Soft through air dried tissue

Information

  • Patent Grant
  • 9995005
  • Patent Number
    9,995,005
  • Date Filed
    Wednesday, July 5, 2017
    6 years ago
  • Date Issued
    Tuesday, June 12, 2018
    6 years ago
Abstract
A multi-layer through air dried tissue including a first exterior layer comprised substantially of hardwood fibers, an interior layer comprised substantially of softwood fibers, and a second exterior layer comprised substantially of hardwood fibers. The interior layer includes a first wet end additive comprising an ionic surfactant and a second wet end additive comprising a non-ionic surfactant.
Description
FIELD OF THE INVENTION

The present invention is directed to tissue, and in particular to a multilayer tissue including wet end additives.


BACKGROUND


According to conventional tissue-making processes, a slurry of pulp mixture is fed to a headbox, where the mixture is laid onto a forming surface so as to form a web. The web is then dried using pressure and/or heat to form the finished tissue. Prior to drying, the pulp mixture is considered to be in the “wet end” of the tissue making process. Additives may be used in the wet end to impart a particular attribute or chemical state to the tissue. However, using additives in the wet end has some disadvantages. For example, a large amount of additive may be required in the pulp mixture to achieve the desired effect on the finished tissue, which in turn leads to increased cost and, in the case of wet end additive debonder, may actually reduce the tissue strength. In order to avoid drawbacks associated with wet end additives, agents, such as softeners, have been added topically after web formation.


The tissue web may be dried by transferring the web to a forming surface and then directing a flow of heated air onto the web. This process is known as through air drying (TAD). While topical softeners have been used in combination with through air dried tissue, the resulting products have had a tamped down or flattened surface profile. The flattened surface profile in turn hinders the cleaning ability of the tissue and limits the overall effectiveness of the softener.


SUMMARY OF THE INVENTION

An object of the present invention is to provide a tissue manufacturing method that uses through air drying without compromising softness and cleaning ability of the resulting tissue.


Another object of the present invention is to provide a tissue manufacturing method that avoids the disadvantages associated with wet end additives, and in particular avoids the use of a large amount of additive to achieve the desired effect on the resulting tissue.


A multi-layer through air dried tissue according to an exemplary embodiment of the present invention comprises a first exterior layer, an interior layer and a second exterior layer. The interior layer includes a first wet end additive comprising an ionic surfactant and a second wet end additive comprising a non-ionic surfactant.


A multi-layer through air dried tissue according to another exemplary embodiment of the present invention comprises a first exterior layer comprised substantially of hardwood fibers, an interior layer comprised substantially of softwood fibers, and a second exterior layer comprised substantially of hardwood fibers. The interior layer includes a first wet end additive comprising an ionic surfactant and a second wet end additive comprising a non-ionic surfactant.


In at least one exemplary embodiment, the first exterior layer further comprises a wet end temporary wet strength additive.


In at least one exemplary embodiment, the first exterior layer further comprises a wet end dry strength additive.


In at least one exemplary embodiment, the second exterior layer further comprises a wet end dry strength additive.


In at least one exemplary embodiment, the second wet end additive comprises an ethoxylated vegetable oil.


In at least one exemplary embodiment, the second wet end additive comprises a combination of ethoxylated vegetable oils.


In at least one exemplary embodiment, the ratio by weight of the second wet end additive to the first wet end additive in the tissue is at least eight to one.


In at least one exemplary embodiment, the ratio by weight of the second wet end additive to the first wet end additive in the first interior layer is at most ninety to one.


In at least one exemplary embodiment, the tissue has a softness (hand feel) of at least 90.


In at least one exemplary embodiment, the tissue has a bulk softness of less than 10 TS7.


In at least one exemplary embodiment, the ionic surfactant comprises a debonder.


In at least one exemplary embodiment, the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a basis weight of less than 25 gsm.


In at least one exemplary embodiment, the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a caliper of less than 650 microns.


In at least one exemplary embodiment, the wet end temporary wet strength additive comprises glyoxalated polyacrylamide.


In at least one exemplary embodiment, the wet end dry strength additive comprises amphoteric starch.


In at least one exemplary embodiment, the first exterior layer further comprises a dry strength additive.


In at least one exemplary embodiment, the first and second exterior layers are substantially free of any surface deposited softener agents or lotions.


In at least one exemplary embodiment, at least one of the first or second exterior layers comprises a surface deposited softener agent or lotion.


In at least one exemplary embodiment, the tissue has a softness of at least 95.


In at least one exemplary embodiment, the non-ionic surfactant has a hydrophilic-lipophilic balance of less than 10, and preferably less than 8.5.


In at least one exemplary embodiment, the tissue may have a softness of at least 95.


In at least one exemplary embodiment, the first exterior layer is comprised of at least 75% by weight of hardwood fibers.


In at least one exemplary embodiment, the interior layer is comprised of at least 75% by weight of softwood fibers.


Other features and advantages of embodiments of the invention will become readily apparent from the following detailed description, the accompanying drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be described with references to the accompanying figures, wherein:



FIG. 1 is a schematic diagram of a three layer tissue in accordance with an exemplary embodiment of the present invention;



FIG. 2 shows a micrograph of the surface of a tissue according to an exemplary embodiment of the invention without a topical additive;



FIG. 3 shows a micrograph of the surface of a conventional through air dried tissue with a flattened surface texture; and



FIG. 4 is a block diagram of a system for manufacturing tissue according to an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

The present invention is directed to a soft tissue made with a combination of a wet end added ionic surfactant and a wet end added nonionic surfactant. The tissue may be made up of a number of layers, including exterior layers and an interior layer. In at least one exemplary embodiment, pulp mixes for each tissue layer are prepared individually.



FIG. 1 shows a three layer tissue, generally designated by reference number 1, according to an exemplary embodiment of the present invention. The tissue 1 has external layers 2 and 4 as well as an internal, core layer 3. External layer 2 is composed primarily of hardwood fibers 20 whereas external layer 4 and core layer 3 are composed of a combination of hardwood fibers 20 and softwood fibers 21. The internal core layer 3 includes an ionic surfactant functioning as a debonder 5 and a non-ionic surfactant functioning as a softener 6. As explained in further detail below, external layers 2 and 4 also include non-ionic surfactant that migrated from the internal core layer 3 during formation of the tissue 1. External layer 2 further includes a dry strength additive 7. External layer 4 further includes both a dry strength additive 7 and a temporary wet strength additive 8.


Pulp mixes for exterior layers of the tissue are prepared with a blend of primarily hardwood fibers. For example, the pulp mix for at least one exterior layer is a blend containing about 70 percent or greater hardwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for at least one exterior layer is a blend containing about 90-100 percent hardwood fibers relative to the total percentage of fibers that make up the blend.


Pulp mixes for the interior layer of the tissue are prepared with a blend of primarily softwood fibers. For example, the pulp mix for the interior layer is a blend containing about 70 percent or greater softwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for the interior layer is a blend containing about 90-100 percent softwood fibers relative to the total percentage of fibers that make up the blend.


As known in the art, pulp mixes are subjected to a dilution stage in which water is added to the mixes so as to form a slurry. After the dilution stage but prior to reaching the headbox, each of the pulp mixes are dewatered to obtain a thick stock of about 95% water. In an exemplary embodiment of the invention, wet end additives are introduced into the thick stock pulp mixes of at least the interior layer. In an exemplary embodiment, a non-ionic surfactant and an ionic surfactant are added to the pulp mix for the interior layer. Suitable non-ionic surfactants have a hydrophilic-lipophilic balance of less than 10, and preferably less than or equal to 8.5. An exemplary non-ionic surfactant is an ethoxylated vegetable oil or a combination of two or more ethoxylated vegetable oils. Other exemplary non-ionic surfactants include ethylene oxide, propylene oxide adducts of fatty alcohols, alkylglycoside esters, and alkylethoxylated esters.


Suitable ionic surfactants include but are not limited to quaternary amines and cationic phospholipids. An exemplary ionic surfactant is 1,2-di(heptadecyl)-3-methyl-4,5-dihydroimidazol-3-ium methyl sulfate. Other exemplary ionic surfactants include (2-hydroxyethyl)methylbis[2-[(1-oxooctadecyl)oxy]ethyl]ammonium methyl sulfate, fatty dialkyl amine quaternary salts, mono fatty alkyl tertiary amine salts, unsaturated fatty alkyl amine salts, linear alkyl sulfonates, alkyl-benzene sulfonates and trimethyl-3-[(1-oxooctadecyl)amino]propylammonium methyl sulfate.


In an exemplary embodiment, the ionic surfactant may function as a debonder while the non-ionic surfactant functions as a softener. Typically, the debonder operates by breaking bonds between fibers to provide flexibility, however an unwanted side effect is that the overall strength of the tissue can be reduced by excessive exposure to debonder. Typical debonders are quaternary amine compounds such as trimethyl cocoammonium chloride, trymethyloleylammonium chloride, dimethyldi(hydrogenated-tallow)ammonium chloride and trimethylstearylammonium chloride.


After being added to the interior layer, the non-ionic surfactant (functioning as a softener) migrates through the other layers of the tissue while the ionic surfactant (functioning as a debonder) stays relatively fixed within the interior layer. Since the debonder remains substantially within the interior layer of the tissue, softer hardwood fibers (that may have lacked sufficient tensile strength if treated with a debonder) can be used for the exterior layers. Further, because only the interior of the tissue is treated, less debonder is required as compared to when the whole tissue is treated with debonder.


In an exemplary embodiment, the ratio of ionic surfactant to non-ionic surfactant added to the pulp mix for the interior layer of the tissue is between 1:4 and 1:90 parts by weight and preferably about 1:8 parts by weight. In particular, when the ionic surfactant is a quaternary amine debonder, reducing the concentration relative to the amount of non-ionic surfactant can lead to an improved tissue. Excess debonder, particularly when introduced as a wet end additive, can weaken the tissue, while an insufficient amount of debonder may not provide the tissue with sufficient flexibility. Because of the migration of the non-ionic surfactant to the exterior layers of the tissue, the ratio of ionic surfactant to non-ionic surfactant in the core layer may be significantly lower in the actual tissue compared to the pulp mix.


In an exemplary embodiment, a dry strength additive is added to the thick stock mix for at least one of the exterior layers. The dry strength additive may be, for example, amphoteric starch, added in a range of about 1 to 40 kg/ton. In another exemplary embodiment, a wet strength additive is added to the thick stock mix for at least one of the exterior layers. The wet strength additive may be, for example, glyoxalated polyacrylamide, commonly known as GPAM, added in a range of about 0.25 to 5 kg/ton. In a further exemplary embodiment, both a dry strength additive, preferably amphoteric starch and a wet strength additive, preferably GPAM are added to one of the exterior layers. Without being bound by theory, it is believed that the combination of both amphoteric starch and GPAM in a single layer when added as wet end additives provides a synergistic effect with regard to strength of the finished tissue. Other exemplary temporary wet-strength agents include aldehyde functionalized cationic starch, aldehyde functionalized polyacrylamides, acrolein co-polymers and cis-hydroxyl polysachharide (guar gum and locust bean gum) used in combination with any of the above mentioned compounds.


In addition to amphoteric starch, suitable dry strength additives may include but are not limited to glyoxalated polyacrylamide, cationic starch, carboxy methyl cellulose, guar gum, locust bean gum, cationic polyacrylamide, polyvinyl alcohol, anionic polyacrylamide or a combination thereof.



FIG. 4 is a block diagram of a system for manufacturing tissue, generally designated by reference number 100, according to an exemplary embodiment of the present invention. The system 100 includes an first exterior layer fan pump 102, a core layer fan pump 104, a second exterior layer fan pump 106, a headbox 108, a forming section 110, a drying section 112 and a calendar section 114. The first and second exterior layer fan pumps 102, 106 deliver the pulp mixes of the first and second external layers 2, 4 to the headbox 108, and the core layer fan pump 104 delivers the pulp mix of the core layer 3 to the headbox 108. As is known in the art, the headbox delivers a wet web of pulp onto a forming wire within the forming section 110. The wet web is laid on the forming wire with the core layer 3 disposed between the first and second external layers 2, 4.


After formation in the forming section 110, the partially dewatered web is transferred to the drying section 112. Within the drying the section 112, the tissue of the present invention may be dried using conventional through air drying processes. In an exemplary embodiment, the tissue of the present invention is dried to a humidity of about 7 to 20% using a through air drier manufactured by Metso Corporation, of Helsinki, Finland. In another exemplary embodiment of the invention, two or more through air drying stages are used in series. Without being bound by theory, it is believed that the use of multiple drying stages improves uniformity in the tissue, thus reducing tears.


In an exemplary embodiment, the tissue of the present invention is patterned during the through air drying process. Such patterning can be achieved through the use of a TAD fabric, such as a G-weave (Prolux 003) or M-weave (Prolux 005) TAD fabric.


After the through air drying stage, the tissue of the present invention may be further dried in a second phase using a Yankee drying drum. In an exemplary embodiment, a creping adhesive is applied to the drum prior to the tissue contacting the drum. A creping blade is then used to remove the tissue from the Yankee drying drum. The tissue may then be calendered in a subsequent stage within the calendar section 114. According to an exemplary embodiment, calendaring may be accomplished using a number of calendar rolls (not shown) that deliver a calendering pressure in the range of 0-100 pounds per linear inch (PLI). In general, increased calendering pressure is associated with reduced caliper and a smoother tissue surface.


According to an exemplary embodiment of the invention, a ceramic coated creping blade is used to remove the tissue from the Yankee drying drum. Ceramic coated creping blades result in reduced adhesive build up and aid in achieving higher run speeds. Without being bound by theory, it is believed that the ceramic coating of the creping blades provides a less adhesive surface than metal creping blades and is more resistant to edge wear that can lead to localized spots of adhesive accumulation. The ceramic creping blades allow for a greater amount of creping adhesive to be used which in turn provides improved sheet integrity and faster run speeds.


In addition to the use of wet end additives, the tissue of the present invention may also be treated with topical or surface deposited additives. Examples of surface deposited additives include softeners for increasing fiber softness and skin lotions. Examples of topical softeners include but are not limited to quaternary ammonium compounds, including, but not limited to, the dialkyldimethylammonium salts (e.g. ditallowdimethylammonium chloride, ditallowdimethylammonium methyl sulfate, di(hydrogenated tallow)dimethyl ammonium chloride, etc.). Another class of chemical softening agents include the well-known organo-reactive polydimethyl siloxane ingredients, including amino functional polydimethyl siloxane. zinc stearate, aluminum stearate, sodium stearate, calcium stearate, magnesium stearate, spermaceti, and steryl oil.


The below discussed values for softness (i.e., hand feel (HF)), caliper and tensile strength of the inventive tissue were determined using the following test procedures:


Softness Testing


Softness of a tissue sheet was determined using a Tissue Softness Analyzer (TSA), available from emtec Electronic GmbH of Leipzig, Germany. A punch was used to cut out three 100 cm2 round samples from the sheet. One of the samples was loaded into the TSA with the yankee side facing up. The sample was clamped in place and the TPII algorithm was selected from the list of available softness testing algorithms displayed by the TSA. After inputting parameters for the sample, the TSA measurement program was run. The test process was repeated for the remaining samples and the results for all the samples were averaged.


Caliper Testing


A Thwing-Albert ProGage 100 Thickness Tester, manufactured by Thwing Albert of West Berlin, N.J. was used for the caliper test. Eight 100 mm×100 mm square samples were cut from a base sheet. Each sample was folded over on itself, with the rougher layer, typically corresponding air layer facing itself. The samples were then tested individually and the results were averaged to obtain a caliper result for the base sheet.


Tensile Strength Testing


An Instron 3343 tensile tester, manufactured by Instron of Norwood, Mass., with a 100N load cell and 25.4 mm rubber coated jaw faces was used for tensile strength measurement. Prior to measurement, the Instron 3343 tensile tester was calibrated. After calibration, 8 strips, each one inch by eight inches, were provided as samples for testing. One of the sample strips was placed in between the upper jaw faces and clamp, and then between the lower jaw faces and clamp. A tensile test was run on the sample strip. The test procedure was repeated until all the samples were tested. The values obtained for the eight sample strips were averaged to determine the tensile strength of the tissue.


Tissue according to exemplary embodiments of the present invention has an improved softness as compared to conventional tissue. Specifically, the tissue of the present invention may have a softness or hand feel (HF) of at least 90. In another exemplary embodiment, the tissue of the present invention may have a softness of at least 95.


In another exemplary embodiment, the tissue has a bulk softness of less than 10 TS7 (as tested by a TSA). In an exemplary embodiment, the tissue of the present invention also has a basis weight for each ply of less than 22 grams per square meter. For such a soft, thin tissue the initial processing conditions may be defined so as to have a moisture content between 1.5 to 5%.


In another exemplary embodiment, the tissue of the present invention has a basis weight for each ply of at least 17 grams per square meter, more preferably at least 20 grams per square meter and most preferably at least 22 grams per square meter.


Tissue according to exemplary embodiments of the present invention has a good tensile strength in combination with improved softness and/or a lower basis weight or caliper as compared to conventional tissue. Without being bound by theory, it is believed that the process of the present invention allows the tissue to retain more strength, while still having superior softness without the need to increase the thickness or weight of the tissue. Specifically, the tissue of the present invention may have improved softness and/or strength while having a caliper of less than 650 microns.


Tissue according to exemplary embodiments of the present invention has a combination of improved softness with a high degree of uniformity of surface features. FIG. 2 shows a micrograph of the surface of a tissue according to an exemplary embodiment of the invention without a topical additive and FIG. 3 shows a micrograph of the surface of a conventional through air dried tissue with a flattened surface texture. The tissue of FIG. 2 has a high degree of uniformity in its surface profile, with regularly spaced features, whereas the tissue of FIG. 3 has flattened regions and a nonuniform profile.


The tissue of the present invention may also be calendered or treated with a topical softening agent to alter the surface profile. In exemplary embodiments, the surface profile can be made smoother by calendering or through the use of a topical softening agent. The surface profile may also be made rougher via microtexturing.


The following examples are provided to further illustrate the invention.


EXAMPLE 1

Through air dried tissue was produced with a three layer headbox and a 005 Albany TAD fabric. The flow to each layer of the headbox was about 33% of the total sheet. The three layers of the finished tissue from top to bottom were labeled as air, core and dry. The air layer is the outer layer that is placed on the TAD fabric, the dry layer is the outer layer that is closest to the surface of the Yankee dryer and the core is the center section of the tissue. The tissue was produced with 45% eucalyptus fiber in the air layer, 50% eucalyptus fiber in the core layer and 100% eucalyptus fiber in the dry layer. Headbox pH was controlled to 7.0 by addition of a caustic to the thick stock before the fan pumps for all samples.


Roll size was about 10,000 meters long. The number of sheet-breaks per roll was determined by detecting the number of breaks in the sheet per every 10,000 meters of linear (MD-machine direction) sheet run.


The tissue according to Example 1 was produced with addition of a temporary wet strength additive, Hercobond 1194 (Ashland, 500 Hercules Road, Wilmington Del, 19808) to the air layer, a dry strength additive, Redibond 2038 (Corn Products, 10 Finderne Avenue, Bridgewater, N.J. 08807) split 75% to the air layer, 25% to the dry layer, and a softener/debonder, T526 (EKA Chemicals Inc., 1775 West Oak Commons Court, Marietta, Ga., 30062) added in combination to the core layer. The T526 is a softener/debonder combination with a quaternary amine concentration below 20%.


EXAMPLE 2

Example 2 was produced with the same conditions as Example 1, but chemical addition rates were changed. Specifically, the amount of dry strength additive (Redibond 2038) was increased from 5.0 kg/ton to 10.0 kg/ton and the amount of softener/debonder (T526) was increased from 2.0 kg/ton to 3.6 kg/ton.


EXAMPLE 3

Example 3 was produced with the same conditions as Example 1 except with T526 added to the dry layer.


EXAMPLE 4

Example 4 was produced with the same conditions as Example 1 except for the addition of a debonder having a high quaternary amine concentration (>20%) to the core layer. The debonder was F509HA (manufactured by EKA Chemicals Inc., 1775 West Oak Commons Court, Marietta, Ga., 30062).


COMPARATIVE EXAMPLE 1

Comparative Example 1 was produced with the same conditions as Example 1 except that wet end additives were not used


Table 1 shows performance data and chemical dose information for the TAD base-sheet of Examples 1-4 and Comparative Example 1. The basis weight (BW) of each Example was about 20.7 GSM.
















TABLE 1









Herco-
Redi-








bond
bond








D1194
2038








kg/ton
kg/ton








(tem-
(tem-
EKA





MD/

porary
porary
T526
Sheet-




CD

wet
dry
kg/ton
breaks




Tensile
Lint
strength
strength
(Softener/
per


Sample
HF1
n/m2
Value3
additive)
additive)
debonder)
roll






















Com-
93.8
55/27
11.5
0
0
0
3


parative









Exam-









ple 1









Exam-
98.2
54/34
9.0
1.25
5.0
2.0
0


ple 1









Exam-
95.1
56/38
7.5
1.25
10
3.6
0


ple 2









Exam-
91.5
57/39
12.0
1.25
5.0
2.0
1


ple 3









Exam-
90.5
55/35
9.8
1.25
10
0.81
0


ple 4





(F509HA)







1All HF values are from single ply basesheet samples with dry side surface up.




2Basesheet single ply data.




3Post converted two ply product tested.







Examples 1 and 2 had a much higher hand-feel (HF) with lower lint value and improved machine efficiency compared to Comparative Example 1. Of note, these improved parameters were achieved while maintaining the same sheet MD/CD tensile range for both Examples 1 and 2 as in Comparative Example 1. The wet end chemical additives of Example 1 significantly improved product softness. Example 2 is a further improvement over Example 1 with a reduced lint value. This improvement in Example 2 was achieved by increasing the Redibond 2038 and T526 dose.


Softness as determined by the TSA was significantly reduced when softener/debonder was added to the dry layer (Example 3) and when a tissue debonder having a higher quaternary amine concentration was added to the core layer (Example 4). The preferred option is to add a combination of softener/debonder to core layer which allows the softener to migrate to surface layers and adjust chemical bonding in the dry layer to control product lint level (Example 1).


The tissue of the present invention also exhibits an improved surface profile that provides for improved product consistency and fewer defects that may otherwise cause sheet breaks. Specifically, the roughness of tissue can be characterized using two values, Pa (Average Primary Amplitude) and Wc (Average Peak to Valley Waviness). Pa is a commonly used roughness parameter and is computed as the average distance between each roughness profile point and the meanline. Wc is computed as the average peak height plus the average valley depth (both taken as positive values) relative to the meanline. As described in more detail below, the tissue of the present invention is measured to have Pa and Wc values that are both low and relatively uniform compared to conventional TAD tissue products.


The below discussed values for Pa and Wc of the inventive tissue were determined using the following test procedures:


Pa and Wc Testing


Ten samples of each tissue to be tested were prepared, with each sample being a 10 cm by 10 cm strip. Each sample was mounted and held in place with weights. Each sample was placed into a Marsurf GD 120 profilometer, available from Mahr Federal Instruments of Göttingen, Germany, and oriented in the CD direction. A 5 μm tip was used for the profilometer. Twenty scans were run on the profilometer per sample (ten in the forwards direction and ten in the backwards direction). The reverse scans were performed by turning the sample 180 degrees prior to scanning. Each scan covered a 30 mm length. The collected surface profile data was then transferred to a computer running OmniSurf analysis software, available from Digital Metrology Solutions, Inc. of Columbus, Ind., USA. The roughness profile setting for the OmniSurf software was set with a short filter low range of 25 microns and a short filter high range of 0.8 mm. The waviness profile setting of the OmniSurf software was set to a low range of 0.8 mm. For each sample, values for Pa (Average Primary Amplitude) and Wc (Average Peak to Valley Waviness) were calculated by the Omni Surf software. The calculated values of Pa and Wc for all twenty scans were averaged to obtain Pa and Wc values for each tissue sample. The standard deviation of the individual sample Pa and Wc values were also calculated.


The following examples are provided to further illustrate the invention.


EXAMPLE 5

Two plies were produced, with each ply being equivalent to the three-layer structure formed in Example 1. The two plies were then embossed together to form a finished tissue product.


COMPARATIVE EXAMPLE 2

Two plies were produced and embossed together as in Example 5, except that wet end additives were not used.


Table 2 shows the Pa and Pa standard deviation of several commercial products, Example 5, and Comparative Example 2 and 3.













TABLE 2









DATE





LOCATION
PUR-


SAMPLE
Pa
S.D
PURCHASED
CHASED



















Charmin Basic
82.58245
9.038986
Wal-Mart -
Jul-12





Anderson


Charmin Strong
57.03765
8.130364
Target -
Jul-12





Anderson SC


Charmin Soft
47.3826
9.72459
Wal-Mart -
Jun-12





Anderson


Charmin Soft
79.33375
9.620164
Wal-Mart -
Jan-12





Anderson


Charmin Strong
70.6232
11.32204
Wal-Mart -
Jan-12





Anderson


Cottonelle
100.9827
11.21668
Wal-Mart -
Jan-12


Clean Care


Anderson


Cottonelle Ultra
90.5762
13.82119
Wal-Mart -
Jan-12


Comfort Care


Anderson


Target UP &
65.9598
12.45098
Target -
Sep-12


UP Soft and


Anderson SC


Strong


Comparative
86.2806
9.46203


Example 2


Example 5
41.66115
2.19889









Table 3 shows the Wc and Wc standard deviation of several commercial products, Example 5, and Comparative Example 2.













TABLE 3









DATE





LOCATION
PUR-


SAMPLE
Wc
S.D
PURCHASED
CHASED



















Charmin Basic
181.2485
31.50583
Wal-Mart -
Jul-12





Anderson


Charmin Strong
163.4448
37.6021
Target -
Jul-12





Anderson SC


Charmin Soft
147.54785
38.41011
Wal-Mart -
Jun-12





Anderson


Charmin Soft
185.51195
30.68851
Wal-Mart -
Jan-12





Anderson


Charmin Strong
216.1236
49.08633
Wal-Mart -
Jan-12





Anderson


Cottonelle
307.39355
34.06675
Wal-Mart -
Jan-12


Clean Care


Anderson


Cottonelle Ultra
286.33735
51.90506
Wal-Mart -
Jan-12


Comfort Care


Anderson


Target UP &
228.9568
59.57366
Target -
Sep-12


UP Soft and


Anderson SC


Strong


Comparative
239.8652
54.96261


Example 2


Example 5
123.41615
14.97908









Tables 1 and 2 show the improved surface roughness characteristics of the inventive tissue as compared to commercially available products as well as similar tissue products that were not produced with wet end additives. Specifically, the tissue according to various exemplary embodiments of the present invention has an average Wc value of 140 or less, and more preferably 135 or less, with a Wc standard deviation (i.e., Waviness Uniformity) of 27 or less. Further, the tissue according to various exemplary embodiments of the present invention has an average Pa value of 50 or less, with a Wc standard deviation (i.e., Amplitude Uniformity) of 8 or less.


As known in the art, the tissue web is subjected to a converting process at or near the end of the web forming line to improve the characteristics of the web and/or to convert the web into finished products. On the converting line, the tissue web may be unwound, printed, embossed and rewound. According to an exemplary embodiment of the invention, the paper web on the converting lines may be treated with corona discharge before the embossing section. This treatment may be applied to the top ply and/or bottom ply. Nano cellulose fibers (NCF), nano crystalline cellulose (NCC), micro-fibrillated cellulose (MCF) and other shaped natural and synthetic fibers may be blown on to the paper web using a blower system immediately after corona treatment. This enables the nano-fibers to adsorb on to the paper web through electro-static interactions.


As discussed, according to an exemplary embodiment of the invention, a debonder is added to at least the interior layer as a wet end additive. The debonder provides flexibility to the finished tissue product. However, the debonder also reduces the strength of the tissue web, which at times may result in sheet breaks during the manufacturing process. The relative softness of the tissue web results in inefficiencies in the rewind process that must be performed in order to correct a sheet break. Accordingly, as shown in FIG. 4, in an exemplary embodiment of the present invention, a switching valve 120 is used to control delivery of the debonder as a wet-end additive to the interior layer. In particular, when a sheet break is detected using, for example, conventional sheet break detection sensors, the switching valve 120 may be controlled to prevent further delivery of the debonder. This results in less flexibility and increased strength at the portion of the tissue web to be rewound, thereby allowing for a more efficient rewind process. Once the rewind process is completed, the switching valve may be opened to continue delivery of the debonder.


In addition to the use of a sheet break detection sensor, the switching valve 120 may also be controlled during turn up, the process whereby the tissue web is one transferred from on roll to another. The turn up process can result in higher stresses on the tissue web that normal operation, thus increasing the chance of sheet breaks. The switching valve 120 is turned off prior to turn up, thus increasing the strength of the tissue web. After the tissue web has begun winding on a new roll, the switching valve 120 is turned on again. The resulting roll of basesheet material thus has a section of higher strength tissue web at the center of the roll and may have a section of higher strength tissue on the outside of the roll. During finishing, the exterior section of higher strength tissue is removed and recycled. The interior section of higher strength tissue is not used to make a finished tissue. Thus, only the portion of the roll of basesheet tissue containing debonder is used to make finished tissue.


Now that embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be construed broadly and not limited by the foregoing specification.

Claims
  • 1. A multi-layer through air dried tissue comprising: a first exterior layer comprised substantially of hardwood fibers;an interior layer comprised substantially of softwood fibers; anda second exterior layer comprised substantially of hardwood fibers, wherein the interior layer includes:a first wet end additive comprising an ionic surfactant; anda second wet end additive comprising a non-ionic surfactant,at least one of the first or second exterior layers having an outer surface with at least one of an Average Peak to Valley Waviness of 140 microns or less or an Average Primary Amplitude of 50 microns or less.
  • 2. The multi-layer through air dried tissue of claim 1, wherein the outer surface has an Average Peak to Valley Waviness of 140 microns or less and a Waviness Uniformity of 27 microns or less.
  • 3. The multi-layer through air dried tissue of claim 1, wherein the outer surface has an Average Primary Amplitude of 50 microns or less and an Amplitude Uniformity of 8 microns or less.
  • 4. The multi-layer through air dried tissue of claim 1, wherein at least one of the first or second exterior layers further comprises a dry strength additive.
  • 5. The multi-layer through air dried tissue of claim 4, wherein the dry strength additive is amphoteric starch.
  • 6. The multi-layer through air dried tissue of claim 4, wherein at least one of the first or second exterior layers further comprises a wet strength additive.
  • 7. The multi-layer through air dried tissue of claim 6, wherein the wet strength additive comprises glyoxalated polyacrylamide.
  • 8. The multi-layer through air dried tissue of claim 1, wherein the first wet end additive comprises an ethoxylated vegetable oil.
  • 9. The multi-layer through air dried tissue of claim 1, wherein the ratio by weight of the second wet end additive to the first wet end additive in the tissue is at least eight to one.
  • 10. The multi-layer through air dried tissue of claim 9, wherein the ratio by weight of the second wet end additive to the first wet end additive in the tissue is at most ninety to one.
  • 11. The multi-layer through air dried tissue of claim 1, wherein the tissue has a softness of at least 90.
  • 12. The multi-layer through air dried tissue of claim 1, wherein the tissue has a bulk softness of less than 10 TS7.
  • 13. The multi-layer through air dried tissue of claim 1, wherein the ionic surfactant comprises a debonder.
  • 14. The multi-layer through air dried tissue of claim 1, wherein the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a basis weight of less than 25 gsm.
  • 15. The multi-layer through air dried tissue of claim 1, wherein the tissue has a tensile strength of at least 35 N/m, a softness of at least 90 and a caliper of less than 650 microns.
  • 16. The multi-layer through air dried tissue of claim 1, wherein the first exterior layer is comprised of at least 75% by weight of hardwood fibers.
  • 17. The multi-layer through air dried tissue of claim 1, wherein the interior layer is comprised of at least 75% by weight of softwood fibers.
  • 18. The multi-layer through air dried tissue of claim 1, wherein the first and second exterior layers are substantially free of any surface deposited softener agents or lotions.
  • 19. The multi-layer through air dried tissue of claim 1, wherein at least one of the first or second exterior layers comprises a surface deposited softener agent or lotion.
  • 20. The multi-layer through air dried tissue of claim 1, wherein the tissue has a softness of at least 95.
  • 21. The multi-layer through air dried tissue of claim 1, wherein the non-ionic surfactant has a hydrophilic-lipophilic balance of less than 10.
  • 22. The multi-layer through air dried tissue of claim 1, wherein the tissue has a lint value of 7.5 or greater.
RELATED APPLICATIONS

This application is a continuation of 15/443,885, filed Feb. 27, 2017, which is a continuation of U.S. patent application Ser. No. 15/170,746, filed Jun. 1, 2016, now U.S. Pat. No. 9,580,872, which is a continuation of U.S. patent application Ser. No. 14/534,631, filed Nov. 6, 2014, now U.S. Pat. No. 9,382,666, which in turn is a divisional of U.S. patent application Ser. No. 13/837,685, filed Mar. 15, 2013, now U.S. Pat. No. 8,968,517, which in turn is based on and claims priority to U.S. Provisional Application No. 61/679,337, filed Aug. 3, 2012, and the contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (425)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmalz Jul 1965 A
3224986 Butler et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
4836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositake Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chiu et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschnner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 Dipalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Burgess et al. Jun 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Barnholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Sep 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. May 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 VanderTuin et al. Jan 2007 B2
7157389 Bran Ham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 VanderTuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Floding et al. Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842163 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
8034463 Leimbach et al. Oct 2011 B2
8051629 Pazdemik et al. Nov 2011 B2
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980062 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorensson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Elony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Edwards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090218056 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150059995 Ramaratnam et al. Mar 2015 A1
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160145810 Miller, IV et al. May 2016 A1
20160159007 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170226698 Lebrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170253422 Anklam et al. Sep 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (40)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
200382550 Oct 2003 WO
200445834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
201500755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Jun 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Non-Patent Literature Citations (24)
Entry
International Search Report for PCT/US16/56871 dated Jan. 12,2017.
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12,2017.
International Search Report for PCT/US2016/057163 dated Dec. 23, 2016.
Written Opinion of International Searching Authority for PCT/US2016/057163 dated Dec. 23, 2016.
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017.
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017.
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017.
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017.
International Search Report for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US15/63986 dated Mar. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016.
International Search Report for PCT/US15/64284 dated Feb. 11, 2016.
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016.
International Search Report for PCT/US13/53593 dated Dec. 30, 2013.
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013.
International Search Report for PCT/US15/31411 dated Aug. 13, 2015.
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015.
International Search Report for PCT/US15/60398 dated Jan. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016.
International Search Report for PCT/US15/62483 dated May 6, 2016.
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015.
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016.
Related Publications (1)
Number Date Country
20170298574 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
61679337 Aug 2012 US
Divisions (1)
Number Date Country
Parent 13837685 Mar 2013 US
Child 14534631 US
Continuations (3)
Number Date Country
Parent 15443885 Feb 2017 US
Child 15642133 US
Parent 15170746 Jun 2016 US
Child 15443885 US
Parent 14534631 Nov 2014 US
Child 15170746 US