The present invention relates to a top cover for a soft throttling valve body, the top cover comprising one or more fluid conduits for transferring a pilot fluid flow to the soft throttling valve body, the pilot fluid flow being transferred for setting a degree of opening of a main valve situated in the soft throttling valve body.
Furthermore, the present invention relates to a soft throttling valve comprising an inlet, an outlet, and the main valve having a valve seat between said inlet and said outlet, wherein the soft throttling valve is arranged for throttling the main valve in such a way that a pressure shock is reduced.
Additionally the present invention relates to a method for throttling the main valve of the soft throttling valve.
US 2006/0197041 A1 relates to a dual position pilot operated valve assembly. It is disclosed that said assembly comprises an adjustment mechanism controlling the degree of opening/closing of the valve assembly. The utilization of the dual position pilot operated valve assembly, by a reason of its opening and/or closing only part way, prevents or at least mitigates liquid hammer or vapor propelled liquid at the termination of a hot gas defrost step in a refrigeration cycle operation.
WO 2011/063375 A1 shows an adjustable fail-safe suction valve stop. This valve provides for hot gas defrost in refrigeration applications. Said valve includes a second piston reciprocable within a bore in an adapter body, the second piston having a portion adapted to extend into a bore in the valve body for contacting a first piston. The portion of the second piston may be axially adjustable to optimize the partial opening of the valve when the second piston is pushed fully downward towards the first piston.
U.S. Pat. No. 5,070,707 discloses a shockless system and hot gas valve for refrigeration and air conditioning. The shockless defrost valve operated by solenoids is automatically self-controlled by the downstream pressure of the valve. When a valve opening is called for, a pilot solenoid valve opens a regulatory passage. The resistance of the regulatory passage to the hot gas flow reduces the pressure gradient of the flow and thus eliminates the possibility of a shock wave being propagated. When the downstream pressure due to the outlet pressure control of the evaporator increases to a preset value, a diaphragm driven by the control pressure from downstream moves and opens a passage for the gas from upstream of the valve to drive a power piston downward.
It is a known issue that an exact control of the degree of opening of the main valve in the soft throttling valve can be difficult. Sometimes such a control system for the pilot fluid flow may comprise many elements and thus may become complex and expensive. Thus, the control over the pilot fluid flow for setting the degree of opening of the main valve may be inadequate.
It is an object of the invention to provide the top cover for the soft throttling valve body, the soft throttling valve and the method for throttling main valve of the soft throttling valve which allow for a good control of the pilot fluid flow for setting the degree of opening of the main valve situated in the soft throttling valve body.
The object of the invention is solved by the top cover for the soft throttling valve body, the top cover comprising one or more fluid conduits for transferring the pilot fluid flow to the soft throttling valve body, the pilot fluid flow being transferred for setting the degree of opening of the main valve situated in the soft throttling valve body, characterized in that the top cover comprises a follower arrangement arranged to throttle the pilot fluid flow, the follower arrangement being arranged to throttle the pilot fluid flow depending on the degree of opening of the main valve.
Furthermore, the object of the invention is solved by the soft throttling valve comprising the inlet, the outlet, and the main valve having the main valve seat between said inlet and said outlet, wherein the soft throttling valve is arranged for throttling the main valve in such a way that the pressure shock is reduced, characterized in that the soft throttling valve comprises the follower arrangement arranged to throttle the pilot fluid flow for setting the degree of opening of the main valve in order to allow the soft throttling of the main valve, the throttling of the pilot fluid flow depending on the degree of opening of the main valve.
Additionally, the object of the invention is solved by the method for throttling the main valve of the soft throttling valve, the method comprising the step of throttling the pilot fluid flow for the main valve by means of the follower arrangement in order to set the degree of opening of the main valve during a throttling process of the main valve, the throttling of the pilot fluid flow depending on the degree of opening of the main valve, so as to allow for the soft throttling process of the main valve.
Using the follower arrangement has the advantage that the pilot fluid flow may be automatically reduced when the degree of opening of the main valve reaches a certain value. Then, due to a reduced pressure increase, a further opening of the main valve may be prevented, so that the main valve maintains a partially opened position, thus the degree of opening corresponds to between more than 0% of a maximum main fluid flow through the main valve and less than 100% of the maximum main fluid flow through the main valve. This allows to have a stepwise opening of the main valve in a soft opening process wherein in a first step only a partial opening of the main valve occurs, and wherein in a later step a full opening of the main valve occurs. Likewise, such soft throttling may be applied in a soft closing process wherein in a first step a partial closure to the partial opening of the main valve occurs and in a second step a full closure of the main valve occurs.
Thus, by means of the invention good control over the degree of opening of the main valve of the soft throttling valve may be achieved.
Concerning the top cover it is preferred that the follower arrangement comprises a biasing element and a follower element, the biasing element biasing the follower element so as to reduce the pilot fluid flow through the top cover. This allows to bias the follower element towards a position in which for example the pilot fluid flow through the follower arrangement is so much reduced that the further opening of the main valve is effectively prevented. It is preferred that the biasing element biases the follower element in a position in which the pilot fluid flow through the follower arrangement is completely stopped. In some embodiments of the invention though the pilot fluid flow is preferably just reduced in that position, preferably by more than 50%, more preferably by more than 70%, more preferably by more than 90%, and most preferably by more than 95% compared to a maximum pilot fluid flow through the follower arrangement. Thus, a very limited pilot fluid flow may still be allowed even if the biasing element significantly reduces the pilot fluid flow depending on the degree of opening of the main valve. Then a very slow continuous throttling process of the main valve is possible.
In the top cover it is preferred that the follower arrangement has an orifice and the follower arrangement is arranged to reduce the pilot fluid flow through the orifice. Thus, the orifice is used as a duct for supplying the pilot fluid flow towards the main valve to control the degree of opening of the main valve. When the follower arrangement follows a movement of a main valve element during the opening process or the closing process it may gradually or instantaneously reduce the pilot fluid flow through the orifice. In some embodiments the follower arrangement is arranged to reduce the pilot fluid flow through the orifice instantaneously, for example when the main valve reaches a predetermined degree of opening. By this a sudden stop of the movement of the main valve element during the opening process or the closing process becomes possible. It is preferred that the follower element has a surface which cooperates with the orifice in order to reduce the pilot fluid flow. Preferably, the follower element covers the orifice in a closed position of the follower arrangement in order to reduce or stop the pilot fluid flow through the orifice. For example, this may happen by the surface present at the follower element. It is preferred that the pilot fluid flow passes through the orifice in general in a direction parallel to a movement direction of the follower element. It is preferred that the movement direction of the follower element is parallel to the movement direction of the main valve element of the main valve. Thus, a direct pilot fluid flow from the top cover towards the main valve is possible through the orifice.
In a preferred embodiment of the top cover, the biasing element biases the follower element towards the orifice. This is a preferred way of interaction between the biasing element, the follower element and the orifice. Thus, the orifice may be partially or totally blocked depending only on a force exerted by the biasing element and the movement of the main valve element which corresponds to a change in the degree of opening of the main valve. By that, the effect of the follower arrangement becomes independent from a pilot fluid pressure or other external forces which otherwise may be necessary to reduce or stop the pilot fluid flow at a predetermined degree of opening of the main valve. In other words, the follower arrangement provides a self-controlled shut down or opening of the orifice during the opening process or the closing process, respectively, of the main valve.
In a preferred embodiment of the top cover, the biasing element is a coil spring. It is also preferred that the coil spring surrounds the follower element coaxially. Of course, other types of springs which serve the same purpose may also be used. The advantage of the coil spring may be in that it can allow compact construction of the follower arrangement. It is preferred that the coil spring is seated at a surface of the follower arrangement opposite of a follower element seat which preferably comprises the orifice of the follower arrangement. By this a linear translation of the follower element towards the orifice becomes possible.
In a preferred embodiment of the top cover the follower arrangement has the follower element which is arranged to be attached to the main valve element of the main valve. Preferably the follower element has a threaded connector being connectable to the main valve element. The threaded connector furthermore allows easy replacement of the follower element. By permanently or releasably attaching the follower element to the main valve element a permanent following of the main valve element according to the degree of opening of the main valve can be ensured. In some embodiments then the biasing element is omitted.
In the top cover, it is preferred that the follower element is arranged to mechanically sense the position of the main valve. Thus, the follower arrangement may preferably be a needle follower comprising a needle. Such a construction may be provided at a low price and due to its simple design it can be very failsafe. Furthermore, a length of the needle may be set so that the predetermined degree of opening of the main valve may be reached before the pilot fluid flow is downthrottled during the opening process of the main valve. For example during the first step in the opening process of the main valve, a comparably long length of the needle may result in a larger degree of opening of the main valve while a comparably short length of the needle may result in a smaller degree of opening of the main valve as the blocking of the orifice by the follower element may occur rather late or rather early, respectively. Thus, by exchanging the needle having the shorter length with the needle having the longer length, the throttling behavior of the follower arrangement may easily be adapted in view of the desired use of the soft throttling valve. It is preferred that the needle comprises two needle sections, wherein a first needle section has a larger diameter perpendicular to a longitudinal extension of the needle element than a second section of the needle. This first section of the needle element may be used as a seat for the biasing element. Furthermore, this first section of the needle may be used to provide the surface for interacting with the orifice of the follower arrangement. It is preferred that in a biased position of the follower element the needle extends outwardly of the top cover so that it can interact with the main valve element of the soft throttling valve easily.
In a preferred embodiment of the soft throttling valve according to the invention it is preferred that the soft throttling valve comprises the biasing element and the follower element, the follower element being biased by the force exerted by the biasing element in order to follow the movement of the main valve element. The advantages and embodiments described in view of the top cover also pertain to the soft throttling valve. Thus, the biasing element may bias the follower element to a position in which the pilot fluid flow to the main valve element may be down throttled when the main valve element reaches a position in which the desired degree of opening of the main valve is established. This position of the follower element may correspond to the closed position of the follower arrangement. It is further more preferred that the soft throttling valve has a resetting spring for the main valve element. This may create a force in order to bias the main valve element to the fully closed position. Preferably the resetting spring at least partially surrounds a stem section of the main valve element.
In a preferred embodiment of the soft throttling valve the follower arrangement has the orifice and the follower element is arranged to reduce the pilot fluid flow through the orifice depending on the degree of opening of the main valve during the throttling process so that the main valve can be maintained in the partially open position during the throttling process of the main valve. It is preferred that the main valve is maintained in the partially open position for a predetermined amount of time during the opening process or the closing process of the main valve. By that, the pressure shock may be effectively prevented. For example, at the predetermined degree of opening of the main valve the follower arrangement may partially or completely reduce the pilot fluid flow through the orifice. It is preferred that at the predetermined degree of opening of the main valve the pilot fluid flow for driving the main valve is reduced to 50% of the initial pilot fluid flow through the follower arrangement. Preferably, the initial pilot fluid flow is a maximum pilot fluid flow. It is more preferred that the pilot fluid flow in such a case is reduced by more than 70%, preferably by more than 85%, preferably by more than 95%. It is most preferred that the pilot fluid flow through the orifice is completely stopped when the main valve reaches the predetermined degree of opening, preferably depending on the length of the follower element.
In a preferred embodiment of the soft throttling valve the biasing element biases the follower element towards the orifice. As explained in view of the top cover this allows for self-controlled throttling of the pilot fluid flow depending only on the force exerted by the biasing element and the degree of opening of the main valve whose main valve element is preferably followed by the follower arrangement. It is preferred that the biasing element biases the follower element towards the orifice so that the first section of the follower element partially or completely blocks the orifice when the predetermined degree of opening of the main valve is reached.
In a preferred embodiment of the soft throttling valve, the follower element is attached to the main valve element, preferably via a threaded connection. In such embodiments the biasing element may be omitted as due to the needle being fixed to the main valve element a permanent following is ensured. In order to ensure that the needle can move sufficiently and still control the flow it is preferred that the needle may have a reduced cross section over part of its length and a cross section that does effective not allow flow over the remainder of the length of the needle, but the cross section still allows the needle to move with the main valve element. This arrangement may be more fail-safe than the follower arrangement with the biasing element.
It is preferred, in an embodiment of the soft throttling valve, that the follower element is arranged to mechanically sense the position of the main valve. Preferably the follower arrangement is the needle follower comprising the needle. The advantages discussed in view of the top cover comprising the follower arrangement also apply in this case. Having the needle as the follower element allows for a simple, dependable and flexible solution.
For the soft throttling valve, it is preferred that the soft throttling valve comprises the soft throttling valve body and the top cover, the top cover being preferably the top cover according to any of the claims 1 to 6. By having the follower arrangement in the top cover the soft throttling valve body may easily be provided with a new top cover comprising the needle of a different length or replacing older types of pilot fluid flow throttling designs. It is preferred that the main valve is situated in the soft throttling valve body. It is furthermore preferred that the top cover comprises controlling valves, preferably solenoid valves, for activating or deactivating the pilot fluid flow through the soft throttling valve. Preferably, there are two solenoid valves for this purpose. It is furthermore preferred that the pilot fluid flow is taken from a main fluid flow before the main fluid passes through the main valve. In other embodiments the pilot fluid flow may also be from a fluid flow different from that to be throttled by the main valve, thus not transferring through the main valve. A preferred fluid is a gas, even more preferred a hot gas, preferably at a temperature above 100° C. This allows for reliable deicing in a refrigeration system.
In a method according to the invention it is preferred that the follower arrangement comprises the orifice and the follower element, the follower element reducing the pilot fluid flow through the orifice when the main valve reaches the predetermined degree of opening. For example, during the opening process of the main valve, when the main valve reaches the predetermined degree of opening, the pilot fluid flow may be reduced or completely stopped in order to maintain the main valve in the partially opened position. It is preferred that the predetermined degree of opening of the main valve at which the follower arrangement throttles the pilot fluid flow corresponds to less than 10% of the maximum main fluid flow through the main valve, preferably to less than 20%, preferably to less than 40%, preferably to less than 60%, and most preferably to less than 75%. On the other hand, it is preferred that the predetermined degree of opening of the main valve at which the follower arrangement throttles the pilot fluid flow is larger than 5% of the maximum degree of opening of the main valve, preferably more than 15%, preferably more than 35%, preferably more than 55% and preferably more than 65%. Such values allow for a controlled first step of opening or closing the main valve in order to prevent pressure shock. For example, the predetermined degree of opening amounts to 14% of the maximum degree of opening of the main valve. Preferably, in the second step of opening, the main valve is set to 100% of opening. Preferably the switching between the first step with a limited degree of opening and the second step with a complete opening of the main valve corresponds to a sudden increase of main flow. Thus preferably the pilot fluid flow driving the main valve element can be suddenly increased or decreased to open or close the main valve immediately.
In the method according to the invention it is preferred that reducing the pilot fluid flow through the orifice comprises blocking the orifice by the follower element in order to stop the pilot fluid flow through the orifice when the main valve reaches the predetermined degree of opening. By that a sudden stop of the movement of the main valve is possible. Blocking in this sense means basically closing the orifice in order to reduce the pilot fluid flow to approximately 0% of the maximum possible pilot fluid flow through the follower arrangement.
In the following the invention is described in view of exemplary embodiments provided in the attached figures, in which:
Reference numerals are introduced into the detailed description of embodiments following hereafter. They are meant for increasing the readability of the claims and are in no way limiting.
Referring now to
As can be seen in
The mechanical design as described before may lead to a time-flow-dependency as shown in
When the main valve shall be closed this can also be done in two steps as also illustrated in
As the pressure increases in section P3, the top plate section 12 is translated further downwards, thus also translating downwards the stem section 11 and the throttling section 10 of the main valve. As depicted in
After this first step of opening the second step of opening occurs as is illustrated in
For closing the main valve an inversed approach may be taken so that in a first step the partial opening, thus partial closing, of the main valve is maintained. To achieve this, the second solenoid valve (Sol 2, 7b) is de-energized while the first solenoid valve (Sol 1, 7a) is kept energized, thus opened. By later de-energizing the first solenoid valve 7a, the needle can be further translated against the biasing force exerted by the biasing element 15 by the force provided by the resetting spring 20 of the main valve element 9 so that finally the degree of opening of 0% of the maximum opening of the main valve is established. In order to allow that pilot fluid may bleed from the pressure chamber 19 to the outlet 5, the top plate section 12 comprises, as shown in the perspective chosen for
Thus, the invention allows throttling the pilot fluid flow for the main valve by means of the follower arrangement 8 in order to set the degree of opening of the main valve during the throttling process of the main valve, the throttling of the pilot fluid flow depending on the degree of opening of the main valve, so as to allow for the soft throttling process of the main valve. As can be seen, soft throttling is possible during the opening process and the closing process of the main valve while in some embodiments soft throttling may be only embodied at the opening process or the closing process. Soft throttling becomes possible as the follower arrangement 8 comprises the orifice 17 and the follower element 13, the follower element 13 reducing the pilot fluid flow through the orifice 17 when the main valve reaches a predetermined degree of opening. Specifically, the pilot fluid flow through the orifice 17 is controlled by the follower element 13 in order to reduce the pilot fluid flow being transferred through the orifice 17.
As illustrated the present invention allows the top cover 3 for the soft throttling valve 1 to provide good control of throttling the main valve in order to prevent pressure shock. As opening and/or closing of the main valve may for example be performed in a two-step manner, sudden pressure increase or decrease in the refrigeration system during defrosting may be prevented. It may be a special advantage of the invention to use the self-controlled throttling of the main valve element 9 in the first step of throttling the main valve.
While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
1215/DEL/2015 | Apr 2015 | IN | national |
This application is a National Stage application of International Patent Application No. PCT/EP2016/054303, filed on Mar. 1, 2016, which claims priority to Indian Patent Application No. 1215/DEL/2015, filed on Apr. 30, 2015, each of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/054303 | 3/1/2016 | WO | 00 |