1. Technical Field
The exemplary disclosure generally relates to control circuits, and particularly to a time control circuit for direct current (DC) power supply which allows a gradual application of electrical power.
2. Description of Related Art
A DC power supply experiences an extremely large transient current at a time when the DC power supply turns on. A soft-start circuit is usually connected to an input terminal of the DC power supply to prevent the DC power supply from being damaged by the large transient current. When the DC power supply works as input power of a test circuit, the test circuit usually has a particular need for a soft-start of the DC power supply. If the soft-starting time of the DC power supply does not match the requirement of test circuit, performance of the test circuit will be affected.
Therefore, there is room for improvement within the art.
Many aspects of the embodiments can be better understood with reference to the drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the disclosure.
The controller 10 is electronically connected to the digital potentiometer 30, the input unit 40, and the display 50. The controller 10 receives the desired value of the soft-start time of the DC power supply 200, displays the desired value on the display 50, and regulates resistance of the digital potentiometer 30 which is connected to the first drive circuit 20 according to a value of the desired soft-start time.
The first driver 21 outputs a drive current to switch on the first MOSFET M1. The first driver 21 includes an enable pin EN, a power pin VCC, a current detection pin SENSE, a drive pin GATE, and an output pin OUT. The enable pin EN is electronically connected between the first and second voltage dividing resistors R2 and R3; the power pin VCC and the current detection pin SENSE are electronically connected to the two terminals of the first current detection resistor R1; the drive pin GATE is electronically connected to the gate g1 of the first MOSFET M1 via the digital potentiometer 30; and the output pin OUT is electronically connected to a node between the source s1 of the first MOSFET M1 and the filtering capacitor C3. The current detection pin SENSE of the first driver 21 cooperates with the first current detection resistor R1 to detecting an output current of the DC power supply 200. A node between the digital potentiometer 30 and the gate g1 of the first MOSFET M1 is grounded via the first charge capacitor C1.
The digital potentiometer 30 includes a clock pin SCL, a date pin SDA, two wiper pins VW0 and VW1, two first connection pins VH0 and VH1, two second connection pins VL0 and VL1, and four address pins A0-A3. The mode of connecting the clock pin SCL, the data pin SDA, and the address pins A0-A3 to the controller 10 is well-known, thus the connection circuits between the clock pin SCL, the data pin SDA, the address pins A0-A3 and the controller 10 are not shown in
When the DC power supply 200 is switched on, the enable pin EN of the first driver 21 switches to high to enable the first driver 21. The first driver 21 outputs current from the drive pin GATE to charge the first charge capacitor C1 via the first potentiometer of the digital potentiometer 30. The voltage of the first charge capacitor C1 is increased as the first drive 21 charges the first charge capacitor C1, until the first MOSFET M1 is switched on. In the exemplary embodiment, when the first charge capacitor C1 is fully charged, a voltage on the first charge capacitor C1 drives the first MOSFET M1 to switch on, and the output voltage Vout of the DC power supply 200 is output through the first MOSFET M1. A charge time constant T1 of the first charge capacitor C1 can be calculated by a formula: T1=R*C, where R is a resistance of the digital potentiometer 30, and C is a capacitance of the first charge capacitor C1. The first charge capacitor C1 is fully charged when a charge time of the first capacitor C1 reaches to the charge time constant T1. That is, the charge time constant T1 is the soft-start time of the DC power supply 200. When the charge time constant T1 of the first charge capacitor C1 is changed, that is, when a charge speed of the first charge capacitor C1 is changed, a switch-off duration of the first MOSFET M1 will be changed accordingly. Thus, in use, the controller 10 calculates a resistance R according to different soft-start times input by the input unit 40 and the formula T1=R*C, and regulates the resistance of the first potentiometer of the digital potentiometer 30, thereby controlling the soft-start time of the DC power supply 200.
In the exemplary embodiment, the output voltage Vout range of the DC power supply 200 is 2.5V-80V. Since an input voltage of the first driver 21 in the exemplary embodiment is in a range of 2.5V-18V, thus when an input voltage of the first driver 21 is higher than 18V, the first driver 21 is unable to work. Thus, in one embodiment, the soft-time control circuit 100 further includes a second drive circuit 60, a first gating circuit 70, and a second gating circuit 80.
The second driver 61 outputs current to charge the second charge capacitor C4 via the digital potentiometer 30, and when the second charge capacitor C4 is fully charged, the second MOSFET M2 is switched on, and the output voltage Vout of the DC power supply 200 is output via the second MOSFET M2. A charge time constant T2 of the second charge capacitor C4 is calculated by a formula: T2=R*C, where R is a resistance of the digital potentiometer 30, and C is a capacitance of the second charge capacitor C4. The second charge capacitor C4 is fully charged when a charge time of the second capacitor C4 reaches the charge time constant T2.
The first gating circuit 70 includes a relay K1. The relay K1 includes a first control terminal 1, a second control terminal 2, an input terminal 3, an output terminal 4, and a coil L electronically connected between the first and second control terminals 1 and 2. The controller 10 includes a first control pin P1 and a second control pin P2. The first control terminal 1 of the relay K1 is electronically connected to the first control pin P1; the second control terminal 2 is grounded; the input terminal 3 is electronically connected to the DC power supply 200, and the output terminal 4 is electronically connected to the first drive circuit 20. The controller 10 switches the relay K1 to make the electric connection between the DC power supply 200 and the first drive circuit 20.
In detail, the first gating circuit 70 further includes a common emitter NPN type bipolar junction transistor (BJT) Q1, a common emitter PNP type BJT Q2, a first biasing circuit (not labeled), a second biasing circuit (not labeled), a discharge diode D1, and a filtering capacitor C7. An input of the common emitter NPN type BJT Q1 is electronically connected to the controller 10, an output of the BJT Q1 is electronically connected to an input of the common emitter PNP type BJT Q2, and an emitter e1 of the BJT Q1 is grounded. An output of the BJT Q2 is electronically connected to the first control terminal 1 of the relay K1 via a resistor R12, and an emitter e2 of the BJT Q2 is electronically connected to a power supply, such as a +5V power supply for example. The first biasing circuit includes two resistors R8 and R9 connected in series between the first control pin P1 of the controller 10 and ground. A base b1 of the BJT Q1 is electronically connected to a node between the two resistors R8 and R9. The second biasing circuit includes two resistors R10 and R11 connected in series between the +5V power supply and a collector cl of the BJT Q1. A base b2 of the BJT Q2 is electronically connected to a node between the two resistors R10 and R11. The filtering capacitor C7 is electronically connected between the +5V power supply and ground. An anode of the discharge diode D1 is electronically connected to the first control terminal 1 of the relay K1, and a cathode of the discharge diode D1 is electronically connected to the second control terminal 2 of the relay K1; the discharge diode D1 discharges the coil L when the relay K1 is opened.
When the controller 10 outputs a high voltage signal (e.g. logic 1) to the base b1 of the BJT Q1, the BJT Q1 is switched on, and the BJT Q2 is also switched on. At this time, a current output from the +5V power supply flows to the coil L via the BJT Q2, to drive the input terminal 3 to connect to the output terminal 4, thereby connecting the DC power supply 200 to the first drive circuit 20. Alternatively, when the controller 10 outputs a low voltage signal (e.g. logic 0) to the base b1 of the BJT Q1, the BJT Q1 is switched off, and the BJT Q2 is also switched off. At this time, the coil L of the relay K1 is disconnected from the +5V power supply, and the input terminal 3 is disconnected from the output terminal 4, thereby disconnecting the DC power supply 200 from the first drive circuit 20.
The second gating circuit 80 has the same components and electronic connections relationship as the components and electronic connections relationship of the first gating circuit 70, and differs from the first gating circuit 70 only in that the output terminal 4 of the relay K1 of the second gating circuit 80 is electronically connected the second drive circuit 60, and the base b1 of the BJT Q3 of the second gating circuit 80 is electronically connected to a second control pin P2 of the controller 10.
In use, the working process of the soft-start time control circuit 10 can be carried out by, but is not limited to the following steps. The input unit 40 inputs the desired soft-start time and the value of the output voltage Vout of the DC power supply 200 to the controller 10. The controller 10 determines whether the output voltage Vout of the DC power supply 200 is in the first range or in the second range. If the output voltage Vout is in the first range, the controller 10 calculates the resistance of the first potentiometer of the digital potentiometer 30 according to the soft-start time and the capacitance of the first charge capacitor C1, and regulates the first potentiometer to the calculated resistance. After that, the controller 10 closes the relay K1 of the first gating circuit 70, and opens the relay K1 of the second gating circuit 80. Such that, when the first capacitor C1 is fully charged, the output voltage Vout of the DC power supply 100 is output to the load via the first gating circuit 70 and the first drive circuit 20. Alternatively, if the output voltage Vout is in the second range, the controller 10 calculates the resistance of the second potentiometer of the digital potentiometer 30 according to the soft-start time and the capacitance of the second charge capacitor C2, and regulates the second potentiometer to the calculated resistance. After that, the controller 10 closes the relay K1 of the second gating circuit 80, and opens the relay K1 of the first gating circuit 70. Such that, when the second charge capacitor C2 is fully charged, the output voltage Vout of the DC power supply 100 is output to the load via the second gating circuit 80 and the second drive circuit 60.
It is believed that the exemplary embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201210109805.0 | Apr 2012 | CN | national |