
5154719 Cotrel Oct 1992 A
5171279 Mathews Dec 1992 A
5176483 Baumann et al. Jan 1993 A
5176678 Tsou Jan 1993 A
5176679 Lin Jan 1993 A
5176680 Vignaud et al. Jan 1993 A
5180393 Commarmond Jan 1993 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5257993 Asher et al. Nov 1993 A
5261907 Vignaud et al. Nov 1993 A
5261912 Frigg Nov 1993 A
5275601 Gogolewski et al. Jan 1994 A
5282862 Barker et al. Feb 1994 A
5282863 Burton Feb 1994 A
D346217 Sparker et al. Apr 1994 S
5306275 Bryan Apr 1994 A
5312404 Asher et al. May 1994 A
5321901 Kelly Jun 1994 A
5330472 Metz-Stavenhagen Jul 1994 A
5346493 Stahurski et al. Sep 1994 A
5358289 Banker et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5375823 Navas Dec 1994 A
5385583 Cotrel Jan 1995 A
5395371 Miller et al. Mar 1995 A
5409488 Ulrich Apr 1995 A
5409489 Sioufl Apr 1995 A
5414661 Holmes May 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5427418 Watts Jun 1995 A
5429639 Judet Jul 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5466238 Lin Nov 1995 A
5468241 Metz-Stavenhagen et al. Nov 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5476464 Metz-Stavenhagen et al. Dec 1995 A
5480401 Navas Jan 1996 A
5484437 Michelson Jan 1996 A
5484440 Allard Jan 1996 A
5487742 Cotrel Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5490750 Gundy Feb 1996 A
5496321 Puno et al. Mar 1996 A
5499892 Reed Mar 1996 A
5505731 Tornier Apr 1996 A
5507745 Logroscino et al. Apr 1996 A
5540688 Navas Jul 1996 A
5545165 Biedermann et al. Aug 1996 A
5549607 Olson et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5562660 Grob Oct 1996 A
5562663 Wisnewski et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5569251 Baker et al. Oct 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5607304 Bailey et al. Mar 1997 A
5607425 Rogozinski Mar 1997 A
5607426 Ralph et al. Mar 1997 A
5607428 Lin Mar 1997 A
5611800 Davis et al. Mar 1997 A
5628740 Mullane May 1997 A
5630817 Rokegem May 1997 A
5641256 Gundy Jun 1997 A
5643260 Doherty Jul 1997 A
5643261 Schafer et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5662652 Schafer et al. Sep 1997 A
5662653 Songer et al. Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5676703 Gelbard Oct 1997 A
5681319 Biedermann et al. Oct 1997 A
5683390 Metz-Stavenhagen et al. Nov 1997 A
5690630 Errico et al. Nov 1997 A
5697929 Mellinger Dec 1997 A
5711709 McCoy Jan 1998 A
5713898 Stucker et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5720751 Jackson Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725527 Biedermann et al. Mar 1998 A
5725528 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5752957 Ralph et al. May 1998 A
5782830 Farris Jul 1998 A
5782833 Haider Jul 1998 A
5792044 Foley et al. Aug 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5800547 Schafer et al. Sep 1998 A
5810816 Roussouly et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
5873878 Harms et al. Feb 1999 A
5876402 Errico et al. Mar 1999 A
5879350 Sherman Mar 1999 A
5879351 Viart Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5902231 Foley et al. May 1999 A
RE36221 Breard et al. Jun 1999 E
5910141 Morrison et al. Jun 1999 A
5938663 Petreto Aug 1999 A
5944465 Janitzki Aug 1999 A
5951553 Betz Sep 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004349 Jackson Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6019759 Rogozinski Feb 2000 A
6022350 Ganem Feb 2000 A
6053917 Sherman et al. Apr 2000 A
6059786 Jackson May 2000 A
6063090 Schlapfer May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6102912 Cazin et al. Aug 2000 A
6102913 Jackson Aug 2000 A
6110172 Jackson Aug 2000 A
6113601 Tatar Sep 2000 A
6117137 Halm et al. Sep 2000 A
6132431 Nilsson et al. Oct 2000 A
6132432 Richelsoph Oct 2000 A
6132434 Sherman et al. Oct 2000 A
6136002 Shih et al. Oct 2000 A
6139549 Keller Oct 2000 A
6143032 Schafer et al. Nov 2000 A
6146383 Studer et al. Nov 2000 A
6183472 Lutz Feb 2001 B1
6186718 Fogard Feb 2001 B1
6187005 Brace et al. Feb 2001 B1
6193720 Yuan et al. Feb 2001 B1
6214012 Karpman et al. Apr 2001 B1
RE37161 Michelson et al. May 2001 E
6224596 Jackson May 2001 B1
6224598 Jackson May 2001 B1
6235028 Brumfield et al. May 2001 B1
6235034 Bray May 2001 B1
6241730 Alby Jun 2001 B1
6248105 Schlapfer et al. Jun 2001 B1
6248107 Foley et al. Jun 2001 B1
6251112 Jackson Jun 2001 B1
6254146 Church Jul 2001 B1
6254602 Justis Jul 2001 B1
6267764 Elberg Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6273888 Justis Aug 2001 B1
6277122 McGahan et al. Aug 2001 B1
6280442 Barker et al. Aug 2001 B1
6280445 Morrison et al. Aug 2001 B1
6287308 Betz et al. Sep 2001 B1
6287311 Sherman et al. Sep 2001 B1
6290700 Schmotzer Sep 2001 B1
6296642 Morrison et al. Oct 2001 B1
6296643 Hopf et al. Oct 2001 B1
6299613 Ogilvie et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6315564 Levisman Nov 2001 B1
6315779 Morrison et al. Nov 2001 B1
6331179 Freid et al. Dec 2001 B1
6355040 Richelsoph et al. Mar 2002 B1
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6371957 Amrein et al. Apr 2002 B1
6402752 Schaffler-Wachter et al. Jun 2002 B2
6402757 Moore et al. Jun 2002 B1
6440133 Beale et al. Aug 2002 B1
6440137 Horvath et al. Aug 2002 B1
6443956 Ray Sep 2002 B1
6451021 Ralph et al. Sep 2002 B1
6471703 Ashman Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6478801 Ralph et al. Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6485492 Halm et al. Nov 2002 B1
6485494 Haider Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6508818 Steiner et al. Jan 2003 B2
6511484 Torode et al. Jan 2003 B2
6520962 Taylor et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6530929 Justis et al. Mar 2003 B1
6533786 Needham et al. Mar 2003 B1
6539826 Oesterle et al. Apr 2003 B2
6540749 Schafer et al. Apr 2003 B2
6547790 Harkey, III et al. Apr 2003 B2
6551320 Liebermann Apr 2003 B2
6551323 Doubler et al. Apr 2003 B2
6554831 Rivard et al. Apr 2003 B1
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6558387 Errico et al. May 2003 B2
6562038 Morrison May 2003 B1
6562040 Wagner May 2003 B1
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6572618 Morrison Jun 2003 B1
6582436 Schlapfer et al. Jun 2003 B2
6582466 Gauchet Jun 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6595992 Wagner et al. Jul 2003 B1
6595993 Donno et al. Jul 2003 B2
6599294 Fuss et al. Jul 2003 B2
6610063 Kumar et al. Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6616667 Steiger et al. Sep 2003 B1
6616669 Ogilvie Sep 2003 B2
6623485 Doubler et al. Sep 2003 B2
6626347 Ng Sep 2003 B2
6626907 Campbell et al. Sep 2003 B2
6626908 Cooper et al. Sep 2003 B2
6635059 Randall et al. Oct 2003 B2
6635060 Hanson et al. Oct 2003 B2
6648885 Friesem Nov 2003 B1
6648887 Ashman Nov 2003 B2
6648888 Shluzas Nov 2003 B1
6652526 Arafiles Nov 2003 B1
6652765 Beaty Nov 2003 B1
6656179 Schaefer et al. Dec 2003 B1
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6660006 Markworth et al. Dec 2003 B2
6663632 Frigg Dec 2003 B1
6663635 Frigg et al. Dec 2003 B2
6673073 Schafer Jan 2004 B1
6676661 Martin Benlloch et al. Jan 2004 B1
6679833 Smith et al. Jan 2004 B2
6682529 Stahurski Jan 2004 B2
6682530 Dixon et al. Jan 2004 B2
6689133 Morrison et al. Feb 2004 B2
6689134 Ralph et al. Feb 2004 B2
6695843 Biedermann et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699249 Schlapfer et al. Mar 2004 B2
6706045 Lin et al. Mar 2004 B2
6712818 Michelson Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6716247 Michelson Apr 2004 B2
6723100 Biedermann et al. Apr 2004 B2
6730093 Saint Martin May 2004 B2
6730127 Michelson May 2004 B2
6733502 Altarac et al. May 2004 B2
6736816 Ritland May 2004 B2
6736820 Bieeermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6743231 Gray et al. Jun 2004 B1
6746449 Jones et al. Jun 2004 B2
6746454 Winterbottom et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755835 Schultheiss et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6761723 Butterman et al. Jul 2004 B2
6767351 Orbay et al. Jul 2004 B2
6770075 Howland Aug 2004 B2
6778861 Liebrecht et al. Aug 2004 B1
6780186 Errico et al. Aug 2004 B2
6783527 Drewry et al. Aug 2004 B2
6790208 Oribe et al. Sep 2004 B2
6790209 Beale et al. Sep 2004 B2
6802844 Ferree Oct 2004 B2
6827719 Ralph et al. Dec 2004 B2
6830571 Lenke et al. Dec 2004 B2
6835196 Biedermann et al. Dec 2004 B2
6837889 Shluzas Jan 2005 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6857343 Easterbrooks et al. Feb 2005 B1
6858031 Morrison et al. Feb 2005 B2
6869432 Schlapfer et al. Mar 2005 B2
6869433 Glascott Mar 2005 B2
6872208 McBride et al. Mar 2005 B1
6896676 Zubok et al. May 2005 B2
6896677 Lin May 2005 B1
6932817 Baynham et al. Aug 2005 B2
6932820 Osman Aug 2005 B2
6945972 Frigg et al. Sep 2005 B2
6953462 Lieberman Oct 2005 B2
6955677 Dahners Oct 2005 B2
6958065 Ueyama et al. Oct 2005 B2
6964664 Freid et al. Nov 2005 B2
6964665 Thomas et al. Nov 2005 B2
6964667 Shaolian et al. Nov 2005 B2
6966910 Ritland Nov 2005 B2
6974460 Carbone et al. Dec 2005 B2
6979334 Dalton Dec 2005 B2
6981973 McKinley Jan 2006 B2
6986771 Paul et al. Jan 2006 B2
6989011 Paul et al. Jan 2006 B2
6991632 Ritland Jan 2006 B2
7044947 Shluzus et al. Feb 2006 B2
RE39035 Finn et al. Mar 2006 E
7008422 Foley et al. Mar 2006 B2
7008424 Teitelbaum Mar 2006 B2
7011660 Sherman et al. Mar 2006 B2
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
7022122 Amrein et al. Apr 2006 B2
7029475 Panjabi Apr 2006 B2
RE39089 Ralph et al. May 2006 E
7052497 Sherman et al. May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7066062 Flesher Jun 2006 B2
7066937 Shluzas Jun 2006 B2
7081116 Carly Jul 2006 B1
7083621 Shaolian et al. Aug 2006 B2
7087057 Konieczynski et al. Aug 2006 B2
7090674 Doubler et al. Aug 2006 B2
7090679 Saint-Martin Aug 2006 B2
7090680 Bonati et al. Aug 2006 B2
7094242 Ralph et al. Aug 2006 B2
7118576 Gitis et al. Oct 2006 B2
7121755 Schlapfer et al. Oct 2006 B2
7125410 Freudiger Oct 2006 B2
7125426 Moumene et al. Oct 2006 B2
7128743 Metz-Stavenhagen Oct 2006 B2
7137985 Jahng Nov 2006 B2
7141051 Janowski et al. Nov 2006 B2
7144396 Shluzas Dec 2006 B2
7163538 Altarac et al. Jan 2007 B2
7163539 Abdelgany et al. Jan 2007 B2
7166108 Mazda et al. Jan 2007 B2
7179261 Sicvol et al. Feb 2007 B2
7186255 Baynham et al. Mar 2007 B2
7188626 Foley et al. Mar 2007 B2
7207991 Michelson Apr 2007 B2
7207992 Ritland Apr 2007 B2
7211085 Michelson May 2007 B2
7211086 Biedermann et al. May 2007 B2
7211087 Young May 2007 B2
7214227 Colleran et al. May 2007 B2
7223268 Biedermann May 2007 B2
7229441 Trieu et al. Jun 2007 B2
7264621 Coates et al. Sep 2007 B2
7270665 Morrison et al. Sep 2007 B2
7282064 Chin Oct 2007 B2
7291151 Alvarez Nov 2007 B2
7291153 Glascott Nov 2007 B2
7294127 Hawkins et al. Nov 2007 B2
7294128 Alleyne et al. Nov 2007 B2
7294129 Hawkins et al. Nov 2007 B2
7306603 Boehm, Jr. et al. Dec 2007 B2
7306604 Carli Dec 2007 B2
7306606 Sasing Dec 2007 B2
7314467 Howland Jan 2008 B2
7316684 Baccelli et al. Jan 2008 B1
7322979 Crandall et al. Jan 2008 B2
7329258 Studer Feb 2008 B2
7335201 Doubler et al. Feb 2008 B2
7335202 Matthis et al. Feb 2008 B2
7338490 Ogilvie et al. Mar 2008 B2
7338491 Baker et al. Mar 2008 B2
7361196 Fallin et al. Apr 2008 B2
7377921 Studer et al. May 2008 B2
7476238 Panjabi Jan 2009 B2
7491208 Pond, Jr. et al. Feb 2009 B2
7556639 Rothman et al. Jul 2009 B2
7559942 Paul et al. Jul 2009 B2
7563274 Justis et al. Jul 2009 B2
7563283 Kwak Jul 2009 B2
7588589 Falahee Sep 2009 B2
7601166 Biedermann et al. Oct 2009 B2
7604653 Kitchen Oct 2009 B2
7604654 Fallin et al. Oct 2009 B2
7611518 Walder et al. Nov 2009 B2
7615068 Timm et al. Nov 2009 B2
7621912 Harms et al. Nov 2009 B2
7621940 Harms et al. Nov 2009 B2
7625393 Fallin et al. Dec 2009 B2
7632292 Sengupta et al. Dec 2009 B2
7641673 LeCouedic et al. Jan 2010 B2
7651515 Mack et al. Jan 2010 B2
7655026 Justis et al. Feb 2010 B2
7658739 Shluzas Feb 2010 B2
7658752 Labrom et al. Feb 2010 B2
7682375 Ritland Mar 2010 B2
7695496 Labrom et al. Apr 2010 B2
7695498 Ritland Apr 2010 B2
7695514 Kwak Apr 2010 B2
7713288 Timm et al. May 2010 B2
7763048 Fortin et al. Jul 2010 B2
7763052 Jahng Jul 2010 B2
7766941 Paul Aug 2010 B2
7766942 Patterson et al. Aug 2010 B2
7766943 Fallin et al. Aug 2010 B1
7776071 Fortin et al. Aug 2010 B2
7776075 Bruneau et al. Aug 2010 B2
7785349 Walder et al. Aug 2010 B2
7785350 Eckhardt et al. Aug 2010 B2
7785351 Gordon et al. Aug 2010 B2
7794480 Gordon et al. Sep 2010 B2
7806913 Fanger et al. Oct 2010 B2
7811309 Timm et al. Oct 2010 B2
7815663 Trieu Oct 2010 B2
7815664 Sherman et al. Oct 2010 B2
7815665 Jahng et al. Oct 2010 B2
7828823 Rogeau et al. Nov 2010 B2
7828825 Bruneau et al. Nov 2010 B2
7842072 Dawson Nov 2010 B2
7875059 Patterson et al. Jan 2011 B2
7901437 Jackson Mar 2011 B2
7976546 Geist et al. Jul 2011 B2
7985248 Walder et al. Jul 2011 B2
RE42626 Taylor et al. Aug 2011 E
7988694 Barrus et al. Aug 2011 B2
7988707 Panjabi Aug 2011 B2
7988710 Jahng et al. Aug 2011 B2
7988711 Erickson et al. Aug 2011 B2
7993370 Jahng Aug 2011 B2
7993375 Bae et al. Aug 2011 B2
7998175 Kim Aug 2011 B2
8007519 Hudgins et al. Aug 2011 B2
8012178 Hartmann et al. Sep 2011 B2
8012179 Bruneau et al. Sep 2011 B2
8012180 Studer et al. Sep 2011 B2
8012182 Couedic et al. Sep 2011 B2
8025681 Colleran et al. Sep 2011 B2
8029544 Hestad et al. Oct 2011 B2
8029547 Veldman et al. Oct 2011 B2
8029548 Prevost et al. Oct 2011 B2
8034078 Laskowitz et al. Oct 2011 B2
8043340 Law Oct 2011 B1
8128667 Jackson Mar 2012 B2
8157843 Biederman et al. Apr 2012 B2
8292926 Jackson Oct 2012 B2
8366745 Jackson Feb 2013 B2
9101404 Jackson Aug 2015 B2
9439683 Jackson Sep 2016 B2
9451989 Jackson Sep 2016 B2
9861394 Jackson Jan 2018 B2
9956002 Jackson May 2018 B2
20010001119 Lombardo May 2001 A1
20010010000 Gertzbein Jul 2001 A1
20010023350 Choi Sep 2001 A1
20010029375 Betz Oct 2001 A1
20010037111 Dixon et al. Nov 2001 A1
20020007184 Ogilvie et al. Jan 2002 A1
20020013586 Justis et al. Jan 2002 A1
20020035360 Walder et al. Mar 2002 A1
20020035366 Walder et al. Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020055740 Lieberman May 2002 A1
20020058942 Biedermann et al. May 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020072751 Jackson Jun 2002 A1
20020077701 Kuslich Jun 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020095153 Jones et al. Jul 2002 A1
20020107570 Sybert et al. Aug 2002 A1
20020111626 Ralph et al. Aug 2002 A1
20020116001 Schafer Aug 2002 A1
20020116065 Jackson Aug 2002 A1
20020133159 Jackson Sep 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020173789 Howland Nov 2002 A1
20020193795 Gertzbein et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030023240 Amrein et al. Jan 2003 A1
20030023243 Biedermann et al. Jan 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030083657 Drewry et al. May 2003 A1
20030093078 Ritland May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030109880 Shirado et al. Jun 2003 A1
20030114852 Biedermann et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030153911 Shluzas Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20030176862 Taylor et al. Sep 2003 A1
20030191470 Ritland Oct 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208203 Lim et al. Nov 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030212398 Jackson Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20030220642 Freudiger Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030225408 Nichols et al. Dec 2003 A1
20040002708 Ritland Jan 2004 A1
20040006342 Altarac et al. Jan 2004 A1
20040049189 Le Couedic et al. Mar 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040073215 Carli Apr 2004 A1
20040078082 Lange Apr 2004 A1
20040220671 Ralph et al. Apr 2004 A1
20040087949 Bono et al. May 2004 A1
20040087952 Borgstrom et al. May 2004 A1
20040092934 Howland May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040116929 Barker et al. Jun 2004 A1
20040133207 Abdou Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040167523 Jackson Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040172025 Drewry et al. Sep 2004 A1
20040176766 Shluzas Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040210216 Farris et al. Oct 2004 A1
20040215191 Kitchen Oct 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236328 Paul et al. Nov 2004 A1
20040236329 Panjabi Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20040249380 Glascott Dec 2004 A1
20040260283 Wu et al. Dec 2004 A1
20040267264 Konieczynski et al. Dec 2004 A1
20050010220 Casutt et al. Jan 2005 A1
20050027296 Thramann et al. Feb 2005 A1
20050033298 Hawkes et al. Feb 2005 A1
20050038432 Shaolian et al. Feb 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050055026 Biedermann et al. Mar 2005 A1
20050065514 Studer Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050065516 Jahng Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050085812 Sherman Apr 2005 A1
20050085813 Splitler et al. Apr 2005 A1
20050085815 Harms Apr 2005 A1
20050085816 Michelson Apr 2005 A1
20050096652 Burton May 2005 A1
20050096654 Lin May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050124991 Jahng Jun 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131407 Sicvol et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050137597 Butler et al. Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050143823 Boyd et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050149023 Ritland Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050154390 Biedermann et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159750 Doherty Jul 2005 A1
20050165396 Fortin et al. Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171540 Lim Aug 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177157 Jahng Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050187555 Beidermann et al. Aug 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050192580 Dalton Sep 2005 A1
20050203511 Wilson-MacDonald Sep 2005 A1
20050203513 Jahng et al. Sep 2005 A1
20050203514 Jahng et al. Sep 2005 A1
20050203516 Biedermann et al. Sep 2005 A1
20050203517 Jahng et al. Sep 2005 A1
20050203518 Biedermann et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050216001 David Sep 2005 A1
20050216003 Beidermann et al. Sep 2005 A1
20050228501 Miller et al. Oct 2005 A1
20050234450 Barker Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050234453 Shaolian et al. Oct 2005 A1
20050234454 Chin Oct 2005 A1
20050234456 Malandain Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050240183 Vaughan Oct 2005 A1
20050245930 Timm et al. Nov 2005 A1
20050251137 Ball Nov 2005 A1
20050251139 Roh Nov 2005 A1
20050251140 Shaolian et al. Nov 2005 A1
20050251141 Frigg et al. Nov 2005 A1
20050260058 Casagne, III Nov 2005 A1
20050261685 Fortin et al. Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050267470 McBride Dec 2005 A1
20050267471 Biedermann et al. Dec 2005 A1
20050267474 Dalton Dec 2005 A1
20050267477 Jackson Dec 2005 A1
20050273099 Baccelli et al. Dec 2005 A1
20050273101 Schumacher Dec 2005 A1
20050277919 Slivka et al. Dec 2005 A1
20050277920 Slivka et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050277923 Sweeney Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277927 Guenther et al. Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050277931 Sweeney et al. Dec 2005 A1
20050277932 Farris Dec 2005 A1
20050277934 Vardiman Dec 2005 A1
20050283152 Lindemann et al. Dec 2005 A1
20050283157 Coates et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050288669 Abdou Dec 2005 A1
20050288670 Panjabi Dec 2005 A1
20050288671 Yuan et al. Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20050288673 Catbagan et al. Dec 2005 A1
20060004357 Lee et al. Jan 2006 A1
20060004359 Kramer et al. Jan 2006 A1
20060004360 Kramer et al. Jan 2006 A1
20060004363 Brockmeyer et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060009768 Ritland Jan 2006 A1
20060009769 Liebermann Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060009775 Dec et al. Jan 2006 A1
20060009780 Foley et al. Jan 2006 A1
20060009846 Trieu et al. Jan 2006 A1
20060015099 Cannon et al. Jan 2006 A1
20060015104 Dalton Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060030850 Keegan et al. Feb 2006 A1
20060036240 Colleran et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060036254 Lim Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036260 Runco et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060041259 Paul et al. Feb 2006 A1
20060052780 Errico et al. Mar 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060064090 Park Mar 2006 A1
20060064091 Ludwig et al. Mar 2006 A1
20060064092 Howland Mar 2006 A1
20060069390 Frigg Mar 2006 A1
20060074419 Taylor et al. Apr 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079895 McLeer Apr 2006 A1
20060079896 Kwak Apr 2006 A1
20060079898 Ainsworth Apr 2006 A1
20060079899 Ritland Apr 2006 A1
20060084977 Liebermann Apr 2006 A1
20060084981 Shluzas Apr 2006 A1
20060084982 Kim Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084989 Dickinson et al. Apr 2006 A1
20060084991 Borgstrom Apr 2006 A1
20060084993 Landry et al. Apr 2006 A1
20060084995 Biedermann et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060089643 Mujwid Apr 2006 A1
20060089644 Felix Apr 2006 A1
20060095037 Jones et al. May 2006 A1
20060106380 Colleran et al. May 2006 A1
20060106381 Ferree May 2006 A1
20060106383 Biedermann May 2006 A1
20060111714 Foley May 2006 A1
20060111715 Jackson May 2006 A1
20060116677 Burd et al. Jun 2006 A1
20060122597 Jojnes et al. Jun 2006 A1
20060122599 Drewry Jun 2006 A1
20060129147 Biedermann et al. Jun 2006 A1
20060129149 Iott et al. Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060142758 Petit Jun 2006 A1
20060142760 McDonnell Jun 2006 A1
20060142761 Landry et al. Jun 2006 A1
20060149228 Schlapfer Jul 2006 A1
20060149229 Kwak Jul 2006 A1
20060149232 Sasing Jul 2006 A1
20060149238 Sherman Jul 2006 A1
20060149241 Richelsoph et al. Jul 2006 A1
20060149244 Amrein et al. Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060155278 Warnick Jul 2006 A1
20060161152 Ensign et al. Jul 2006 A1
20060167454 Ludwig et al. Jul 2006 A1
20060167455 Clement et al. Jul 2006 A1
20060173454 Spitler et al. Aug 2006 A1
20060173456 Hawkes et al. Aug 2006 A1
20060184171 Biedermann Aug 2006 A1
20060184180 Augostino Aug 2006 A1
20060189983 Faliln Aug 2006 A1
20060189984 Fallin Aug 2006 A1
20060189985 Lewis Aug 2006 A1
20060195090 Suddaby Aug 2006 A1
20060195093 Jahng Aug 2006 A1
20060195198 Schumacher Aug 2006 A1
20060200123 Mueller Sep 2006 A1
20060200130 Hawkins Sep 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060200132 Chao et al. Sep 2006 A1
20060200135 Sherman et al. Sep 2006 A1
20060200138 Michelson Sep 2006 A1
20060200139 Michelson Sep 2006 A1
20060200149 Hoy et al. Sep 2006 A1
20060210494 Rabiei et al. Sep 2006 A1
20060212033 Rothman Sep 2006 A1
20060212034 Triplett et al. Sep 2006 A1
20060217713 Serhan et al. Sep 2006 A1
20060217714 Serhan et al. Sep 2006 A1
20060217715 Albert et al. Sep 2006 A1
20060217716 Baker et al. Sep 2006 A1
20060229608 Foster Oct 2006 A1
20060229609 Wang Oct 2006 A1
20060229612 Rothman Oct 2006 A1
20060229613 Timm Oct 2006 A1
20060229614 Foley et al. Oct 2006 A1
20060229615 Abdou Oct 2006 A1
20060235389 Albert et al. Oct 2006 A1
20060235392 Hammer et al. Oct 2006 A1
20060235393 Bono et al. Oct 2006 A1
20060241593 Sherman et al. Oct 2006 A1
20060241595 Molz, IV et al. Oct 2006 A1
20060241599 Konieczynski et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241602 Jackson Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060241769 Gordon et al. Oct 2006 A1
20060241771 Gordon Oct 2006 A1
20060247624 Banouskou et al. Nov 2006 A1
20060247630 Iott et al. Nov 2006 A1
20060247631 Ahn et al. Nov 2006 A1
20060247632 Winslow Nov 2006 A1
20060247633 Winslow Nov 2006 A1
20060247635 Gordon Nov 2006 A1
20060247636 Yuan et al. Nov 2006 A1
20060247637 Colleran Nov 2006 A1
20060247779 Gordon Nov 2006 A1
20060264933 Baker et al. Nov 2006 A1
20060264934 Fallin Nov 2006 A1
20060264935 White Nov 2006 A1
20060264936 Partin et al. Nov 2006 A1
20060264937 White Nov 2006 A1
20060264940 Hartmannt Nov 2006 A1
20060264942 Lim et al. Nov 2006 A1
20060264962 Chin et al. Nov 2006 A1
20060269940 Harman Nov 2006 A1
20060276787 Zubok et al. Dec 2006 A1
20060276789 Jackson Dec 2006 A1
20060276791 Shluzas Dec 2006 A1
20060276792 Ensign Dec 2006 A1
20060282074 Renaud et al. Dec 2006 A1
20060282075 Labrom Dec 2006 A1
20060282076 Labrom Dec 2006 A1
20060282077 Labrom Dec 2006 A1
20060282078 Labrom Dec 2006 A1
20060282079 Labrom Dec 2006 A1
20060282080 Albert Dec 2006 A1
20060293657 Hartmann Dec 2006 A1
20060293659 Alvarez Dec 2006 A1
20060293663 Walkenhorst Dec 2006 A1
20060293665 Shluzas Dec 2006 A1
20060293666 Matthis et al. Dec 2006 A1
20070005062 Lange Jan 2007 A1
20070005063 Bruneau et al. Jan 2007 A1
20070005137 Kwak Jan 2007 A1
20070016188 Boehm, Jr. et al. Jan 2007 A1
20070016190 Martinez Jan 2007 A1
20070016193 Ritland Jan 2007 A1
20070016194 Shaolian et al. Jan 2007 A1
20070016198 Boehm, Jr. et al. Jan 2007 A1
20070016199 Boehm, Jr. et al. Jan 2007 A1
20070021750 Shluzas et al. Jan 2007 A1
20070043355 Bette et al. Feb 2007 A1
20070043356 Timm Feb 2007 A1
20070043357 Kirschman Feb 2007 A1
20070043358 Molz, IV et al. Feb 2007 A1
20070043359 Altarac et al. Feb 2007 A1
20070043364 Cawley et al. Feb 2007 A1
20070049931 Justis et al. Mar 2007 A1
20070049933 Ahn et al. Mar 2007 A1
20070049936 Colleran Mar 2007 A1
20070055235 Janowski et al. Mar 2007 A1
20070055236 Hudgins Mar 2007 A1
20070055238 Biedermann et al. Mar 2007 A1
20070055239 Sweeney et al. Mar 2007 A1
20070055240 Matthis Mar 2007 A1
20070055241 Matthis et al. Mar 2007 A1
20070055242 Bailly Mar 2007 A1
20070055244 Jackson Mar 2007 A1
20070055247 Jahng Mar 2007 A1
20070073289 Kwak Mar 2007 A1
20070073290 Boehm, Jr. Mar 2007 A1
20070073291 Cordaro et al. Mar 2007 A1
20070073293 Martz Mar 2007 A1
20070073405 Chin et al. Mar 2007 A1
20070078460 Frigg et al. Apr 2007 A1
20070078461 Shluzas Apr 2007 A1
20070083199 Baccelli Apr 2007 A1
20070088357 Johnson et al. Apr 2007 A1
20070088359 Woods et al. Apr 2007 A1
20070093813 Callahan, II et al. Apr 2007 A1
20070093814 Callahan, II et al. Apr 2007 A1
20070093815 Callahan, II et al. Apr 2007 A1
20070093817 Barrus et al. Apr 2007 A1
20070093818 Biedermann et al. Apr 2007 A1
20070093819 Albert Apr 2007 A1
20070093824 Hestad et al. Apr 2007 A1
20070093826 Hawkes et al. Apr 2007 A1
20070093827 Warnick Apr 2007 A1
20070093828 Abdou Apr 2007 A1
20070093831 Abdelgany et al. Apr 2007 A1
20070093833 Kuiper et al. Apr 2007 A1
20070100341 Reglos et al. May 2007 A1
20070118117 Altarac et al. May 2007 A1
20070118118 Kwak et al. May 2007 A1
20070118119 Hestad May 2007 A1
20070118122 Butler et al. May 2007 A1
20070118123 Strausbaugh et al. May 2007 A1
20070118124 Biedermann et al. May 2007 A1
20070123862 Warnick May 2007 A1
20070123864 Walder et al. May 2007 A1
20070123865 Schlapfer et al. May 2007 A1
20070123866 Gerbec et al. May 2007 A1
20070123867 Kirschman May 2007 A1
20070123870 Jeon et al. May 2007 A1
20070123871 Jahng May 2007 A1
20070129729 Petit et al. Jun 2007 A1
20070135815 Gerbec et al. Jun 2007 A1
20070161986 Levy Jul 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161994 Lowrey et al. Jul 2007 A1
20070161995 Trautwein et al. Jul 2007 A1
20070161996 Biedermann et al. Jul 2007 A1
20070161997 Thramann et al. Jul 2007 A1
20070161999 Biedermann et al. Jul 2007 A1
20070167948 Abdou Jul 2007 A1
20070167949 Altarac et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173819 Sandlin Jul 2007 A1
20070173820 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173828 Firkins et al. Jul 2007 A1
20070173832 Tebbe Jul 2007 A1
20070191839 Justis et al. Aug 2007 A1
20070191841 Justis Aug 2007 A1
20070191846 Bruneau et al. Aug 2007 A1
20070198014 Graf et al. Aug 2007 A1
20070123720 Gordon et al. Sep 2007 A1
20070208344 Young Sep 2007 A1
20070213720 Gordon et al. Sep 2007 A1
20070225707 Wisnewski Sep 2007 A1
20070225708 Biedermann et al. Sep 2007 A1
20070225710 Jahng et al. Sep 2007 A1
20070225711 Ensign Sep 2007 A1
20070233064 Holt Oct 2007 A1
20070233073 Wisnewski et al. Oct 2007 A1
20070233075 Dawson Oct 2007 A1
20070233078 Justis et al. Oct 2007 A1
20070233080 Na et al. Oct 2007 A1
20070233085 Biedermann et al. Oct 2007 A1
20070233086 Harms et al. Oct 2007 A1
20070233087 Schlapfer Oct 2007 A1
20070233092 Falahee Oct 2007 A1
20070233094 Colleran et al. Oct 2007 A1
20070233095 Schlaepfer Oct 2007 A1
20070250061 Chin et al. Oct 2007 A1
20070124249 Lim et al. Nov 2007 A1
20070260243 Biedermann Nov 2007 A1
20070270806 Foley et al. Nov 2007 A1
20070270807 Armstrong et al. Nov 2007 A1
20070270810 Sanders Nov 2007 A1
20070270813 Garamszegi Nov 2007 A1
20070270814 Lim et al. Nov 2007 A1
20070270815 Johnson et al. Nov 2007 A1
20070270821 Trieu et al. Nov 2007 A1
20070270830 Morrison Nov 2007 A1
20070270831 Dewey et al. Nov 2007 A1
20070270832 Moore Nov 2007 A1
20070270835 Wisnewski Nov 2007 A1
20070270837 Eckhardt et al. Nov 2007 A1
20070270838 Bruneau et al. Nov 2007 A1
20070270839 Jeon et al. Nov 2007 A1
20070270840 Chin et al. Nov 2007 A1
20070270843 Matthis et al. Nov 2007 A1
20070276380 Jahng et al. Nov 2007 A1
20070288004 Alvarez Dec 2007 A1
20070288008 Park Dec 2007 A1
20070288009 Logan Dec 2007 A1
20070288011 Logan Dec 2007 A1
20070288012 Colleran et al. Dec 2007 A1
20080009862 Hoffman Jan 2008 A1
20080009864 Forton et al. Jan 2008 A1
20080015578 Erickson et al. Jan 2008 A1
20080015579 Whipple Jan 2008 A1
20080015580 Chao Jan 2008 A1
20080015584 Richelsoph Jan 2008 A1
20080015586 Krishna et al. Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021458 Lim Jan 2008 A1
20080021459 Lim Jan 2008 A1
20080021462 Trieu Jan 2008 A1
20080021464 Norin et al. Jan 2008 A1
20080021465 Shadduck et al. Jan 2008 A1
20080021466 Shadduck et al. Jan 2008 A1
20080021469 Holt Jan 2008 A1
20080021473 Butler et al. Jan 2008 A1
20080027432 Strauss et al. Jan 2008 A1
20080033435 Studer et al. Feb 2008 A1
20080039838 Landry et al. Feb 2008 A1
20080039843 Abdou Feb 2008 A1
20080045951 Fanger et al. Feb 2008 A1
20080045955 Berrevoets et al. Feb 2008 A1
20080045957 Landry et al. Feb 2008 A1
20080051780 Vaidya et al. Feb 2008 A1
20080051787 Remington et al. Feb 2008 A1
20080058811 Alleyne et al. Mar 2008 A1
20080058812 Zehnder Mar 2008 A1
20080065071 Park Mar 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065075 Dant Mar 2008 A1
20080065077 Ferree Mar 2008 A1
20080065079 Bruneau et al. Mar 2008 A1
20080071273 Hawkes et al. Mar 2008 A1
20080071274 Ensign Mar 2008 A1
20080071277 Warrick Mar 2008 A1
20080077139 Landry et al. Mar 2008 A1
20080086125 Molz et al. Apr 2008 A1
20080086130 Lake Apr 2008 A1
20080086131 Daly Apr 2008 A1
20080086132 Biedermann Apr 2008 A1
20080091214 Richelsoph Apr 2008 A1
20080097431 Vessa Apr 2008 A1
20080097434 Moumene et al. Apr 2008 A1
20080097441 Hayes et al. Apr 2008 A1
20080097457 Warrick Apr 2008 A1
20080108992 Barry et al. May 2008 A1
20080119858 Potash May 2008 A1
20080125777 Veldman et al. May 2008 A1
20080125787 Doubler et al. May 2008 A1
20080132952 Malandain et al. Jun 2008 A1
20080140075 Ensign et al. Jun 2008 A1
20080140076 Jackson Jun 2008 A1
20080140133 Allard et al. Jun 2008 A1
20080147122 Jackson Jun 2008 A1
20080154307 Colleran et al. Jun 2008 A1
20080154308 Sherman et al. Jun 2008 A1
20080161854 Bae et al. Jul 2008 A1
20080161857 Hestad et al. Jul 2008 A1
20080161859 Nilsson Jul 2008 A1
20080161863 Arnold et al. Jul 2008 A1
20080167687 Colleran et al. Jul 2008 A1
20080177316 Bergeron et al. Jul 2008 A1
20080177317 Jackson Jul 2008 A1
20080177319 Schwab Jul 2008 A1
20080177321 Drewry et al. Jul 2008 A1
20080177322 Davis et al. Jul 2008 A1
20080177327 Malandain et al. Jul 2008 A1
20080183212 Veldman et al. Jul 2008 A1
20080183213 Veldman Jul 2008 A1
20080183215 Altarac et al. Jul 2008 A1
20080183216 Jackson Jul 2008 A1
20080183219 Jackson Jul 2008 A1
20080183223 Jeon et al. Jul 2008 A1
20080195100 Capote et al. Aug 2008 A1
20080195153 Thompson Aug 2008 A1
20080215095 Biedermann et al. Sep 2008 A1
20080221620 Krause Sep 2008 A1
20080221692 Zucherman et al. Sep 2008 A1
20080228227 Brown et al. Sep 2008 A1
20080228229 Walder et al. Sep 2008 A1
20080234691 Schwab Sep 2008 A1
20080234734 Wabler et al. Sep 2008 A1
20080234736 Trieu et al. Sep 2008 A1
20080234737 Boschert Sep 2008 A1
20080234739 Hudgins et al. Sep 2008 A1
20080234744 Zylber Sep 2008 A1
20080234746 Jahng et al. Sep 2008 A1
20080243188 Walder Oct 2008 A1
20080255617 Cho et al. Oct 2008 A1
20080262546 Calvosa et al. Oct 2008 A1
20080262548 Lange et al. Oct 2008 A1
20080262551 Rice et al. Oct 2008 A1
20080262552 Kim Oct 2008 A1
20080262553 Hawkins et al. Oct 2008 A1
20080262554 Hayes et al. Oct 2008 A1
20080269804 Holt Oct 2008 A1
20080275504 Bonin et al. Nov 2008 A1
20080287994 Perez-Cruet et al. Nov 2008 A1
20080294198 Jackson Nov 2008 A1
20080300630 Bohnema et al. Dec 2008 A1
20080300633 Jackson Dec 2008 A1
20080306528 Winslow et al. Dec 2008 A1
20080306533 Winslow et al. Dec 2008 A1
20080306536 Frig et al. Dec 2008 A1
20080306539 Cain et al. Dec 2008 A1
20080306540 Mitchell et al. Dec 2008 A1
20080306543 Cain et al. Dec 2008 A1
20080306545 Winslow Dec 2008 A1
20080312694 Peterman et al. Dec 2008 A1
20080319482 Jackson Dec 2008 A1
20080319486 Hestad et al. Dec 2008 A1
20090005817 Friedrich Jan 2009 A1
20090012562 Hestad Jan 2009 A1
20090018583 Song et al. Jan 2009 A1
20090024165 Ferree Jan 2009 A1
20090024169 Triplett et al. Jan 2009 A1
20090030464 Hestad et al. Jan 2009 A1
20090030465 Altarac et al. Jan 2009 A1
20090036924 Egli et al. Feb 2009 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090054932 Butler et al. Feb 2009 A1
20090069849 Oh et al. Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090088799 Yeh Apr 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093843 Lemoine et al. Apr 2009 A1
20090093845 Hestad et al. Apr 2009 A1
20090093846 Hestad et al. Apr 2009 A1
20090099606 Hestad et al. Apr 2009 A1
20090099607 Fallin et al. Apr 2009 A1
20090099608 Szczesny Apr 2009 A1
20090105757 Gimbel et al. Apr 2009 A1
20090105758 Gimbel et al. Apr 2009 A1
20090105760 Frey Apr 2009 A1
20090112265 Hudgins et al. Apr 2009 A1
20090112266 Weng et al. Apr 2009 A1
20090112267 Atkinson et al. Apr 2009 A1
20090118767 Hestad et al. May 2009 A1
20090125063 Panjabi May 2009 A1
20090131981 White May 2009 A1
20090138052 Biedermann et al. May 2009 A1
20090149885 Durwood et al. Jun 2009 A1
20090163953 Biedermann et al. Jun 2009 A1
20090163954 Kwak Jun 2009 A1
20090163955 Moumene et al. Jun 2009 A1
20090171395 Jeon et al. Jul 2009 A1
20090177231 Kiester Jul 2009 A1
20090177232 Kiester Jul 2009 A1
20090192548 Jeon et al. Jul 2009 A1
20090198280 Spratt et al. Aug 2009 A1
20090198281 Rice et al. Aug 2009 A1
20090204152 Blain Aug 2009 A1
20090228045 Hayes et al. Sep 2009 A1
20090240285 Friedrich et al. Sep 2009 A1
20090240286 Friedrich et al. Sep 2009 A1
20090240287 Cunliffe et al. Sep 2009 A1
20090248075 Ogilvie et al. Oct 2009 A1
20090248077 Johns Oct 2009 A1
20090248081 LeHuec et al. Oct 2009 A1
20090248083 Patterson et al. Oct 2009 A1
20090248088 Biedermann Oct 2009 A1
20090254123 Pafford et al. Oct 2009 A1
20090259257 Prevost Oct 2009 A1
20090259258 Perez-Cruet et al. Oct 2009 A1
20090270917 Boehm Oct 2009 A1
20090270920 Douget et al. Oct 2009 A1
20090270921 Krause Oct 2009 A1
20090270922 Biedermann et al. Oct 2009 A1
20090275981 Abdelgany et al. Nov 2009 A1
20090275983 Veldman et al. Nov 2009 A1
20090275985 Jackson Nov 2009 A1
20090275986 Prevost et al. Nov 2009 A1
20090281572 White Nov 2009 A1
20090281573 Biedermann et al. Nov 2009 A1
20090287250 Molz, IV et al. Nov 2009 A1
20090287251 Bae et al. Nov 2009 A1
20090287252 Marik et al. Nov 2009 A1
20090299411 Laskowitz et al. Dec 2009 A1
20090318968 Duggal et al. Dec 2009 A1
20090326582 Songer et al. Dec 2009 A1
20090326583 Moumene et al. Dec 2009 A1
20100010542 Jackson Jan 2010 A1
20100010543 Jackson Jan 2010 A1
20100010544 Fallin et al. Jan 2010 A1
20100030271 Winslow et al. Feb 2010 A1
20100036420 Kalfas et al. Feb 2010 A1
20100036422 Flynn et al. Feb 2010 A1
20100036423 Hayes Feb 2010 A1
20100036424 Fielding et al. Feb 2010 A1
20100036425 Barrus et al. Feb 2010 A1
20100042155 Biedermann et al. Feb 2010 A1
20100042156 Harms et al. Feb 2010 A1
20100049254 Biedermann et al. Feb 2010 A1
20100057125 Viker Mar 2010 A1
20100057126 Hestad Mar 2010 A1
20100063544 Butler Mar 2010 A1
20100063545 Richelsoph Mar 2010 A1
20100063547 Morin et al. Mar 2010 A1
20100063551 Richelsoph Mar 2010 A1
20100069964 Lechmann Mar 2010 A1
20100087858 Abdou Apr 2010 A1
20100087862 Biedermann et al. Apr 2010 A1
20100087863 Biedermann et al. Apr 2010 A1
20100087865 Biedermann et al. Apr 2010 A1
20100088782 Moumene et al. Apr 2010 A1
20100094348 Biedermann et al. Apr 2010 A1
20100137912 Alcock et al. Jun 2010 A1
20100174319 Jackson Jul 2010 A1
20100198261 Trieu et al. Aug 2010 A1
20100198269 Taylor et al. Aug 2010 A1
20100204736 Biedermann et al. Aug 2010 A1
20100211104 Moumene et al. Aug 2010 A1
20100211105 Moumene et al. Aug 2010 A1
20100222819 Timm et al. Sep 2010 A1
20100228292 Arnold et al. Sep 2010 A1
20100249843 Wegzyn, III Sep 2010 A1
20100256682 Fallin et al. Oct 2010 A1
20100262187 Marik et al. Oct 2010 A1
20100262190 Ballard et al. Oct 2010 A1
20100262191 Marik et al. Oct 2010 A1
20100262192 Foley Oct 2010 A1
20100274285 Rouleau Oct 2010 A1
20100274287 Rouleau et al. Oct 2010 A1
20100274288 Prevost et al. Oct 2010 A1
20100331887 Jackson et al. Dec 2010 A1
20110029022 Zehnder Feb 2011 A1
20110184471 Foley et al. Jul 2011 A1
20110190822 Spitler et al. Aug 2011 A1
20110190823 Bergeron et al. Aug 2011 A1
20110190826 Ogilvie et al. Aug 2011 A1
20110190828 Null et al. Aug 2011 A1
20110230915 Engelmann et al. Sep 2011 A1
20110238119 Mogmene et al. Sep 2011 A1
20110251644 Hestad et al. Oct 2011 A1
20110251648 Fiechter et al. Oct 2011 A1
20110257685 Hay et al. Oct 2011 A1
20110257687 Trieu et al. Oct 2011 A1
20110301644 Belliard Dec 2011 A1
20120029568 Jackson et al. Feb 2012 A1
20120035660 Jackson Feb 2012 A1
20120053636 Schmocker Mar 2012 A1
20130123853 Seme et al. May 2013 A1
20130197582 Prevost et al. Aug 2013 A1
20140018857 Jackson Jan 2014 A1
20140039555 Jackson Feb 2014 A1
20140222076 Jackson Aug 2014 A1
20140343610 Jackson Nov 2014 A1
20140379030 Jackson Dec 2014 A1
20150216567 Trautwein et al. Aug 2015 A1
20150230827 Zylber et al. Aug 2015 A1
20150320449 Jackson Nov 2015 A1
20160310169 Jackson et al. Oct 2016 A1
20160310171 Jackson Oct 2016 A1
20160346010 Jackson Dec 2016 A1
20160354118 Belliard et al. Dec 2016 A1
20160354120 Jackson Dec 2016 A1
20170100165 Jackson Apr 2017 A1
20170231662 Jackson Aug 2017 A1
20170340362 Jackson Nov 2017 A1
20180132901 Jackson et al. May 2018 A1
20180168693 Jackson et al. Jun 2018 A1
20180185068 Jackson Jul 2018 A1
20180221063 Jackson Aug 2018 A1
Foreign Referenced Citations (91)
Number Date Country
2577436 Jun 2006 CA
4239716 Aug 1994 DE
4425392 Nov 1995 DE
19507141 Sep 1996 DE
19509141 Sep 1996 DE
19509331 Sep 1996 DE
29806563 Jul 1998 DE
29810798 Dec 1999 DE
19951145 May 2001 DE
10236691 Feb 2004 DE
102007055745 Jul 2008 DE
0667127 Aug 1995 EP
0669109 Aug 1995 EP
06689109 Aug 1995 EP
0677277 Oct 1995 EP
0885598 Dec 1998 EP
1121902 Aug 2001 EP
1190678 Mar 2002 EP
1570795 Sep 2005 EP
1579816 Sep 2005 EP
1634537 Mar 2006 EP
2468198 Dec 2010 EP
2380513 Oct 2011 EP
2717370 Sep 1995 FR
2718946 Oct 1995 FR
2729291 Jul 1996 FR
2796545 Jan 2001 FR
2799949 Apr 2001 FR
2814936 Apr 2002 FR
2856578 Jun 2003 FR
2865373 Jan 2004 FR
2865375 Jan 2004 FR
2865377 Jan 2004 FR
2846223 Apr 2004 FR
2857850 Apr 2004 FR
2865378 Oct 2004 FR
1519139 Jul 1978 GB
2365345 Feb 2002 GB
2382304 May 2003 GB
10277070 Oct 1998 JP
2000325358 Mar 2000 JP
313538 Oct 1971 SU
WO9203100 Mar 1992 WO
WO9410927 May 1994 WO
WO9426191 Nov 1994 WO
WO9641582 Dec 1996 WO
WO200145576 Jun 2001 WO
WO2001045576 Jun 2001 WO
WO2002054966 Jul 2002 WO
WO2002102259 Dec 2002 WO
WO2003026523 Apr 2003 WO
WO2003068088 Aug 2003 WO
WO2004041100 May 2004 WO
WO2004075778 Sep 2004 WO
WO2004089245 Oct 2004 WO
WO2004107997 Dec 2004 WO
WO2005000136 Jan 2005 WO
WO2005000137 Jan 2005 WO
WO2005020829 Mar 2005 WO
WO2005065374 Jul 2005 WO
WO2005065375 Jul 2005 WO
WO2005072632 Aug 2005 WO
WO2005082262 Sep 2005 WO
WO2005099400 Oct 2005 WO
WO2005104969 Nov 2005 WO
WO2006005198 Jan 2006 WO
WO2006012088 Feb 2006 WO
WO2006017616 Feb 2006 WO
WO2006020530 Feb 2006 WO
WO2006028537 Mar 2006 WO
WO2006045094 Apr 2006 WO
WO2006086537 Aug 2006 WO
WO2006116662 Nov 2006 WO
WO2006119241 Nov 2006 WO
WO2007002409 Jan 2007 WO
WO2007118045 Oct 2007 WO
WO2007124222 Nov 2007 WO
WO2007130835 Nov 2007 WO
WO2007130840 Nov 2007 WO
WO2007130941 Nov 2007 WO
WO2008045210 Apr 2008 WO
WO2008069420 Jun 2008 WO
WO2008088990 Jul 2008 WO
WO2008089075 Jul 2008 WO
WO2008140756 Nov 2008 WO
WO2005013839 Feb 2009 WO
WO2009036541 Mar 2009 WO
WO2010018316 Feb 2010 WO
WO2010018317 Feb 2010 WO
WO2010019704 Feb 2010 WO
WO2010019857 Feb 2010 WO
Non-Patent Literature Citations (28)
Entry
G9202745.8, Apr. 30, 1992, Hauck, et al.
Brochure of Sofamor Danek the Spine Specialist, TSRH, Pedicle Screw Spinal System, Publication Date: Jan. 23, 1995.
Brochure of Spinal Concepts, an Abbott Laboratories Company, Pathfinder, Minimally Invasive Pedicle Fixation System, Publication Date: Nov. 2003.
Brochure of Spinal Concepts, InCompass, Thoracolumbar Fixation System, Publication Date: Oct. 2003.
Brochure of Spinal Concepts, Pathfinder, Minimally Invasive Pedicle Fixation System, Publication Date: May 2003.
Brochure of Spinal Concepts, Surgical Technique, InCompass, Thoracolumbar Fixation System, Publication Date: Oct. 2003.
Brochure of SpineLine, Current Concepts, Minimally Invasive Posterior Spinal Decompression and Fusion Procedures, Publication Date: Sep./Oct. 2003.
Brochure of Tyco/Healthcare/Surgical Dynamics on Spiral Radius 90D, Publication Date: Sep. 2001, pp. 1-8.
Brochure of Zimmer Spine, Inc., Dynesys® LIS Less Invasive Surgery, The Dynamic Stabilization System, Publication Date: 2005.
CD Horizon M8 Multi Axial Screw Spinal System Brochure, Medtronic Sofamor Danek, no publish date.
Claris Instrumentation Brochure, G Med, pub. 1997.
Contour Spinal System Brochure, Ortho Development, no publish date.
EBI Omega 21 Brochure, EBI Spine Systems, pub. 1999.
SDRS Surgical Dynamics Rod System Brochure, Surgical Dynamics, pub. 1998-99.
Silhouette Spinal Fixation System Brochure, Sulzer Medica Spine-Tech, no publish date.
Spine, Lipcott, Williams & Wilkins, Inc. vol. 24, No. 15, p. 1495.
The Moss Miami 6.0mm System Advertisement, author unknown, no publish date.
The Rod Plate System Brochure, Stryker Howmedica Osteonics, pub. Oct. 1999.
The Strength of Innovation Advertisement, Blackstone Medical Inc., no publish date.
Versalok Low Back Fixation System Brochure, Wright Medical Technology, Inc., pub. 1997.
VLS System Variable Locking Screw Brochure, Interpore Cross International, 1999.
Xia Spinal System Brochure, Stryker Howmedica Osteonics, no publish date.
Overlap. Merriam-Webster. accessed Apr. 13, 2015 http://www.merriam-webster.com/dictionary/overlap.
U.S. Appl. No. 15/883,794, filed Jan. 30, 2018, Jackson.
U.S. Appl. No. 15/918,181, filed Mar. 12, 2018, Jackson.
U.S. Appl. No. 15/852,866, filed Dec. 22, 2017, Jackson et al.
U.S. Appl. No. 15/835,216, filed Dec. 7, 2017, Jackson et al.
U.S. Appl. No. 15/943,257, filed Apr. 2, 2018, Jackson.
Related Publications (1)
Number Date Country
20120221054 A1 Aug 2012 US
Provisional Applications (13)
Number Date Country
61518421 May 2011 US
61463037 Feb 2011 US
61400504 Jul 2010 US
61403915 Sep 2010 US
61268708 Jun 2009 US
61270754 Jul 2009 US
61336911 Jan 2010 US
61395564 May 2010 US
61395752 May 2010 US
61396390 May 2010 US
60927111 May 2007 US
61192312 Sep 2008 US
61210058 Mar 2009 US
Continuation in Parts (6)
Number Date Country
Parent 13385212 Feb 2012 US
Child 13506657 US
Parent 13136331 Jul 2011 US
Child 13385212 US
Parent 12802849 Jun 2010 US
Child 13136331 US
Parent 12148465 Apr 2008 US
Child 12802849 US
Parent 12584980 Sep 2009 US
Child 12148465 US
Parent 12661042 Mar 2010 US
Child 12584980 US