The present invention is directed to tissue, and in particular to a multilayer tissue including wet end additives.
According to conventional tissue-making processes, a slurry of pulp mixture is fed to a headbox, where the mixture is laid onto a forming surface so as to form a web. The web is then dried using pressure and/or heat to form the finished tissue. Prior to drying, the pulp mixture is considered to be in the “wet end” of the tissue making process. Additives may be used in the wet end to impart a particular attribute or chemical state to the tissue. However, using additives in the wet end has some disadvantages. For example, a large amount of additive may be required in the pulp mixture to achieve the desired effect on the finished tissue, which in turn leads to increased cost and, in the case of wet end additive debonder, may actually reduce the tissue strength. In order to avoid drawbacks associated with wet end additives, agents, such as softeners, have been added topically after web formation.
The tissue web may be dried by transferring the web to a forming surface and then directing a flow of heated air onto the web. This process is known as through air drying (TAD). While topical softeners have been used in combination with through air dried tissue, the resulting products have had a tamped down or flattened surface profile. The flattened surface profile in turn hinders the cleaning ability of the tissue and limits the overall effectiveness of the softener.
An object of the present invention is to provide a tissue manufacturing method that uses through air drying without compromising softness and cleaning ability of the resulting tissue.
Another object of the present invention is to provide a tissue manufacturing method that avoids the disadvantages associated with wet end additives, and in particular avoids the use of a large amount of additive to achieve the desired effect on the resulting tissue.
A multi-layer through air dried tissue according to an exemplary embodiment of the present invention comprises a first exterior layer, an interior layer and a second exterior layer. The interior layer includes a first wet end additive comprising an ionic surfactant and a second wet end additive comprising a non-ionic surfactant.
A multi-layer through air dried tissue according to another exemplary embodiment of the present invention comprises a first exterior layer comprised substantially of hardwood fibers, an interior layer comprised substantially of softwood fibers, and a second exterior layer comprised substantially of hardwood fibers. The interior layer includes a first wet end additive comprising an ionic surfactant and a second wet end additive comprising a non-ionic surfactant.
In at least one exemplary embodiment, the first exterior layer further comprises a wet end temporary wet strength additive.
In at least one exemplary embodiment, the first exterior layer further comprises a wet end dry strength additive.
In at least one exemplary embodiment, the second exterior layer further comprises a wet end dry strength additive.
In at least one exemplary embodiment, the second wet end additive comprises an ethoxylated vegetable oil.
In at least one exemplary embodiment, the second wet end additive comprises a combination of ethoxylated vegetable oils.
In at least one exemplary embodiment, the ratio by weight of the second wet end additive to the first wet end additive in the tissue is at least eight to one.
In at least one exemplary embodiment, the ratio by weight of the second wet end additive to the first wet end additive in the first interior layer is at most ninety to one.
In at least one exemplary embodiment, the tissue has a softness (hand feel) of at least 90.
In at least one exemplary embodiment, the tissue has a bulk softness of less than 10 TS7.
In at least one exemplary embodiment, the ionic surfactant comprises a debonder.
In at least one exemplary embodiment, the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a basis weight of less than 25 gsm.
In at least one exemplary embodiment, the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a caliper of less than 650 microns.
In at least one exemplary embodiment, the wet end temporary wet strength additive comprises glyoxalated polyacrylamide.
In at least one exemplary embodiment, the wet end dry strength additive comprises amphoteric starch.
In at least one exemplary embodiment, the first exterior layer further comprises a dry strength additive.
In at least one exemplary embodiment, the first and second exterior layers are substantially free of any surface deposited softener agents or lotions.
In at least one exemplary embodiment, at least one of the first or second exterior layers comprises a surface deposited softener agent or lotion.
In at least one exemplary embodiment, the tissue has a softness of at least 95.
In at least one exemplary embodiment, the non-ionic surfactant has a hydrophilic-lipophilic balance of less than 10, and preferably less than 8.5.
In at least one exemplary embodiment, the tissue may have a softness of at least 95.
In at least one exemplary embodiment, the first exterior layer is comprised of at least 75% by weight of hardwood fibers.
In at least one exemplary embodiment, the interior layer is comprised of at least 75% by weight of softwood fibers.
Other features and advantages of embodiments of the invention will become readily apparent from the following detailed description, the accompanying drawings and the appended claims.
Exemplary embodiments of the present invention will be described with references to the accompanying figures, wherein:
The present invention is directed to a soft tissue made with a combination of a wet end added ionic surfactant and a wet end added nonionic surfactant. The tissue may be made up of a number of layers, including exterior layers and an interior layer. In at least one exemplary embodiment, pulp mixes for each tissue layer are prepared individually.
Pulp mixes for exterior layers of the tissue are prepared with a blend of primarily hardwood fibers. For example, the pulp mix for at least one exterior layer is a blend containing about 70 percent or greater hardwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for at least one exterior layer is a blend containing about 90-100 percent hardwood fibers relative to the total percentage of fibers that make up the blend.
Pulp mixes for the interior layer of the tissue are prepared with a blend of primarily softwood fibers. For example, the pulp mix for the interior layer is a blend containing about 70 percent or greater softwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for the interior layer is a blend containing about 90-100 percent softwood fibers relative to the total percentage of fibers that make up the blend.
As known in the art, pulp mixes are subjected to a dilution stage in which water is added to the mixes so as to form a slurry. After the dilution stage but prior to reaching the headbox, each of the pulp mixes are dewatered to obtain a thick stock of about 95% water. In an exemplary embodiment of the invention, wet end additives are introduced into the thick stock pulp mixes of at least the interior layer. In an exemplary embodiment, a non-ionic surfactant and an ionic surfactant are added to the pulp mix for the interior layer. Suitable non-ionic surfactants have a hydrophilic-lipophilic balance of less than 10, and preferably less than or equal to 8.5. An exemplary non-ionic surfactant is an ethoxylated vegetable oil or a combination of two or more ethoxylated vegetable oils. Other exemplary non-ionic surfactants include ethylene oxide, propylene oxide adducts of fatty alcohols, alkylglycoside esters, and alkylethoxylated esters.
Suitable ionic surfactants include but are not limited to quaternary amines and cationic phospholipids. An exemplary ionic surfactant is 1,2-di(heptadecyl)-3-methyl-4,5-dihydroimidazol-3-ium methyl sulfate. Other exemplary ionic surfactants include (2-hydroxyethyl)methylbis[2-[(1-oxooctadecyl)oxy]ethyl]ammonium methyl sulfate, fatty dialkyl amine quaternary salts, mono fatty alkyl tertiary amine salts, unsaturated fatty alkyl amine salts, linear alkyl sulfonates, alkyl-benzene sulfonates and trimethyl-3-[(1-oxooctadecyl)amino]propylammonium methyl sulfate.
In an exemplary embodiment, the ionic surfactant may function as a debonder while the non-ionic surfactant functions as a softener. Typically, the debonder operates by breaking bonds between fibers to provide flexibility, however an unwanted side effect is that the overall strength of the tissue can be reduced by excessive exposure to debonder. Typical debonders are quaternary amine compounds such as trimethyl cocoammonium chloride, trymethyloleylammonium chloride, dimethyldi(hydrogenated-tallow)ammonium chloride and trimethylstearylammonium chloride.
After being added to the interior layer, the non-ionic surfactant (functioning as a softener) migrates through the other layers of the tissue while the ionic surfactant (functioning as a debonder) stays relatively fixed within the interior layer. Since the debonder remains substantially within the interior layer of the tissue, softer hardwood fibers (that may have lacked sufficient tensile strength if treated with a debonder) can be used for the exterior layers. Further, because only the interior of the tissue is treated, less debonder is required as compared to when the whole tissue is treated with debonder.
In an exemplary embodiment, the ratio of ionic surfactant to non-ionic surfactant added to the pulp mix for the interior layer of the tissue is between 1:4 and 1:90 parts by weight and preferably about 1:8 parts by weight. In particular, when the ionic surfactant is a quaternary amine debonder, reducing the concentration relative to the amount of non-ionic surfactant can lead to an improved tissue. Excess debonder, particularly when introduced as a wet end additive, can weaken the tissue, while an insufficient amount of debonder may not provide the tissue with sufficient flexibility. Because of the migration of the non-ionic surfactant to the exterior layers of the tissue, the ratio of ionic surfactant to non-ionic surfactant in the core layer may be significantly lower in the actual tissue compared to the pulp mix.
In an exemplary embodiment, a dry strength additive is added to the thick stock mix for at least one of the exterior layers. The dry strength additive may be, for example, amphoteric starch, added in a range of about 1 to 40 kg/ton. In another exemplary embodiment, a wet strength additive is added to the thick stock mix for at least one of the exterior layers. The wet strength additive may be, for example, glyoxalated polyacrylamide, commonly known as GPAM, added in a range of about 0.25 to 5 kg/ton. In a further exemplary embodiment, both a dry strength additive, preferably amphoteric starch and a wet strength additive, preferably GPAM are added to one of the exterior layers. Without being bound by theory, it is believed that the combination of both amphoteric starch and GPAM in a single layer when added as wet end additives provides a synergistic effect with regard to strength of the finished tissue. Other exemplary temporary wet-strength agents include aldehyde functionalized cationic starch, aldehyde functionalized polyacrylamides, acrolein co-polymers and cis-hydroxyl polysachharide (guar gum and locust bean gum) used in combination with any of the above mentioned compounds.
In addition to amphoteric starch, suitable dry strength additives may include but are not limited to glyoxalated polyacrylamide, cationic starch, carboxy methyl cellulose, guar gum, locust bean gum, cationic polyacrylamide, polyvinyl alcohol, anionic polyacrylamide or a combination thereof.
After formation in the forming section 110, the partially dewatered web is transferred to the drying section 112, Within the drying the section 112, the tissue of the present invention may be dried using conventional through air drying processes. In an exemplary embodiment, the tissue of the present invention is dried to a humidity of about 7 to 20% using a through air drier manufactured by Metso Corporation, of Helsinki, Finland. In another exemplary embodiment of the invention, two or more through air drying stages are used in series. Without being bound by theory, it is believed that the use of multiple drying stages improves uniformity in the tissue, thus reducing tears.
In an exemplary embodiment, the tissue of the present invention is patterned during the through air drying process. Such patterning can be achieved through the use of a TAD fabric, such as a G-weave (Prolux 003) or M-weave (Prolux 005) TAD fabric.
After the through air drying stage, the tissue of the present invention may be further dried in a second phase using a Yankee drying drum. In an exemplary embodiment, a creping adhesive is applied to the drum prior to the tissue contacting the drum. A creping blade is then used to remove the tissue from the Yankee drying drum. The tissue may then be calendered in a subsequent stage within the calendar section 114. According to an exemplary embodiment, calendaring may be accomplished using a number of calendar rolls (not shown) that deliver a calendering pressure in the range of 0-100 pounds per linear inch (PLI). In general, increased calendering pressure is associated with reduced caliper and a smoother tissue surface.
According to an exemplary embodiment of the invention, a ceramic coated creping blade is used to remove the tissue from the Yankee drying drum. Ceramic coated creping blades result in reduced adhesive build up and aid in achieving higher run speeds. Without being bound by theory, it is believed that the ceramic coating of the creping blades provides a less adhesive surface than metal creping blades and is more resistant to edge wear that can lead to localized spots of adhesive accumulation. The ceramic creping blades allow for a greater amount of creping adhesive to be used which in turn provides improved sheet integrity and faster run speeds.
In addition to the use of wet end additives, the tissue of the present invention may also be treated with topical or surface deposited additives. Examples of surface deposited additives include softeners for increasing fiber softness and skin lotions. Examples of topical softeners include but are not limited to quaternary ammonium compounds, including, but not limited to, the dialkyldimethylammonium salts (e.g. ditallowdimethylammonium chloride, ditallowdimethylammonium methyl sulfate, di(hydrogenated tallow)dimethyl ammonium chloride, etc.). Another class of chemical softening agents include the well-known organo-reactive polydimethyl siloxane ingredients, including amino functional polydimethyl siloxane. zinc stearate, aluminum stearate, sodium stearate, calcium stearate, magnesium stearate, spermaceti, and steryl oil.
The below discussed values for softness (i.e., hand feel (HF)), caliper and tensile strength of the inventive tissue were determined using the following test procedures:
Softness Testing
Softness of a tissue sheet was determined using a Tissue Softness Analyzer (TSA), available from emtec Electronic GmbH of Leipzig, Germany. A punch was used to cut out three 100 cm2 round samples from the sheet. One of the samples was loaded into the TSA with the yankee side facing up. The sample was clamped in place and the TPII algorithm was selected from the list of available softness testing algorithms displayed by the TSA. After inputting parameters for the sample, the TSA measurement program was run. The test process was repeated for the remaining samples and the results for all the samples were averaged.
Caliper Testing
A Thwing-Albert ProGage 100 Thickness Tester, manufactured by Thwing Albert of West Berlin, N.J. was used for the caliper test. Eight 100 mm×100 mm square samples were cut from a base sheet. Each sample was folded over on itself, with the rougher layer, typically corresponding air layer facing itself. The samples were then tested individually and the results were averaged to obtain a caliper result for the base sheet.
Tensile Strength Testing
An Instron 3343 tensile tester, manufactured by Instron of Norwood, Mass., with a 100N load cell and 25.4 mm rubber coated jaw faces was used for tensile strength measurement. Prior to measurement, the Instron 3343 tensile tester was calibrated. After calibration, 8 strips, each one inch by eight inches, were provided as samples for testing. One of the sample strips was placed in between the upper jaw faces and clamp, and then between the lower jaw faces and clamp. A tensile test was run on the sample strip. The test procedure was repeated until all the samples were tested. The values obtained for the eight sample strips were averaged to determine the tensile strength of the tissue.
Tissue according to exemplary embodiments of the present invention has an improved softness as compared to conventional tissue. Specifically, the tissue of the present invention may have a softness or hand feel (HF) of at least 90. In another exemplary embodiment, the tissue of the present invention may have a softness of at least 95.
In another exemplary embodiment, the tissue has a bulk softness of less than 10 TS7 (as tested by a TSA). In an exemplary embodiment, the tissue of the present invention also has a basis weight for each ply of less than 22 grams per square meter. For such a soft, thin tissue the initial processing conditions may be defined so as to have a moisture content between 1.5 to 5%.
In another exemplary embodiment, the tissue of the present invention has a basis weight for each ply of at least 17 grams per square meter, more preferably at least 20 grams per square meter and most preferably at least 22 grams per square meter.
Tissue according to exemplary embodiments of the present invention has a good tensile strength in combination with improved softness and/or a lower basis weight or caliper as compared to conventional tissue. Without being bound by theory, it is believed that the process of the present invention allows the tissue to retain more strength, while still having superior softness without the need to increase the thickness or weight of the tissue. Specifically, the tissue of the present invention may have improved softness and/or strength while having a caliper of less than 650 microns.
Tissue according to exemplary embodiments of the present invention has a combination of improved softness with a high degree of uniformity of surface features.
The tissue of the present invention may also be calendered or treated with a topical softening agent to alter the surface profile. In exemplary embodiments, the surface profile can be made smoother by calendering or through the use of a topical softening agent. The surface profile may also be made rougher via microtexturing.
The following examples are provided to further illustrate the invention.
Through air dried tissue was produced with a three layer headbox and a 005 Albany TAD fabric. The flow to each layer of the headbox was about 33% of the total sheet. The three layers of the finished tissue from top to bottom were labeled as air, core and dry. The air layer is the outer layer that is placed on the TAD fabric, the dry layer is the outer layer that is closest to the surface of the Yankee dryer and the core is the center section of the tissue. The tissue was produced with 45% eucalyptus fiber in the air layer, 50% eucalyptus fiber in the core layer and 100% eucalyptus fiber in the dry layer. Headbox pH was controlled to 7.0 by addition of a caustic to the thick stock before the fan pumps for all samples.
Roll size was about 10,000 meters long. The number of sheet-breaks per roll was determined by detecting the number of breaks in the sheet per every 10,000 meters of linear (MD-machine direction) sheet run.
The tissue according to Example 1 was produced with addition of a temporary wet strength additive, Hercobond 1194 (Ashland, 500 Hercules Road, Wilmington Del., 19808) to the air layer, a dry strength additive, Redibond 2038 (Corn Products, 10 Finderne Avenue, Bridgewater, N.J. 08807) split 75% to the air layer, 25% to the dry layer, and a softener/debonder, T526 (EKA Chemicals Inc., 1775 West Oak Commons Court, Marietta, Ga., 30062) added in combination to the core layer. The T526 is a softener/debonder combination with a quaternary amine concentration below 20%.
Example 2 was produced with the same conditions as Example 1, but chemical addition rates were changed. Specifically, the amount of dry strength additive (Redibond 2038) was increased from 5.0 kg/ton to 10.0 kg/ton and the amount of softener/debonder (T526) was increased from 2.0 kg/ton to 3.6 kg/ton.
Example 3 was produced with the same conditions as Example 1 except with T526 added to the dry layer.
Example 4 was produced with the same conditions as Example 1 except for the addition of a debonder having a high quaternary amine concentration (>20%) to the core layer. The debonder was F509HA (manufactured by EKA Chemicals Inc., 1775 West Oak Commons Court, Marietta, Ga., 30062).
Comparative Example 1 was produced with the same conditions as Example 1 except that wet end additives were not used
Table 1 shows performance data and chemical dose information for the TAD basesheet of Examples 1-4 and Comparative Example 1. The basis weight (BW) of each Example was about 20.7 GSM.
1All HF values are from single ply basesheet samples with dry side surface up.
2Basesheet single ply data.
3Post converted two ply product tested.
Examples 1 and 2 had a much higher hand-feel (HF) with lower lint value and improved machine efficiency compared to Comparative Example 1. Of note, these improved parameters were achieved while maintaining the same sheet MD/CD tensile range for both Examples 1 and 2 as in Comparative Example 1. The wet end chemical additives of Example 1 significantly improved product softness. Example 2 is a further improvement over Example 1 with a reduced lint value. This improvement in Example 2 was achieved by increasing the Redibond 2038 and T526 dose.
Softness as determined by the TSA was significantly reduced when softener/debonder was added to the dry layer (Example 3) and when a tissue debonder having a higher quaternary amine concentration was added to the core layer (Example 4). The preferred option is to add a combination of softener/debonder to core layer which allows the softener to migrate to surface layers and adjust chemical bonding in the dry layer to control product lint level (Example 1).
The tissue of the present invention also exhibits an improved surface profile that provides for improved product consistency and fewer defects that may otherwise cause sheet breaks. Specifically, the roughness of tissue can be characterized using two values, Pa (Average Primary Amplitude) and Wc (Average Peak to Valley Waviness). Pa is a commonly used roughness parameter and is computed as the average distance between each roughness profile point and the meanline. Wc is computed as the average peak height plus the average valley depth (both taken as positive values) relative to the meanline. As described in more detail below, the tissue of the present invention is measured to have Pa and Wc values that are both low and relatively uniform compared to conventional TAD tissue products.
The below discussed values for Pa and Wc of the inventive tissue were determined using the following test procedures:
Pa and Wc Testing
Ten samples of each tissue to be tested were prepared, with each sample being a 10 cm by 10 cm strip. Each sample was mounted and held in place with weights. Each sample was placed into a Marsurf GD 120 profilometer, available from Mahr Federal Instruments of Gōttingen, Germany, and oriented in the CD direction. A 5 μm tip was used for the profilometer. Twenty scans were run on the profilometer per sample (ten in the forwards direction and ten in the backwards direction). The reverse scans were performed by turning the sample 180 degrees prior to scanning. Each scan covered a 30 mm length. The collected surface profile data was then transferred to a computer running OmniSurf analysis software, available from Digital Metrology Solutions, Inc. of Columbus, Ind., USA. The roughness profile setting for the OmniSurf software was set with a short filter low range of 25 microns and a short filter high range of 0.8 mm. The waviness profile setting of the OmniSurf software was set to a low range of 0.8 mm. For each sample, values for Pa (Average Primary Amplitude) and Wc (Average Peak to Valley Waviness) were calculated by the Omni Surf software. The calculated values of Pa and Wc for all twenty scans were averaged to obtain Pa and Wc values for each tissue sample. The standard deviation of the individual sample Pa and Wc values were also calculated.
The following examples are provided to further illustrate the invention.
Two plies were produced, with each ply being equivalent to the three-layer structure formed in Example 1. The two plies were then embossed together to form a finished tissue product.
Two plies were produced and embossed together as in Example 5, except that wet end additives were not used.
Table 2 shows the Pa and Pa standard deviation of several commercial products, Example 5, and Comparative Example 2 and 3.
Table 3 shows the Wc and Wc standard deviation of several commercial products, Example 5, and Comparative Example 2.
Tables 1 and 2 show the improved surface roughness characteristics of the inventive tissue as compared to commercially available products as well as similar tissue products that were not produced with wet end additives. Specifically, the tissue according to various exemplary embodiments of the present invention has an average Wc value of 140 or less, and more preferably 135 or less, with a Wc standard deviation (i.e., Waviness Uniformity) of 27 or less. Further, the tissue according to various exemplary embodiments of the present invention has an average Pa value of 50 or less, with a Wc standard deviation (i.e., Amplitude Uniformity) of 8 or less.
As known in the art, the tissue web is subjected to a converting process at or near the end of the web forming line to improve the characteristics of the web and/or to convert the web into finished products. On the converting line, the tissue web may be unwound, printed, embossed and rewound. According to an exemplary embodiment of the invention, the paper web on the converting lines may be treated with corona discharge before the embossing section. This treatment may be applied to the top ply and/or bottom ply. Nano cellulose fibers (NCF), nano crystalline cellulose (NCC), micro-fibrillated cellulose (MCF) and other shaped natural and synthetic fibers may be blown on to the paper web using a blower system immediately after corona treatment. This enables the nano-fibers to adsorb on to the paper web through electro-static interactions.
As discussed, according to an exemplary embodiment of the invention, a debonder is added to at least the interior layer as a wet end additive. The debonder provides flexibility to the finished tissue product. However, the debonder also reduces the strength of the tissue web, which at times may result in sheet breaks during the manufacturing process. The relative softness of the tissue web results in inefficiencies in the rewind process that must be performed in order to correct a sheet break. Accordingly, as shown in
In addition to the use of a sheet break detection sensor, the switching valve 120 may also be controlled during turn up, the process whereby the tissue web is one transferred from on roll to another. The turn up process can result in higher stresses on the tissue web that normal operation, thus increasing the chance of sheet breaks. The switching valve 120 is turned off prior to turn up, thus increasing the strength of the tissue web. After the tissue web has begun winding on a new roll, the switching valve 120 is turned on again. The resulting roll of basesheet material thus has a section of higher strength tissue web at the center of the roll and may have a section of higher strength tissue on the outside of the roll. During finishing, the exterior section of higher strength tissue is removed and recycled. The interior section of higher strength tissue is not used to make a finished tissue. Thus, only the portion of the roll of basesheet tissue containing debonder is used to make finished tissue.
Now that embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be construed broadly and not limited by the foregoing specification.
This application is a divisional of U.S. patent application Ser. No. 15/182,391, filed Jun. 14, 2016 and entitled Soft Through Air Dried Tissue, which in turn is a continuation of U.S. patent application Ser. No. 14/534,631, filed Nov. 6, 2014 and entitled Soft Through Air Dried Tissue, issued as U.S. Pat. No. 9,382,666, which in turn is a divisional of U.S. patent application Ser. No. 13/837,685, filed Mar. 15, 2013 and entitled Soft Through Air Dried Tissue, issued as U.S. Pat. No. 8,968,517, which in turn claims priority to U.S. Provisional Application Ser. No. 61/679,337, filed Aug. 3, 2012 and entitled Soft Through Air Dried Tissue, the contents of these applications being incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2919467 | Mercer | Jan 1960 | A |
2926154 | Keim | Feb 1960 | A |
3026231 | Chavannes | Mar 1962 | A |
3049469 | Davison | Aug 1962 | A |
3058873 | Keim et al. | Oct 1962 | A |
3066066 | Keim et al. | Nov 1962 | A |
3097994 | Dickens et al. | Jul 1963 | A |
3125552 | Loshaek et al. | Mar 1964 | A |
3143150 | Buchanan | Aug 1964 | A |
3186900 | De Young | Jun 1965 | A |
3197427 | Schmalz | Jul 1965 | A |
3224986 | Butler et al. | Dec 1965 | A |
3224990 | Babcock | Dec 1965 | A |
3227615 | Korden | Jan 1966 | A |
3227671 | Keim | Jan 1966 | A |
3239491 | Tsou et al. | Mar 1966 | A |
3240664 | Earle, Jr. | Mar 1966 | A |
3240761 | Keim et al. | Mar 1966 | A |
3248280 | Hyland, Jr. | Apr 1966 | A |
3250664 | Conte et al. | May 1966 | A |
3252181 | Hureau | May 1966 | A |
3301746 | Sanford et al. | Jan 1967 | A |
3311594 | Earle, Jr. | Mar 1967 | A |
3329657 | Strazdins et al. | Jul 1967 | A |
3332834 | Reynolds, Jr. | Jul 1967 | A |
3332901 | Keim | Jul 1967 | A |
3352833 | Earle, Jr. | Nov 1967 | A |
3384692 | Galt et al. | May 1968 | A |
3414459 | Wells | Dec 1968 | A |
3442754 | Espy | May 1969 | A |
3459697 | Goldberg et al. | Aug 1969 | A |
3473576 | Amneus | Oct 1969 | A |
3483077 | Aldrich | Dec 1969 | A |
3545165 | Greenwell | Dec 1970 | A |
3556932 | Coscia et al. | Jan 1971 | A |
3573164 | Friedberg et al. | Mar 1971 | A |
3609126 | Asao et al. | Sep 1971 | A |
3666609 | Kalwaites et al. | May 1972 | A |
3672949 | Brown | Jun 1972 | A |
3672950 | Murphy et al. | Jun 1972 | A |
3773290 | Mowery | Nov 1973 | A |
3778339 | Williams et al. | Dec 1973 | A |
3813362 | Coscia et al. | May 1974 | A |
3855158 | Petrovich et al. | Dec 1974 | A |
3877510 | Tegtmeier et al. | Apr 1975 | A |
3905863 | Ayers | Sep 1975 | A |
3911173 | Sprague, Jr. | Oct 1975 | A |
3974025 | Ayers | Aug 1976 | A |
3994771 | Morgan, Jr. et al. | Nov 1976 | A |
3998690 | Lyness et al. | Dec 1976 | A |
4038008 | Larsen | Jul 1977 | A |
4075382 | Chapman et al. | Feb 1978 | A |
4088528 | Berger et al. | May 1978 | A |
4098632 | Sprague, Jr. | Jul 1978 | A |
4102737 | Morton | Jul 1978 | A |
4129528 | Petrovich et al. | Dec 1978 | A |
4147586 | Petrovich et al. | Apr 1979 | A |
4184519 | McDonald et al. | Jan 1980 | A |
4190692 | Larsen | Feb 1980 | A |
4191609 | Trokhan | Mar 1980 | A |
4252761 | Schoggen et al. | Feb 1981 | A |
4320162 | Schulz | Mar 1982 | A |
4331510 | Wells | May 1982 | A |
4382987 | Smart | May 1983 | A |
4440597 | Wells et al. | Apr 1984 | A |
4501862 | Keim | Feb 1985 | A |
4507351 | Johnson et al. | Mar 1985 | A |
4514345 | Johnson et al. | Apr 1985 | A |
4515657 | Maslanka | May 1985 | A |
4528239 | Trokhan | Jul 1985 | A |
4529480 | Trokhan | Jul 1985 | A |
4537657 | Keim | Aug 1985 | A |
4545857 | Wells | Oct 1985 | A |
4637859 | Trokhan | Jan 1987 | A |
4678590 | Nakamura et al. | Jul 1987 | A |
4714736 | Juhl et al. | Dec 1987 | A |
4770920 | Larsonneur | Sep 1988 | A |
4780357 | Akao | Oct 1988 | A |
4808467 | Suskind et al. | Feb 1989 | A |
4836894 | Chance et al. | Jun 1989 | A |
4849054 | Klowak | Jul 1989 | A |
4885202 | Lloyd et al. | Dec 1989 | A |
4891249 | McIntyre | Jan 1990 | A |
4909284 | Kositake | Mar 1990 | A |
4949668 | Heindel et al. | Aug 1990 | A |
4949688 | Bayless | Aug 1990 | A |
4983256 | Combette et al. | Jan 1991 | A |
4996091 | McIntyre | Feb 1991 | A |
5059282 | Ampulski et al. | Oct 1991 | A |
5143776 | Givens | Sep 1992 | A |
5149401 | Langevin et al. | Sep 1992 | A |
5152874 | Keller | Oct 1992 | A |
5211813 | Sawley et al. | May 1993 | A |
5239047 | Devore et al. | Aug 1993 | A |
5279098 | Fukuda | Jan 1994 | A |
5281306 | Kakiuchi et al. | Jan 1994 | A |
5334289 | Trokhan et al. | Aug 1994 | A |
5347795 | Fukuda | Sep 1994 | A |
5397435 | Ostendorf et al. | Mar 1995 | A |
5399412 | Sudall et al. | Mar 1995 | A |
5405501 | Phan et al. | Apr 1995 | A |
5409572 | Kershaw et al. | Apr 1995 | A |
5429686 | Chiu et al. | Jul 1995 | A |
5439559 | Crouse | Aug 1995 | A |
5447012 | Kovacs et al. | Sep 1995 | A |
5470436 | Wagle et al. | Nov 1995 | A |
5487313 | Johnson | Jan 1996 | A |
5509913 | Yeo | Apr 1996 | A |
5510002 | Hermans et al. | Apr 1996 | A |
5529665 | Kaun | Jun 1996 | A |
5581906 | Ensign et al. | Dec 1996 | A |
5591147 | Couture-Dorschner et al. | Jan 1997 | A |
5607551 | Farrington, Jr. et al. | Mar 1997 | A |
5611890 | Vinson et al. | Mar 1997 | A |
5628876 | Ayers et al. | May 1997 | A |
5635028 | Vinson et al. | Jun 1997 | A |
5649916 | DiPalma et al. | Jul 1997 | A |
5671897 | Ogg et al. | Sep 1997 | A |
5672248 | Wendt et al. | Sep 1997 | A |
5679222 | Rasch et al. | Oct 1997 | A |
5685428 | Herbers et al. | Nov 1997 | A |
5728268 | Weisman et al. | Mar 1998 | A |
5746887 | Wendt et al. | May 1998 | A |
5753067 | Fukuda et al. | May 1998 | A |
5772845 | Farrington, Jr. et al. | Jun 1998 | A |
5806569 | Gulya et al. | Sep 1998 | A |
5827384 | Canfield et al. | Oct 1998 | A |
5832962 | Kaufman et al. | Nov 1998 | A |
5846380 | Van Phan et al. | Dec 1998 | A |
5855738 | Weisman et al. | Jan 1999 | A |
5858554 | Neal et al. | Jan 1999 | A |
5865396 | Ogg et al. | Feb 1999 | A |
5865950 | Vinson et al. | Feb 1999 | A |
5893965 | Trokhan et al. | Apr 1999 | A |
5913765 | Burgess et al. | Jun 1999 | A |
5942085 | Neal et al. | Aug 1999 | A |
5944954 | Vinson et al. | Aug 1999 | A |
5948210 | Huston | Sep 1999 | A |
5980691 | Weisman et al. | Nov 1999 | A |
6036139 | Ogg | Mar 2000 | A |
6039838 | Kaufman et al. | Mar 2000 | A |
6048938 | Neal et al. | Apr 2000 | A |
6060149 | Nissing et al. | May 2000 | A |
6106670 | Weisman et al. | Aug 2000 | A |
6149769 | Mohammadi et al. | Nov 2000 | A |
6162327 | Batra et al. | Dec 2000 | A |
6162329 | Vinson et al. | Dec 2000 | A |
6187138 | Neal et al. | Feb 2001 | B1 |
6200419 | Phan | Mar 2001 | B1 |
6203667 | Huhtelin | Mar 2001 | B1 |
6207734 | Vinson et al. | Mar 2001 | B1 |
6231723 | Kanitz et al. | May 2001 | B1 |
6287426 | Edwards et al. | Sep 2001 | B1 |
6303233 | Amon et al. | Oct 2001 | B1 |
6319362 | Huhtelin et al. | Nov 2001 | B1 |
6344111 | Wilhelm | Feb 2002 | B1 |
6420013 | Vinson et al. | Jul 2002 | B1 |
6420100 | Trokhan et al. | Jul 2002 | B1 |
6423184 | Vahatalo et al. | Jul 2002 | B2 |
6458246 | Kanitz et al. | Oct 2002 | B1 |
6464831 | Trokhan et al. | Oct 2002 | B1 |
6473670 | Huhtelin | Oct 2002 | B1 |
6521089 | Griech et al. | Feb 2003 | B1 |
6537407 | Law et al. | Mar 2003 | B1 |
6547928 | Barnholtz et al. | Apr 2003 | B2 |
6551453 | Weisman et al. | Apr 2003 | B2 |
6551691 | Hoeft et al. | Apr 2003 | B1 |
6572722 | Pratt | Jun 2003 | B1 |
6579416 | Vinson et al. | Jun 2003 | B1 |
6602454 | McGuire et al. | Aug 2003 | B2 |
6607637 | Vinson et al. | Aug 2003 | B1 |
6610173 | Lindsay et al. | Aug 2003 | B1 |
6613194 | Kanitz et al. | Sep 2003 | B2 |
6660362 | Lindsay et al. | Dec 2003 | B1 |
6673202 | Burazin | Jan 2004 | B2 |
6701637 | Lindsay et al. | May 2004 | B2 |
6755939 | Vinson et al. | Jun 2004 | B2 |
6773647 | McGuire et al. | Aug 2004 | B2 |
6797117 | McKay et al. | Sep 2004 | B1 |
6808599 | Burazin | Oct 2004 | B2 |
6821386 | Weisman et al. | Nov 2004 | B2 |
6821391 | Scherb et al. | Nov 2004 | B2 |
6827818 | Farrington, Jr. et al. | Dec 2004 | B2 |
6863777 | Kanitz et al. | Mar 2005 | B2 |
6896767 | Wilhelm | May 2005 | B2 |
6939443 | Ryan et al. | Sep 2005 | B2 |
6998017 | Lindsay et al. | Feb 2006 | B2 |
6998024 | Burazin | Feb 2006 | B2 |
7005043 | Toney et al. | Feb 2006 | B2 |
7014735 | Kramer et al. | Mar 2006 | B2 |
7105465 | Patel et al. | Sep 2006 | B2 |
7155876 | VanderTuin et al. | Jan 2007 | B2 |
7157389 | Branham et al. | Jan 2007 | B2 |
7182837 | Chen et al. | Feb 2007 | B2 |
7194788 | Clark et al. | Mar 2007 | B2 |
7235156 | Baggot | Jun 2007 | B2 |
7269929 | VanderTuin et al. | Sep 2007 | B2 |
7294230 | Flugge-Berendes et al. | Nov 2007 | B2 |
7311853 | Vinson et al. | Dec 2007 | B2 |
7328550 | Floding et al. | Feb 2008 | B2 |
7339378 | Han et al. | Mar 2008 | B2 |
7351307 | Scherb et al. | Apr 2008 | B2 |
7387706 | Herman et al. | Jun 2008 | B2 |
7399378 | Edwards et al. | Jul 2008 | B2 |
7419569 | Hermans | Sep 2008 | B2 |
7427434 | Busam | Sep 2008 | B2 |
7431801 | Conn et al. | Oct 2008 | B2 |
7432309 | Vinson | Oct 2008 | B2 |
7442278 | Murray et al. | Oct 2008 | B2 |
7452447 | Duan et al. | Nov 2008 | B2 |
7476293 | Herman et al. | Jan 2009 | B2 |
7494563 | Edwards et al. | Feb 2009 | B2 |
7510631 | Scherb et al. | Mar 2009 | B2 |
7513975 | Burma | Apr 2009 | B2 |
7563344 | Beuther | Jul 2009 | B2 |
7582187 | Scherb et al. | Sep 2009 | B2 |
7611607 | Mullally et al. | Nov 2009 | B2 |
7622020 | Awofeso | Nov 2009 | B2 |
7662462 | Noda | Feb 2010 | B2 |
7670678 | Phan | Mar 2010 | B2 |
7683126 | Neal et al. | Mar 2010 | B2 |
7686923 | Scherb et al. | Mar 2010 | B2 |
7687140 | Manifold et al. | Mar 2010 | B2 |
7691230 | Scherb et al. | Apr 2010 | B2 |
7744722 | Tucker et al. | Jun 2010 | B1 |
7744726 | Scherb et al. | Jun 2010 | B2 |
7799382 | Payne et al. | Sep 2010 | B2 |
7811418 | Klerelid et al. | Oct 2010 | B2 |
7815978 | Davenport et al. | Oct 2010 | B2 |
7823366 | Schoeneck | Nov 2010 | B2 |
7842163 | Nickel et al. | Nov 2010 | B2 |
7867361 | Salaam et al. | Jan 2011 | B2 |
7871692 | Morin et al. | Jan 2011 | B2 |
7887673 | Andersson et al. | Feb 2011 | B2 |
7905989 | Scherb et al. | Mar 2011 | B2 |
7914866 | Shannon et al. | Mar 2011 | B2 |
7931781 | Scherb et al. | Apr 2011 | B2 |
7951269 | Herman et al. | May 2011 | B2 |
7955549 | Noda | Jun 2011 | B2 |
7959764 | Ringer et al. | Jun 2011 | B2 |
7972475 | Chan et al. | Jul 2011 | B2 |
7989058 | Manifold et al. | Aug 2011 | B2 |
8034463 | Leimbach et al. | Oct 2011 | B2 |
8051629 | Pazdemik et al. | Nov 2011 | B2 |
8075739 | Scherb et al. | Dec 2011 | B2 |
8092652 | Scherb et al. | Jan 2012 | B2 |
8118979 | Herman et al. | Feb 2012 | B2 |
8147649 | Tucker et al. | Apr 2012 | B1 |
8152959 | Elony et al. | Apr 2012 | B2 |
8196314 | Munch | Jun 2012 | B2 |
8216427 | Klerelid et al. | Jul 2012 | B2 |
8236135 | Prodoehl et al. | Aug 2012 | B2 |
8303773 | Scherb et al. | Nov 2012 | B2 |
8382956 | Boechat et al. | Feb 2013 | B2 |
8402673 | Da Silva et al. | Mar 2013 | B2 |
8409404 | Harper et al. | Apr 2013 | B2 |
8435384 | Da Silva et al. | May 2013 | B2 |
8440055 | Scherb et al. | May 2013 | B2 |
8445032 | Topolkaraev et al. | May 2013 | B2 |
8454800 | Mourad et al. | Jun 2013 | B2 |
8470133 | Cunnane et al. | Jun 2013 | B2 |
8506756 | Denis et al. | Aug 2013 | B2 |
8544184 | Da Silva et al. | Oct 2013 | B2 |
8574211 | Morita | Nov 2013 | B2 |
8580083 | Boechat et al. | Nov 2013 | B2 |
8728277 | Boechat et al. | May 2014 | B2 |
8758569 | Aberg et al. | Jun 2014 | B2 |
8771466 | Denis et al. | Jul 2014 | B2 |
8801903 | Mourad et al. | Aug 2014 | B2 |
8815057 | Eberhardt et al. | Aug 2014 | B2 |
8822009 | Riviere et al. | Sep 2014 | B2 |
8968517 | Ramaratnam et al. | Mar 2015 | B2 |
8980062 | Karlsson et al. | Mar 2015 | B2 |
9005710 | Jones et al. | Apr 2015 | B2 |
D734617 | Seitzinger et al. | Jul 2015 | S |
9095477 | Yamaguchi | Aug 2015 | B2 |
D738633 | Seitzinger et al. | Sep 2015 | S |
9382666 | Ramaratnam et al. | Jul 2016 | B2 |
9506203 | Ramaratnam et al. | Nov 2016 | B2 |
9580872 | Ramaratnam et al. | Feb 2017 | B2 |
9702089 | Ramaratnam et al. | Jul 2017 | B2 |
9702090 | Ramaratnam et al. | Jul 2017 | B2 |
9719213 | Miller, IV et al. | Aug 2017 | B2 |
9725853 | Ramaratnam et al. | Aug 2017 | B2 |
20010018068 | Lorenzi et al. | Aug 2001 | A1 |
20020028230 | Eichhorn et al. | Mar 2002 | A1 |
20020060049 | Kanitz et al. | May 2002 | A1 |
20020061386 | Carson et al. | May 2002 | A1 |
20020098317 | Jaschinski et al. | Jul 2002 | A1 |
20020110655 | Seth | Aug 2002 | A1 |
20020115194 | Lange et al. | Aug 2002 | A1 |
20020125606 | McGuire et al. | Sep 2002 | A1 |
20030024674 | Kanitz et al. | Feb 2003 | A1 |
20030056911 | Hermans et al. | Mar 2003 | A1 |
20030056917 | Jimenez | Mar 2003 | A1 |
20030070781 | Hermans et al. | Apr 2003 | A1 |
20030114071 | Everhart et al. | Jun 2003 | A1 |
20030159401 | Sorensson et al. | Aug 2003 | A1 |
20030188843 | Kanitz et al. | Oct 2003 | A1 |
20030218274 | Boutilier et al. | Nov 2003 | A1 |
20040118531 | Shannon et al. | Jun 2004 | A1 |
20040123963 | Chen et al. | Jul 2004 | A1 |
20040126601 | Kramer et al. | Jul 2004 | A1 |
20040126710 | Hill et al. | Jul 2004 | A1 |
20040168784 | Duan et al. | Sep 2004 | A1 |
20040173333 | Hermans et al. | Sep 2004 | A1 |
20040234804 | Liu et al. | Nov 2004 | A1 |
20050016704 | Huhtelin | Jan 2005 | A1 |
20050069679 | Stelljes et al. | Mar 2005 | A1 |
20050069680 | Stelljes et al. | Mar 2005 | A1 |
20050098281 | Schulz et al. | May 2005 | A1 |
20050112115 | Khan | May 2005 | A1 |
20050123726 | Broering et al. | Jun 2005 | A1 |
20050130536 | Siebers et al. | Jun 2005 | A1 |
20050136222 | Hada et al. | Jun 2005 | A1 |
20050148257 | Hermans et al. | Jul 2005 | A1 |
20050150626 | Kanitz et al. | Jul 2005 | A1 |
20050166551 | Keane et al. | Aug 2005 | A1 |
20050241786 | Edwards et al. | Nov 2005 | A1 |
20050241788 | Baggot et al. | Nov 2005 | A1 |
20050252626 | Chen et al. | Nov 2005 | A1 |
20050280184 | Sayers et al. | Dec 2005 | A1 |
20050287340 | Morelli et al. | Dec 2005 | A1 |
20060005916 | Stelljes et al. | Jan 2006 | A1 |
20060013998 | Stelljes et al. | Jan 2006 | A1 |
20060019567 | Sayers | Jan 2006 | A1 |
20060083899 | Burazin et al. | Apr 2006 | A1 |
20060093788 | Behm et al. | May 2006 | A1 |
20060113049 | Knobloch et al. | Jun 2006 | A1 |
20060130986 | Flugge-Berendes et al. | Jun 2006 | A1 |
20060194022 | Boutilier et al. | Aug 2006 | A1 |
20060269706 | Shannon et al. | Nov 2006 | A1 |
20070020315 | Shannon et al. | Jan 2007 | A1 |
20070131366 | Underhill et al. | Jun 2007 | A1 |
20070137813 | Nickel et al. | Jun 2007 | A1 |
20070137814 | Gao | Jun 2007 | A1 |
20070170610 | Payne et al. | Jul 2007 | A1 |
20070240842 | Scherb et al. | Oct 2007 | A1 |
20070251659 | Fernandes et al. | Nov 2007 | A1 |
20070251660 | Walkenhaus et al. | Nov 2007 | A1 |
20070267157 | Kanitz et al. | Nov 2007 | A1 |
20070272381 | Elony et al. | Nov 2007 | A1 |
20070275866 | Dykstra | Nov 2007 | A1 |
20070298221 | Vinson | Dec 2007 | A1 |
20080035289 | Edwards et al. | Feb 2008 | A1 |
20080076695 | Uitenbroek et al. | Mar 2008 | A1 |
20080156450 | Klerelid et al. | Jul 2008 | A1 |
20080199655 | Monnerie et al. | Aug 2008 | A1 |
20080245498 | Ostendorf et al. | Oct 2008 | A1 |
20080302493 | Boatman et al. | Dec 2008 | A1 |
20080308247 | Ringer et al. | Dec 2008 | A1 |
20090020248 | Sumnicht et al. | Jan 2009 | A1 |
20090056892 | Rekoske | Mar 2009 | A1 |
20090061709 | Nakai et al. | Mar 2009 | A1 |
20090205797 | Fernandes et al. | Aug 2009 | A1 |
20090218056 | Manifold et al. | Sep 2009 | A1 |
20100065234 | Klerelid et al. | Mar 2010 | A1 |
20100119779 | Ostendorf et al. | May 2010 | A1 |
20100224338 | Harper et al. | Sep 2010 | A1 |
20100230064 | Eagles et al. | Sep 2010 | A1 |
20100236034 | Eagles et al. | Sep 2010 | A1 |
20100239825 | Sheehan et al. | Sep 2010 | A1 |
20100272965 | Schinkoreit et al. | Oct 2010 | A1 |
20110027545 | Harlacher et al. | Feb 2011 | A1 |
20110180223 | Klerelid et al. | Jul 2011 | A1 |
20110189435 | Manifold et al. | Aug 2011 | A1 |
20110189442 | Manifold et al. | Aug 2011 | A1 |
20110206913 | Manifold et al. | Aug 2011 | A1 |
20110223381 | Sauter et al. | Sep 2011 | A1 |
20110253329 | Manifold et al. | Oct 2011 | A1 |
20110265967 | Van Phan | Nov 2011 | A1 |
20110303379 | Boechat et al. | Dec 2011 | A1 |
20120144611 | Baker et al. | Jun 2012 | A1 |
20120152475 | Edwards et al. | Jun 2012 | A1 |
20120177888 | Escafere et al. | Jul 2012 | A1 |
20120244241 | McNeil | Sep 2012 | A1 |
20120267063 | Klerelid et al. | Oct 2012 | A1 |
20120297560 | Zwick et al. | Nov 2012 | A1 |
20130008135 | Moore et al. | Jan 2013 | A1 |
20130029105 | Miller et al. | Jan 2013 | A1 |
20130029106 | Lee et al. | Jan 2013 | A1 |
20130133851 | Boechat et al. | May 2013 | A1 |
20130150817 | Kainth et al. | Jun 2013 | A1 |
20130160960 | Hermans et al. | Jun 2013 | A1 |
20130209749 | Myangiro et al. | Aug 2013 | A1 |
20130248129 | Manifold et al. | Sep 2013 | A1 |
20130327487 | Espinosa et al. | Dec 2013 | A1 |
20140004307 | Sheehan | Jan 2014 | A1 |
20140041820 | Ramaratnam et al. | Feb 2014 | A1 |
20140041822 | Boechat et al. | Feb 2014 | A1 |
20140050890 | Zwick et al. | Feb 2014 | A1 |
20140053994 | Manifold et al. | Feb 2014 | A1 |
20140096924 | Rekokske et al. | Apr 2014 | A1 |
20140182798 | Polat et al. | Jul 2014 | A1 |
20140242320 | McNeil et al. | Aug 2014 | A1 |
20140272269 | Hansen | Sep 2014 | A1 |
20140272747 | Ciurkot | Sep 2014 | A1 |
20140284237 | Gosset | Sep 2014 | A1 |
20140360519 | George et al. | Dec 2014 | A1 |
20150059995 | Ramaratnam et al. | Mar 2015 | A1 |
20150102526 | Ward et al. | Apr 2015 | A1 |
20150129145 | Chou et al. | May 2015 | A1 |
20150211179 | Alias et al. | Jul 2015 | A1 |
20150241788 | Yamaguchi | Aug 2015 | A1 |
20150330029 | Ramaratnam et al. | Nov 2015 | A1 |
20160060811 | Riding et al. | Mar 2016 | A1 |
20160090692 | Eagles et al. | Mar 2016 | A1 |
20160090693 | Eagles et al. | Mar 2016 | A1 |
20160130762 | Ramaratnam et al. | May 2016 | A1 |
20160145810 | Miller, IV et al. | May 2016 | A1 |
20160159007 | Miller, IV et al. | Jun 2016 | A1 |
20160160448 | Miller, IV et al. | Jun 2016 | A1 |
20160185041 | Topolkaraev et al. | Jun 2016 | A1 |
20160185050 | Topolkaraev et al. | Jun 2016 | A1 |
20160273168 | Ramaratnam et al. | Sep 2016 | A1 |
20160273169 | Ramaratnam et al. | Sep 2016 | A1 |
20160289897 | Ramaratnam et al. | Oct 2016 | A1 |
20160289898 | Ramaratnam et al. | Oct 2016 | A1 |
20170044717 | Quigley | Feb 2017 | A1 |
20170101741 | Sealey et al. | Apr 2017 | A1 |
20170167082 | Ramaratnam et al. | Jun 2017 | A1 |
20170226698 | LeBrun et al. | Aug 2017 | A1 |
20170233946 | Sealey et al. | Aug 2017 | A1 |
20170253422 | Anklam et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2168894 | Aug 1997 | CA |
2795139 | Oct 2011 | CA |
1138356 | Dec 1996 | CN |
1207149 | Feb 1999 | CN |
1244899 | Feb 2000 | CN |
1268559 | Oct 2000 | CN |
1377405 | Oct 2002 | CN |
2728254 | Sep 2005 | CN |
4242539 | Aug 1993 | DE |
0097036 | Dec 1983 | EP |
0979895 | Feb 2000 | EP |
1911574 | Jan 2007 | EP |
1339915 | Jul 2007 | EP |
2123826 | May 2009 | EP |
946093 | Jan 1964 | GB |
2013208298 | Oct 2013 | JP |
2014213138 | Nov 2014 | JP |
9606223 | Feb 1996 | WO |
200382550 | Oct 2003 | WO |
200445834 | Jun 2004 | WO |
2007070145 | Jun 2007 | WO |
2008019702 | Feb 2008 | WO |
2009006709 | Jan 2009 | WO |
2009061079 | May 2009 | WO |
2009067079 | May 2009 | WO |
2011028823 | Mar 2011 | WO |
2012003360 | Jan 2012 | WO |
2013024297 | Feb 2013 | WO |
2013136471 | Sep 2013 | WO |
2014022848 | Feb 2014 | WO |
201500755 | Jan 2015 | WO |
2015176063 | Nov 2015 | WO |
2016077594 | May 2016 | WO |
2016086019 | Jun 2016 | WO |
2016090242 | Jun 2016 | WO |
2016090364 | Jun 2016 | WO |
2016085704 | Jun 2016 | WO |
2017066465 | Apr 2017 | WO |
2017066656 | Apr 2017 | WO |
2017139786 | Aug 2017 | WO |
Entry |
---|
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016. |
International Search Report for PCT/US15/63986 dated Mar. 29, 2016. |
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016. |
International Search Report for PCT/US15/64284 dated Feb. 11, 2016. |
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016. |
International Search Report for PCT/US13/53593 dated Dec. 30, 2013. |
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013. |
International Search Report for PCT/US15/31411 dated Aug. 13, 2015. |
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015. |
International Search Report for PCT/US15/60398 dated Jan. 29, 2016. |
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016. |
International Search Report for PCT/US15/62483 dated May 6, 2016. |
International Search Report for PCT/US16/56871 dated Jan. 12, 2017. |
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12, 2017. |
International Search Report for PCT/US2016/057163 dated Dec. 23, 2016. |
Written Opinion of International Searching Authority for PCT/US2016/057163 dated Dec. 23, 2016. |
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017. |
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017. |
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017. |
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017. |
International Search Report for PCT/US17/17705 dated Jun. 9, 2017. |
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017. |
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015. |
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20170268178 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
61679337 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15182391 | Jun 2016 | US |
Child | 15614156 | US | |
Parent | 13837685 | Mar 2013 | US |
Child | 14534631 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14534631 | Nov 2014 | US |
Child | 15182391 | US |