The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other items directed to media playback or some aspect thereof.
Digital music has become readily available due in part to the development of consumer level technology that has allowed people to listen to digital music on a personal audio device. The consumer's increasing preference for digital audio has also resulted in the integration of personal audio devices into PDAs, cellular phones, and other mobile devices. The portability of these mobile devices has enabled people to take the music listening experience with them and outside of the home. People have become able to consume digital music, like digital music files or even Internet radio, in the home through the use of their computer or similar devices. Now there are many different ways to consume digital music, in addition to other digital content including digital video and photos, stimulated in many ways by high-speed Internet access at home, mobile broadband Internet access, and the consumer's hunger for digital media.
Until recently, options for accessing and listening to digital audio in an out-loud setting were severely limited. In 2005, Sonos offered for sale its first digital audio system that enabled people to, among many other things, access virtually unlimited sources of audio via one or more networked connected playback devices, dynamically group or ungroup playback devices upon command, wirelessly send the audio over a local network amongst playback devices, and play the digital audio out loud across multiple playback devices in synchrony. The Sonos system can be controlled by software applications running on network capable mobile devices and computers.
Given the insatiable appetite of consumers towards digital media, there continues to be a need to develop consumer technology that revolutionizes the way people access and consume digital media.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
In addition, the drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
Embodiments described herein relate to a media playback system in which one or more software applications may be installed thereon that operate as add-on software component(s) to audio-playback software. An application identifier may be displayed on a controller of the media playback system that indicates the one or more software applications are assigned to the playback device, which may be part of a zone of the media playback system. The one or more software applications may be configured to add or to alter functionality of the audio-playback software, where the audio-playback software refers to software configured to cause the playback device to reproduce audio, among other functions. Audio-playback software is typically installed on new playback device(s) by the manufacturer.
In some embodiments, the one or more add-on software applications can be installed onto a playback device or group of playback devices. As noted above, each of the one or more software applications may operate as a respective add-on component to the audio-playback software. Though the examples of add-on software applications may be virtually endless and oftentimes limited by the imagination of the developer, by way of illustration, an example software application may operate as one or more third-party equalizer pre-sets that adjust frequency components of audio played by the playback device.
In an embodiment, a user interface of a controller of a media playback system displays a zone identifier that identifies a zone of the media playback system. The zone may include one or more playback devices where each playback device comes from the manufacturer with audio-playback software installed. The user interface may also display an application identifier in association with the zone identifier to indicate that a software application installed on one or more of the playback devices associated with the zone is configured to operate as an add-on software component to the audio-playback software. A particular software application that is configured to operate as an add-on component to the audio-playback software may be referred to as being assigned to the zone or active in the zone.
In an embodiment, the arrangement of the zone identifier and application identifier on a user interface may indicate that: (1) the software application is installed on one or more playback devices that are associated with a particular zone or zone group; and/or (2) the software application is presently configured to operate as an add-on software component to the audio-playback software on one or more of the playback devices associated with the zone. When the software application is not presently operating as an add-on software component, the application identifier may change its appearance, such as by dimming or graying out, or, in other embodiments, the application identifier is not displayed on the user interface.
In an embodiment, a playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon. In an embodiment, the playback device receives the software application from a remote server via the interface and the playback device installs the software application. In an embodiment, the playback device sends status information to a controller of the media playback system indicating that the software application is installed on the playback device.
In an embodiment, a playback device may receive a command from the controller of the media playback system to assign the software application to the zone of the media playback system. Once assigned, the software application may be configured to operate as an add-on software component to the audio-playback software.
As indicated above, the present application relates to a software application that is configured to operate as an add-on software component to audio-playback software on a playback device of a media playback system. In one aspect, a method is provided. The method involves displaying, on a user interface of a controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes one or more playback device that have audio-playback software installed thereon. The method also involves displaying, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on one or more of the playback devices that are associated with the zone is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a device is provided. The device includes a user interface; a network interface; a processor; a data storage; and a program logic stored in the data storage and executable by the processor to: display, on the user interface of the controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes a playback device that has audio-playback software installed thereon; and display, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on the playback device is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a controller to cause the controller to perform functions. The functions include displaying, on a user interface of a controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes one or more playback devices that have audio-playback software installed thereon. The functions further include displaying, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on one or more of the playback devices that are associated with the zone is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a second method is provided. The method involves providing an interface to receive a software application on a playback device, where the playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon; sending status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device and receiving a command from the controller of the media playback system to assign the software application to the zone of the media playback system, where the software application is configured to operate as an add-on software component to the audio-playback software.]
In another aspect, a playback device is provided. The playback device includes a network interface; a processor; a data storage; and a program logic stored in the data storage and executable by the processor to: receive a software application via a network interface, where the playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon; send status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device; and receive a command from the controller of the media playback system to assign the software application to the zone of the media playback system, where the software application is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a second non-transitory computer readable medium is provided. The non-transitory computer readable memory has stored thereon instructions executable by a controller to cause the controller to perform functions. The functions include receiving a command from a controller of a media playback system to assign a software application to a zone of the media playback system, where the playback device (a) is configured to play audio in the zone of the media playback system, and (b) has audio-playback software installed thereon; providing an interface to receive the software application on the playback device, where the software application is configured to operate as an add-on software component to the audio-playback software; and sending status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device.
Other embodiments, as those discussed in the following and others as can be appreciated by one having ordinary skill in the art are also possible.
Referring now to the drawings, in which like numerals can refer to like parts throughout the figures,
By way of illustration, the media system configuration 100 is associated with a home having multiple zones, although it should be understood that the home could be configured with only one zone. Additionally, one or more zones can be added to the configuration 100 over time. Each zone may be assigned by a user to a different room or space, such as, for example, an office, bathroom, bedroom, kitchen, dining room, family room, home theater room, utility or laundry room, and patio. A single zone might also include multiple rooms or spaces if so configured. With respect to
The media system configuration 100 illustrates an example whole house media system, though it is understood that the technology described herein is not limited to, among other things, its particular place of application or to an expansive system like a whole house media system 100 of
a. Example Playback Devices
Referring back to
By way of illustration, SONOS, Inc. of Santa Barbara, Calif. presently offers for sale playback devices referred to as a “PLAY:5,” “PLAY:3,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices can additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the particular examples illustrated in
b. Example Controllers
In some embodiments, if more than one controller is used in system 100 of
In addition, an application running on any network-enabled portable device, such as an iPhone™, iPad™, Android™ powered phone or tablet, or any other smart phone or network-enabled device can be used as controller 130. An application running on a laptop or desktop personal computer (PC) or Mac™ can also be used as controller 130. Such controllers may connect to system 100 through an interface with data network 128, a playback device, a wireless router, or using some other configured connection path. Example controllers offered by Sonos, Inc. of Santa Barbara, Calif. include a “Controller 200,” “SONOS® CONTROL,” “SONOS® Controller for iPhone™,” “SONOS® Controller for iPad™,” “SONOS® Controller for Android™,” “SONOS® Controller for Mac™ or PC.”
c. Example Data Connection
Playback devices 102-124 of
In some embodiments, connecting any of the playback devices 102-124, or some other connecting device, to a broadband router, can create data network 128. Other playback devices 102-124 can then be added wired or wirelessly to the data network 128. For example, a playback device (e.g., any of playback devices 102-124) can be added to the system configuration 100 by simply pressing a button on the playback device itself (or perform some other action), which enables a connection to be made to data network 128. The broadband router can be connected to an Internet Service Provider (ISP), for example. The broadband router can be used to form another data network within the system configuration 100, which can be used in other applications (e.g., web surfing). Data network 128 can also be used in other applications, if so programmed. An example, second network may implement SONOSNET™ protocol, developed by SONOS, Inc. of Santa Barbara. SONOSNET™ represents a secure, AES-encrypted, peer-to-peer wireless mesh network. Alternatively, in certain embodiments, the data network 128 is the same network, such as a traditional wired or wireless network, used for other applications in the household.
d. Example Zone Configurations
A particular zone can contain one or more playback devices. For example, the family room of
In some embodiments, if a zone contains two or more playback devices, such as the two playback devices 106 and 108 in the family room, then the two playback devices 106 and 108 can be configured to play the same audio source in synchrony, or the two playback devices 106 and 108 can be paired to play two separate sounds in left and right channels, for example. In other words, the stereo effects of a sound can be reproduced or enhanced through the two playback devices 106 and 108, one for the left sound and the other for the right sound. In certain embodiments, paired playback devices (also referred to as “bonded playback devices”) can play audio in synchrony with other playback devices in the same or different zones.
In some embodiments, two or more playback devices can be sonically consolidated to form a single, consolidated playback device. A consolidated playback device (though made up of multiple, separate devices) can be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device will have additional speaker drivers from which sound can be passed. The consolidated playback device can further be paired with a single playback device or yet another consolidated playback device. Each playback device of a consolidated playback device can be set in a consolidated mode, for example.
According to some embodiments, one can continue to do any of: group, consolidate, and pair playback devices, for example, until a desired configuration is complete. The actions of grouping, consolidation, and pairing are preferably performed through a control interface, such as using controller 130, and not by physically connecting and re-connecting speaker wire, for example, to individual, discrete speakers to create different configurations. As such, certain embodiments described herein provide a more flexible and dynamic platform through which sound reproduction can be offered to the end-user.
e. Example Audio Sources
In some embodiments, each zone can play from the same audio source as another zone or each zone can play from a different audio source. For example, someone can be grilling on the patio and listening to jazz music via playback device 124, while someone is preparing food in the kitchen and listening to classical music via playback device 102. Further, someone can be in the office listening to the same jazz music via playback device 110 that is playing on the patio via playback device 124. In some embodiments, the jazz music played via playback devices 110 and 124 is played in synchrony. Synchronizing playback amongst zones allows for an individual to pass through zones while seamlessly (or substantially seamlessly) listening to the audio. Further, zones can be put into a “party mode” such that all associated zones will play audio in synchrony.
Sources of audio content to be played by playback devices 102-124 are numerous. In some embodiments, audio on a playback device itself may be accessed and played. In some embodiments, audio on a controller may be accessed via the data network 128 and played. In some embodiments, music from a personal library stored on a computer or networked-attached storage (NAS) may be accessed via the data network 128 and played. In some embodiments, Internet radio stations, shows, and podcasts may be accessed via the data network 128 and played. Music or cloud services that let a user stream and/or download music and audio content may be accessed via the data network 128 and played. Further, music may be obtained from traditional sources, such as a turntable or CD player, via a line-in connection to a playback device, for example. Audio content may also be accessed using a different protocol, such as Airplay™, which is a wireless technology by Apple, Inc., for example. Audio content received from one or more sources can be shared amongst the playback devices 102 to 124 via data network 128 and/or controller 130. The above-disclosed sources of audio content are referred to herein as network-based audio information sources. However, network-based audio information sources are not limited thereto.
In some embodiments, the example home theater playback devices 116, 118, 120 are coupled to an audio information source such as a television 132. In some examples, the television 132 is used as a source of audio for the home theater playback devices 116, 118, 120, while in other examples audio information from the television 132 may be shared with any of the playback devices 102-124 in the audio system 100.
Referring now to
In some embodiments, network interface 402 facilitates a data flow between playback device 400 and other devices on a data network 128. In some embodiments, in addition to getting audio from another playback device or device on data network 128, playback device 400 may access audio directly from the audio source, such as over a wide area network or on the local network. In some embodiments, the network interface 402 can further handle the address part of each packet so that it gets to the right destination or intercepts packets destined for the playback device 400. Accordingly, in certain embodiments, each of the packets includes an Internet Protocol (IP)-based source address as well as an IP-based destination address.
In some embodiments, network interface 402 can include one or both of a wireless interface 404 and a wired interface 406. The wireless interface 404, also referred to as a radio frequency (RF) interface, provides network interface functions for the playback device 400 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), component(s) associated with the data network 128, and so on) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). Wireless interface 404 may include one or more radios. To receive wireless signals and to provide the wireless signals to the wireless interface 404 and to transmit wireless signals, the playback device 400 includes one or more antennas 420. The wired interface 406 provides network interface functions for the playback device 400 to communicate over a wire with other devices in accordance with a communication protocol (e.g., IEEE 802.3). In some embodiments, a playback device includes multiple wireless 404 interfaces. In some embodiments, a playback device includes multiple wired 406 interfaces. In some embodiments, a playback device includes both of the interfaces 404 and 406. In some embodiments, a playback device 400 includes only the wireless interface 404 or the wired interface 406.
In some embodiments, the processor 408 is a clock-driven electronic device that is configured to process input data according to instructions stored in memory 410. The memory 410 is data storage that can be loaded with one or more software module(s) 414, which can be executed by the processor 408 to achieve certain tasks. In the illustrated embodiment, the memory 410 is a tangible machine-readable medium storing instructions that can be executed by the processor 408. In some embodiments, a task might be for the playback device 400 to retrieve audio data from another playback device or a device on a network (e.g., using a uniform resource locator (URL) or some other identifier). In some embodiments, a task may be for the playback device 400 to send audio data to another playback device or device on a network. In some embodiments, a task may be for the playback device 400 to synchronize playback of audio with one or more additional playback devices. In some embodiments, a task may be to pair the playback device 400 with one or more playback devices to create a multi-channel audio environment. Additional or alternative tasks can be achieved via the one or more software module(s) 414 and the processor 408.
The audio processing component 412 can include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor, and so on. In some embodiments, the audio processing component 412 may be part of processor 408. In some embodiments, the audio that is retrieved via the network interface 402 is processed and/or intentionally altered by the audio processing component 412. Further, the audio processing component 412 can produce analog audio signals. The processed analog audio signals are then provided to the audio amplifier 416 for playback through speakers 418. In addition, the audio processing component 412 can include circuitry to process analog or digital signals as inputs to play from playback device 400, send to another playback device on a network, or both play and send to another playback device on the network. An example input includes a line-in connection (e.g., an auto-detecting 3.5 mm audio line-in connection).
The audio amplifier 416 is a device(s) that amplifies audio signals to a level for driving one or more speakers 418. The one or more speakers 418 can include an individual transducer (e.g., a “driver”) or a complete speaker system that includes an enclosure including one or more drivers. A particular driver can be a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and a tweeter (e.g., for high frequencies), for example. An enclosure can be sealed or ported, for example. Each transducer may be driven by its own individual amplifier.
A commercial example, presently known as the PLAY:5™, is a playback device with a built-in amplifier and speakers that is capable of retrieving audio directly from the source, such as on the Internet or on the local network, for example. In particular, the PLAY:5™ is a five-amp, five-driver speaker system that includes two tweeters, two mid-range drivers, and one woofer. When playing audio content via the PLAY:5, the left audio data of a track is sent out of the left tweeter and left mid-range driver, the right audio data of a track is sent out of the right tweeter and the right mid-range driver, and mono bass is sent out of the subwoofer. Further, both mid-range drivers and both tweeters have the same equalization (or substantially the same equalization). That is, they are both sent the same frequencies but from different channels of audio. Audio from Internet radio stations, online music and video services, downloaded music, analog audio inputs, television, DVD, and so on, can be played from the PLAY:5™
Referring now to
Controller 500 is provided with a screen 502 and an input interface 514 that allows a user to interact with the controller 500, for example, to navigate a playlist of many multimedia items and to control operations of one or more playback devices. The screen 502 on the controller 500 can be an LCD screen, for example. The screen 500 communicates with and is commanded by a screen driver 504 that is controlled by a microcontroller (e.g., a processor) 506. The memory 510 can be loaded with one or more application modules 512 that can be executed by the microcontroller 506 with or without a user input via the user interface 514 to achieve certain tasks. In some embodiments, an application module 512 is configured to facilitate grouping a number of selected playback devices into a zone group to facilitate synchronized playback amongst the playback devices in the zone group. In some embodiments, an application module 512 is configured to control the audio sounds (e.g., volume) of the playback devices in a zone group. In operation, when the microcontroller 506 executes one or more of the application modules 512, the screen driver 504 generates control signals to drive the screen 502 to display an application specific user interface accordingly.
The controller 500 includes a network interface 508 that facilitates wired or wireless communication with a playback device. In some embodiments, the commands such as volume control and audio playback synchronization are sent via the network interface 508. In some embodiments, a saved zone group configuration is transmitted between a playback device and a controller via the network interface 508. The controller 500 can control one or more playback devices, such as 102-124 of
It should be noted that other network-enabled devices such as an iPhone™, iPad™ or any other smart phone or network-enabled device (e.g., a networked computer such as a PC or Mac™) can also be used as a controller to interact or control playback devices in a particular environment. In some embodiments, a software application or upgrade can be downloaded onto a network-enabled device to perform the functions described herein.
In certain embodiments, a user can create a zone group (also referred to as a bonded zone) including at least two playback devices from the controller 500. The playback devices in the zone group can play audio in a synchronized fashion, such that all of the playback devices in the zone group playback an identical audio source or a list of identical audio sources in a synchronized manner such that no (or substantially no) audible delays or hiccups are to be heard. Similarly, in some embodiments, when a user increases the audio volume of the group from the controller 500, the signals or data of increasing the audio volume for the group are sent to one of the playback devices and causes other playback devices in the group to be increased together in volume.
A user via the controller 500 can group playback devices into a zone group by activating a “Link Zones” or “Add Zone” soft button, or de-grouping a zone group by activating an “Unlink Zones” or “Drop Zone” button. For example, one mechanism for ‘joining’ playback devices together for audio playback is to link a number of playback devices together to form a group. To link a number of playback devices together, a user can manually link each playback device or room one after the other. For example, assume that there is a multi-zone system that includes the following zones: Bathroom, Bedroom, Den, Dining Room, Family Room, and Foyer. In certain embodiments, a user can link any number of the six playback devices, for example, by starting with a single zone and then manually linking each zone to that zone.
In certain embodiments, a set of zones can be dynamically linked together using a command to create a zone scene or theme (subsequent to first creating the zone scene). For instance, a “Morning” zone scene command can link the Bedroom, Office, and Kitchen zones together in one action. Without this single command, the user would manually and individually link each zone. The single command may include a mouse click, a double mouse click, a button press, a gesture, or some other programmed or learned action. Other kinds of zone scenes can be programmed or learned by the system over time.
In certain embodiments, a zone scene can be triggered based on time (e.g., an alarm clock function). For instance, a zone scene can be set to apply at 8:00 am. The system can link appropriate zones automatically, set specific music to play, and then stop the music after a defined duration and revert the zones to their prior configuration. Although any particular zone can be triggered to an “On” or “Off” state based on time, for example, a zone scene enables any zone(s) linked to the scene to play a predefined audio (e.g., a favorable song, a predefined playlist) at a specific time and/or for a specific duration. If, for any reason, the scheduled music failed to be played (e.g., an empty playlist, no connection to a share, failed Universal Plug and Play (UPnP), no Internet connection for an Internet Radio station, and so on), a backup buzzer can be programmed to sound. The buzzer can include a sound file that is stored in a playback device, for example.
As discussed above, in some embodiments, a playback device may be assigned to a playback queue identifying zero or more media items for playback by the playback device. The media items identified in a playback queue may be represented to the user via an interface on a controller. For instance, the representation may show the user (or users if more than one controller is connected to the system) how the playback device is traversing the playback queue, such as by highlighting the “now playing” item, graying out the previously played item(s), highlighting the to-be-played item(s), and so on.
In some embodiments, a single playback device is assigned to a playback queue. For example, playback device 114 in the bathroom of
In some embodiments, a zone or zone group is assigned to a playback queue. For example, playback devices 106 and 108 in the family room of
As such, when zones or zone groups are “grouped” or “ungrouped” dynamically by the user via a controller, the system will, in some embodiments, establish or remove/rename playback queues respectively, as each zone or zone group is to be assigned to a playback queue. In other words, the playback queue operates as a container that can be populated with media items for playback by the assigned zone. In some embodiments, the media items identified in a playback queue can be manipulated (e.g., re-arranged, added to, deleted from, and so on).
By way of illustration,
In one example, the example audio sources 662 and 664, and example media items 620 may be partially stored on a cloud network, discussed more below in connection to
Each of the example media items 620 may be a list of media items playable by a playback device(s). In one embodiment, the example media items may be a collection of links or pointers (i.e., URI) to the underlying data for media items that are stored elsewhere, such as the audio sources 662 and 664. In another embodiment, the media items may include pointers to media content stored on the local playback device, another playback device over a local network, or a controller device connected to the local network.
As shown, the example network 600 may also include an example queue 602 associated with the playback device 612, and an example queue 604 associated with the playback device 614. Queue 606 may be associated with a group, when in existence, comprising playback devices 612 and 614. Queue 606 might comprise a new queue or exist as a renamed version of queue 602 or 604. In some embodiments, in a group, the playback devices 612 and 614 would be assigned to queue 606 and queue 602 and 604 would not be available at that time. In some embodiments, when the group is no longer in existence, queue 606 is no longer available. Each playback device and each combination of playback devices in a network of playback devices, such as those shown in
A playback queue, such as playback queues 602-606, may include identification of media content to be played by the corresponding playback device or combination of playback devices. As such, media items added to the playback queue are to be played by the corresponding playback device or combination of playback devices. The playback device may be configured to play items in the queue according to a specific order (such as an order in which the items were added), in a random order, or in some other order.
The playback queue may include a combination of playlists and other media items added to the queue. In one embodiment, the items in playback queue 602 to be played by the playback device 612 may include items from the audio sources 662, 664, or any of the media items 622-632. The playback queue 602 may also include items stored locally on the playback device 612, or items accessible from the playback device 614. For instance, the playback queue 602 may include Internet radio 626 and album 632 items from audio source 662, and items stored on the playback device 612.
When a media item is added to the queue via an interface of a controller, a link to the item may be added to the queue. In a case of adding a playlist to the queue, links to the media items in the playlist may be provided to the queue. For example, the playback queue 602 may include pointers from the Internet radio 626 and album 632, pointers to items on the audio source 662, and pointers to items on the playback device 612. In another case, a link to the playlist, for example, rather than a link to the media items in the playlist may be provided to the queue, and the playback device or combination of playback devices may play the media items in the playlist by accessing the media items via the playlist. For example, the album 632 may include pointers to items stored on audio source 662. Rather than adding links to the items on audio source 662, a link to the album 632 may be added to the playback queue 602, such that the playback device 612 may play the items on the audio source 662 by accessing the items via pointers in the album 632.
In some cases, contents as they exist at a point in time within a playback queue may be stored as a playlist, and subsequently added to the same queue later or added to another queue. For example, contents of the playback queue 602, at a particular point in time, may be saved as a playlist, stored locally on the playback device 612 and/or on the cloud network. The saved playlist may then be added to playback queue 604 to be played by playback device 614.
Particular examples are now provided in connection with
Using the Ad-Hoc network 710, the devices 702, 704, 706, and 708 can share or exchange one or more audio sources and be dynamically grouped (or ungrouped) to play the same or different audio sources. For example, the devices 702 and 704 are grouped to playback one piece of music, and at the same time, the device 706 plays back another piece of music. In other words, the devices 702, 704, 706 and 708, as shown in
In certain embodiments, a household identifier (HHID) is a short string or an identifier that is computer-generated to help ensure that it is unique. Accordingly, the network 710 can be characterized by a unique HHID and a unique set of configuration variables or parameters, such as channels (e.g., respective frequency bands), service set identifier (SSID) (a sequence of alphanumeric characters as a name of a wireless network), and WEP keys (wired equivalent privacy) or other security keys. In certain embodiments, SSID is set to be the same as HHID.
In certain embodiments, each HOUSEHOLD includes two types of network nodes: a control point (CP) and a playback device (ZP). The control point controls an overall network setup process and sequencing, including an automatic generation of required network parameters (e.g., security keys). In an embodiment, the CP also provides the user with a HOUSEHOLD configuration user interface. The CP function can be provided by a computer running a CP application module, or by a handheld controller (e.g., the controller 308) also running a CP application module, for example. The playback device is any other device on the network that is placed to participate in the automatic configuration process. The ZP, as a notation used herein, includes the controller 308 or a computing device, for example. In some embodiments, the functionality, or certain parts of the functionality, in both the CP and the ZP are combined at a single node (e.g., a ZP contains a CP or vice-versa).
In certain embodiments, configuration of a HOUSEHOLD involves multiple CPs and ZPs that rendezvous and establish a known configuration such that they can use a standard networking protocol (e.g., IP over Wired or Wireless Ethernet) for communication. In an embodiment, two types of networks/protocols are employed: Ethernet 802.3 and Wireless 802.11g. Interconnections between a CP and a ZP can use either of the networks/protocols. A device in the system as a member of a HOUSEHOLD can connect to both networks simultaneously.
In an environment that has both networks in use, it is assumed that at least one device in a system is connected to both as a bridging device, thus providing bridging services between wired/wireless networks for others. The playback device 706 in
It is understood, however, that in some embodiments each playback device 706, 704, 702 may access the Internet when retrieving media from the cloud (e.g., the Internet) via the bridging device. For example, playback device 702 may contain a uniform resource locator (URL) that specifies an address to a particular audio track in the cloud. Using the URL, the playback device 702 may retrieve the audio track from the cloud, and ultimately play the audio out of one or more playback devices.
As illustrated by the example system 800 of
Certain embodiments described herein relate to a software application that is configured to operate as an add-on software component to audio-playback software on a playback device of a media playback system.
Audio-playback software refers to software installed on a playback device by the manufacturer in order for the playback device to reproduce audio and perform other functions. Versions of audio-playback software can be updated from time to time. By way of illustration, playback devices offered for sale by Sonos, Inc., are purchased with audio-playback software and such software is be upgradable to newer versions of the audio-playback software as new versions are released.
In an embodiment, a controller of a media playback system may display, on the user interface of the controller, an application identifier in association with a zone identifier. The zone identifier may identify a zone of the media playback system, where the zone includes one or more playback devices that have audio-playback software installed thereon. The application identifier may indicate that a software application installed on one or more of the playback devices is actively configured to operate as an add-on software component to the audio-playback software.
In addition, for the method 900 and other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 900 and other processes and methods disclosed herein, each block in
a. Displaying a Zone Identifier that Identifies a Zone of a Media Playback System
At block 902, method 900 involves displaying, on a user interface of a controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes a playback device that has audio-playback software installed thereon. The controller may be any suitable controller including, for example, the controller described above in connection with
The user interface may be any suitable user interface communicatively coupled to the controllers and may be remote from and/or local to the controller. In an embodiment, the user interface may be a graphical display that is physically integrated with the controller. For instance, the graphical display may take the form of a screen that is a part of the controller, such as screen 502 described above in connection with controller 500 shown in
The zone, or similarly, zone group, may be any suitable arrangement of one or more playback devices including, for example, the playback devices described above in connection with
In
In further embodiments, additional zone identifiers may also be displayed on graphical display 1000, each of which may indicate a respective zone. In some embodiments, such additional zones may be indicated by numbers, such as “2”, “3”, or “4”. In other embodiments, zones may be identified by descriptors, such as “Living Room,” “Bedroom,” or “Office.” In yet other embodiments, zones may be indicated by one or more graphical elements or animations. Many other examples are possible as well.
In an embodiment, zone identifier 1002 may be selectable such that a user of the controller may select zone identifier 1002 to start audio playing in zone one, to make zone one active, or to make zone one presently under control by the controller, among other examples.
Graphical display 1000 is shown as also including elements other than zone identifier 1002. However, it should be understood that no such other elements need to be displayed. These other elements, discussed further below, are shown for purposes of example and explanation only. In a given embodiment, and at a given point in time, such elements as well as other elements not shown, may be displayed by the graphical display coincident with the display of zone identifier 1002.
Graphical display 1000 is also shown as including track/album art 1008. Track/album art 1008 may provide any suitable and/or desirable graphical representation of an audio track that is currently being played, such as album art associated with the track. Graphical display 1000 is also shown as including audio identification 1010. Audio identification 1010 may include indications including, for example, an indication of the artist name, the track name, the album name, and the name of a next song to be played. However, neither track/album art 1008 nor audio identification 1010 need necessarily be displayed.
Graphical display 1000 is further shown as including playback controls 1012. Playback controls 1012 may include (but need not necessarily include), for example, a forward button, a back button, a pause button, and/or a play button.
In an embodiment where the graphical display corresponds to a touch interface, zone identifier 1002 and playback controls 1012 may be selectable, for example, by the proximity of a human hand, the touch of a human finger, or a stylus to the touch interface, and so on. In an embodiment where the graphical display does not correspond to a touch interface, zone identifier 1002 and playback controls 1012 may be selected by use of a pointer device coupled to the controller, such as a mouse. Other examples may exist as well.
b. Displaying an Application Identifier in Association with the Zone Identifier
Referring back to
In further embodiments, additional application identifiers may also be displayed on graphical display 1000 where each additional application identifier indicates a respective software application. Such additional playback devices may be indicated by descriptors in the form of letters, such as “a”, or “b”. In other embodiments, software applications may be identified by word descriptors. As noted above, many other examples of identifying symbols, numbers, letters, words, or phrases are certainly possible. In some embodiments, graphical icons, drawings, and animations may be used as identifiers as well.
In some embodiments, when the software application is inactive, the application identifier may change its appearance, such as by dimming or graying out the application identifier. In other embodiments, the application identifier is not displayed on the user interface when the software application is inactive. In further embodiments, when the software application is active, the change in appearance of the application identifier may be reversed, such as by not dimming the application identifier. When more than one application identifier is displayed on the graphical display, in some embodiments, the application identifier indicating an active software application may appear on the graphical display, and the other application identifiers indicating inactive software applications may be dimmed.
In an embodiment, the software application may be configured to operate as an add-on software component to the audio-playback software. In some embodiments, the software application may be configured to add to functionality of the audio-playback software. For example, the software application may add additional features to the audio-playback software. For example, the software application may add additional audio processing features to the audio-playback software.
In other embodiments, the software application may be configured to alter functionality of the audio-playback software. For example, the software application may be configured to operate as one or more equalizer pre-sets that adjust frequency components of audio played by the media playback device. In some embodiments, the one or more equalizer pre-sets may relate to specific genres of music. For example, a particular equalizer pre-set for rock music may increase the amplitude of mid-range frequencies while another particular equalizer for pop music may increase the low-range and high-range frequencies. In other embodiments, the one or more equalizer pre-sets may relate to one or more artists. For example, a particular equalizer pre-set may be set according to the preference of the artist. In other embodiments, the one or more equalizer pre-sets may relate to one or more music labels.
By way of illustration, a developer may write a software application that extends or enhances functionality of the media playback system. In some cases, the developer may be a third party in relation to manufacturers of the media playback system and users of the media playback system. However, it is understood that the manufacturer (instead of, or in addition to, a third party developer) may also develop software applications that can be layered on the audio-playback software. Regardless of the developer, each user of a particular media playback system can choose which software applications to install and assign to their respective media playback system. Software applications may be offered for an additional cost. In some circumstances, software applications may be offered free of charge or free via an advertisement support. To facilitate development by third party developers of software applications configured to operate as add-on software components, manufacturers of playback device may provide an application programming interface (API) that specifies how software applications should operate with the audio-playback software.
As noted above, in some embodiments, the one or more equalizer pre-sets may relate to equalizer preferences that may be configured by a user. For example, the equalizer preferences may be individual preferences of a user of the media playback system. Or, the equalizer preferences may be a particular artist's preferences, a particular music producer's preferences, or a particular composer's preferences, among other examples.
In some embodiments, before displaying the application identifier in association with the zone identifier, the controller may determine that the application identifier is in association with the zone identifier. The determination may be based on a song, such as a currently playing song. For example, the determination may be based on metadata of the currently playing song.
In some embodiments, the controller may operate according to one or more user profiles. A particular one of the one or more user profiles may indicate the currently active user. In such embodiments, before displaying the application identifier in association with the zone identifier, the controller may determine whether the user profile is authorized to activate the software application indicated by the application identifier. The determination may be based on whether the user profile is associated with a license. For example, licenses to the software application may be purchased on a per-user basis where each license of the software application is linked to a respective user. The user of the controller may be identified based on user authentication data such as a user name and password combination, a passcode, or a user profile, among other types of user authentication data.
In some embodiments, the controller may determine whether operation of the software application is authorized before displaying the application identifier in association with the zone identifier. In one embodiment, the determination may be based on whether the software application is active in any other zones of the media playback system. For example, the software application may have a per-unit charge, such that a single license of the software application may allow the software application to operate as an add-on software component to the audio-playback software in one zone at a time.
In some embodiments, the controller may cause the software application to be installed on the playback device. For example, the controller may send the software application to the playback device. Or, the controller may cause the playback device to download the software application from a remote server or another device on the local network. The software application may be installed in memory, such as memory 410 in
In another embodiment, the controller receives the software application from a network device such as, for example, a remote server. The remote server may be connected to the controller via a network, such as the networks described in
In some embodiments, the controller may assign the software application to the zone. Assigning the software application to the zone may involve enabling or activating the software on one or more playback devices in the zone such that the software application operates as an add-on software component to audio-playback software on one or more of the playback devices. However, in some embodiments, the software application may be assigned to the zone and be inactive.
Alternatively, assigning the software application to the zone may involve sending the software application to the playback device. For example, the controller may send the software application to the playback device. Or, the controller may cause a remote server to send the software application to the playback device. Other examples are possible as well.
As noted above,
In an embodiment, the controller determines that the zone is playing audio, where the “audio played” is associated with the software application. For example, the played audio may be a song that has associated characteristics, such as metadata, which may include one or more of: an artist, a label, a genre, a music producer, and/or an album, among other examples. As noted above, the controller may be configured to retrieve and navigate a playlist of audio items, modify and/or clear the playback queue of one or more playback devices, control other operations of one or more playback devices, and provide overall control of the system configuration. In an embodiment, the controller may refer to the playback queue of the playback device and determine the track to be played, if any, and the characteristics associated with the track. If the characteristics associated with the track correspond to the software application, the controller may cause the software application to be executed on the playback device.
In an embodiment, the controller determines that the software application has been disassociated with the zone. In some embodiments, the software application may become disassociated when the played audio associated with the software application stops playing, such as a track ends, or when a another track is selected by using playback controls, such as playback controls 1012 in
In an embodiment, the zone may include two or more playback devices. Each of the two or more playback devices may have audio-playback software installed thereon. In such embodiments, the software application may be installed on each of the two or more playback devices and may be configured to operate as an add-on software component to the audio-playback software installed on each respective playback device. In other embodiments, the software application may be installed on a subset of the playback devices in the zone and may be configured to operate as an add-on software component to the audio playback software installed on each respective playback device in the subset of playback devices in the zone.
As noted above, in some embodiments, the media playback system may include multiple zones. In an embodiment, the controller may reassign the software application from the zone to a different zone. Reassigning the software application may cause the software application to operate as the add-on software component to audio-playback software on one or more playback devices of the different zone and no longer operate on the previous zone.
In contrast,
User interfaces 1100A and 1100B shown in
Returning to
As discussed above, embodiments described herein may relate to a software application that is configured to operate as an add-on software component to audio-playback software on a playback device of a media playback system. In some embodiments, the software application is developed by a third party who wishes to create a software application for use by the media playback system. In some embodiments, the software application may be assigned to one or more playback devices of the same zone and/or different zones. As discussed above, the software application may be configured to add or to alter functionality of the audio-playback software.
In addition, for the method 1200 and other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 800 and other processes and methods disclosed herein, each block in
a. Providing an Interface to Receive a Software Application on a Playback Device
At block 1202, the playback device provides an interface to receive a software application on a playback device, where the playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon. For example, the playback device may be any playback device as described in
The interface may include any suitable mechanism for receiving a software application. For example, the interface may include a network interface, such as network interface 402. As noted above, network interface 402 may include one or both of wireless interface 404 and wired interface 406. In some embodiments, the interface may include one or more modules, such as module 414, which may assist in receiving the software application.
In some embodiments, after providing the interface to receive the software application on a playback device, the playback device receives, via the interface, the software application from a remote server. For example, the playback device may receive the software application over network interface 402, including one or both of wireless interface 404 or wireless interface 406. The remote server may be any suitable server for sending a software application.
In further embodiments, the playback device may install the software application on the playback device. The software application may be installed on the playback device in any suitable fashion. For example, the playback device may store the software application on a computer-readable medium, such as in memory 410 in
In some embodiments, the playback device receives a command to remove the software application from the playback device. The command may be sent from a controller of the media playback system, such as controller 500 in
In some embodiments, the software application may be configured to alter functionality of the audio-playback software on the playback device. In some embodiments, the software application is further configured to change the audio-playback volume of the playback device at one or more frequency ranges. In some embodiments, changing the audio-playback volume of the playback device at one or more frequency ranges may be referred to as operating as one or more equalizer pre-sets, but changing the audio-playback volume of the playback device at one or more frequency ranges may involve additional or alternative functions to operating as one or more equalizer pre-sets.
For example, the software application may be configured to operate as one or more equalizer pre-sets that adjust frequency components of audio played by the media playback device. In some embodiments, the one or more equalizer pre-sets may relate to specific genres of music. For example, a particular equalizer pre-set for rock music may increase the amplitude of mid-range frequencies while another particular equalizer for pop music may increase the low-range and high-range frequencies. In other embodiments, the one or more equalizer pre-sets may relate to one or more artists. For example, a particular equalizer pre-set may be set according to the preference of the artist. In other embodiments, the one or more equalizer pre-sets may relate to one or more music labels.
As noted above, in some embodiments, the one or more equalizer pre-sets may relate to equalizer preferences that may be configured by a user. For example, the equalizer preferences may be individual preferences of a user of the media playback system. Or, the equalizer preferences may be a particular artist's preferences, a particular music producer's preferences, or a particular composer's preferences, among other examples.
b. Sending Status Information to a Controller of the Media Playback System
At block 1204, the playback device sends status information to the controller of the media playback system, where the status information indicates that the software application is installed on the playback device. The status information may be sent via a network interface, such as network interface 402. In some embodiments, the status information may be sent via a network message. Other examples are possible as well.
The playback device may determine whether the software application is installed on the playback device. For example, the playback device may determine whether the software application is installed on the playback device by referring to a memory, such as memory 410 in
In some embodiments, the playback device sends status information to the controller of the media playback system, where the status information indicates that the software application is assigned to the zone of the media playback system. The status information may be sent via a network interface, such as network interface 402. The playback device may determine whether the software application is assigned to the zone of the media playback system. For example, the playback device may determine whether the software application is assigned to the zone of the media playback system by referring to a memory, such as memory 410 in
In some embodiments, assigning the software application to the zone may involve enabling or activating the software on the playback device in the zone such that the software application operates as an add-on software component to audio-playback software on the playback device.
c. Receiving a Command from the Controller of the Media Playback System
At block 1206, the playback device receives a command from a controller of the media playback system to assign the software application to the zone of the media playback system, where the software application is configured to operate as an add-on software component to the audio-playback software. The command may be received via a network interface, such as network interface 402.
In an embodiment, the playback device installs the software application on the playback device in response to receiving the command to assign the software application to the zone before installing the software application. For example, if the software application is not installed on the playback device when the command to assign the software application to the zone is received, the playback device may install the software application in response to the command.
The command may include data representing user input that instructs the playback device to assign the software application to the zone of the media playback system. The user input may relate to an input interface on a controller, such as input interface 514 in
For example, referring to
In some embodiments, the controller may assign the software application to the zone. In some embodiments, assigning the software application to the zone may involve enabling or activating the software on the playback device in the zone such that the software application operates as an add-on software component to audio-playback software on the playback device. As described above, the software application may have one or more functions related to the audio-playback software when the software application operates as the add-on software component to audio-playback software on the playback device.
In some embodiments, the playback device may cause an application identifier in association with a zone identifier to be displayed on a user interface of a controller when the software application indicated by the application identifier is assigned and/or active.
In some embodiments, the playback device may receive a command to play an audio content; and execute the software application on the playback device to alter the audio content when the software application is assigned to the zone of the media playback system. As described above, the software application may have one or more functions related to the audio-playback software when the software application operates as the add-on software component to audio-playback software on the playback device.
The descriptions above disclose various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. However, such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of these firmware, hardware, and/or software components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, while the following describes example systems, methods, apparatus, and/or articles of manufacture, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
As indicated above, the present application relates to a software application that is configured to operate as an add-on software component to audio-playback software on a media playback device. In one aspect, a method is provided. The method involves displaying, on a user interface of a controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes a playback device that has audio-playback software installed thereon. The method also involves displaying, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on the playback device is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a device is provided. The device includes a user interface; a network interface; a processor; a data storage; and a program logic stored in the data storage and executable by the processor to: display, on the user interface of the controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes a playback device that has audio-playback software installed thereon; and display, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on the playback device is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a controller to cause the controller to perform functions. The functions include displaying, on a user interface of a controller of a media playback system, a zone identifier that identifies a zone of the media playback system, where the zone includes a playback device that has audio-playback software installed thereon. The functions further include displaying, on the user interface of the controller, an application identifier in association with the zone identifier, where the application identifier indicates that a software application installed on the playback device is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a second method is provided. The method involves displaying providing an interface to receive a software application on a playback device, where the playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon; sending status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device; and receiving a command from the controller of the media playback system to assign the software application to the zone of the media playback system, where the software application is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a media playback device is provided. The media playback device includes a network interface; a processor; a data storage; and a program logic stored in the data storage and executable by the processor to: receive a software application via a network interface, where the media playback device (a) is configured to play audio in a zone of a media playback system, and (b) has audio-playback software installed thereon; send status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device; and receive a command from the controller of the media playback system to assign the software application to the zone of the media playback system, where the software application is configured to operate as an add-on software component to the audio-playback software.
In another aspect, a second non-transitory computer readable medium is provided. The non-transitory computer readable memory has stored thereon instructions executable by a controller to cause the controller to perform functions. The functions include receiving a command from a controller of a media playback system to assign a software application to a zone of the media playback system, where the playback device (a) is configured to play audio in the zone of the media playback system, and (b) has audio-playback software installed thereon; providing an interface to receive the software application on the playback device, where the software application is configured to operate as an add-on software component to the audio-playback software; and sending status information to a controller of the media playback system, where the status information indicates that the software application is installed on the playback device.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of the invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/008,652, filed on Jan. 28, 2016, entitled “Software Application and Zones,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 15/008,652 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 14/155,490, filed on Jan. 15, 2014, entitled “Software Application and Zones,” and issued as U.S. Pat. No. 9,300,647, which is also incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4296278 | Cullison et al. | Oct 1981 | A |
4816989 | Finn et al. | Mar 1989 | A |
5182552 | Paynting | Jan 1993 | A |
5239458 | Suzuki | Aug 1993 | A |
5299266 | Lumsden | Mar 1994 | A |
5406634 | Anderson et al. | Apr 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5467342 | Logston et al. | Nov 1995 | A |
5491839 | Schotz | Feb 1996 | A |
5553222 | Milne et al. | Sep 1996 | A |
5625783 | Ezekiel et al. | Apr 1997 | A |
5668884 | Clair, Jr. et al. | Sep 1997 | A |
5673323 | Schotz et al. | Sep 1997 | A |
5751819 | Dorrough | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5808662 | Kinney et al. | Sep 1998 | A |
5815689 | Shaw et al. | Sep 1998 | A |
5867691 | Shiraishi | Feb 1999 | A |
5875354 | Charlton et al. | Feb 1999 | A |
5887143 | Saito et al. | Mar 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5946343 | Schotz et al. | Aug 1999 | A |
5956088 | Shen et al. | Sep 1999 | A |
6009457 | Moller | Dec 1999 | A |
6026150 | Frank et al. | Feb 2000 | A |
6031818 | Lo et al. | Feb 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6108686 | Williams, Jr. | Aug 2000 | A |
6128318 | Sato | Oct 2000 | A |
6157957 | Berthaud | Dec 2000 | A |
6175872 | Neumann et al. | Jan 2001 | B1 |
6185737 | Northcutt et al. | Feb 2001 | B1 |
6195436 | Scibora et al. | Feb 2001 | B1 |
6199169 | Voth | Mar 2001 | B1 |
6255961 | Van Ryzin et al. | Jul 2001 | B1 |
6256554 | DiLorenzo | Jul 2001 | B1 |
6308207 | Tseng et al. | Oct 2001 | B1 |
6324586 | Johnson | Nov 2001 | B1 |
6332147 | Moran et al. | Dec 2001 | B1 |
6349339 | Williams | Feb 2002 | B1 |
6351821 | Voth | Feb 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6430353 | Honda et al. | Aug 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6487296 | Allen et al. | Nov 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6526325 | Sussman et al. | Feb 2003 | B1 |
6587127 | Leeke et al. | Jul 2003 | B1 |
6598172 | Vandeusen et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6674803 | Kesselring | Jan 2004 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
6826283 | Wheeler et al. | Nov 2004 | B1 |
6836788 | Kim et al. | Dec 2004 | B2 |
6898642 | Chafle et al. | May 2005 | B2 |
6912610 | Spencer | Jun 2005 | B2 |
6920373 | Xi et al. | Jul 2005 | B2 |
6934766 | Russell | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
7007106 | Flood et al. | Feb 2006 | B1 |
7020791 | Aweya et al. | Mar 2006 | B1 |
7043651 | Aweya et al. | May 2006 | B2 |
7047308 | Deshpande | May 2006 | B2 |
7113999 | Pestoni et al. | Sep 2006 | B2 |
7115017 | Laursen et al. | Oct 2006 | B1 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143141 | Morgan et al. | Nov 2006 | B1 |
7143939 | Henzerling | Dec 2006 | B2 |
7162315 | Gilbert | Jan 2007 | B2 |
7185090 | Kowalski et al. | Feb 2007 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7206367 | Moore | Apr 2007 | B1 |
7209795 | Sullivan et al. | Apr 2007 | B2 |
7218708 | Berezowski et al. | May 2007 | B2 |
7236739 | Chang | Jun 2007 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7293060 | Komsi | Nov 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7324857 | Goddard | Jan 2008 | B2 |
7333519 | Sullivan et al. | Feb 2008 | B2 |
7372846 | Zwack | May 2008 | B2 |
7392102 | Sullivan et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7483958 | Elabbady et al. | Jan 2009 | B1 |
7571014 | Lambourne | Aug 2009 | B1 |
7574274 | Holmes | Aug 2009 | B2 |
7599685 | Goldberg et al. | Oct 2009 | B2 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657224 | Goldberg et al. | Feb 2010 | B2 |
7657644 | Zheng | Feb 2010 | B1 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7668990 | Krzyzanowski et al. | Feb 2010 | B2 |
7669219 | Scott | Feb 2010 | B2 |
7675943 | Mosig et al. | Mar 2010 | B2 |
7676142 | Hung | Mar 2010 | B1 |
7702279 | Ko et al. | Apr 2010 | B2 |
7720096 | Klemets | May 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7792311 | Holmgren | Sep 2010 | B1 |
7805682 | Lambourne | Sep 2010 | B1 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7865137 | Goldberg et al. | Jan 2011 | B2 |
7885622 | Krampf et al. | Feb 2011 | B2 |
7916877 | Goldberg et al. | Mar 2011 | B2 |
7917082 | Goldberg et al. | Mar 2011 | B2 |
7934239 | Dagman | Apr 2011 | B1 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8023663 | Goldberg | Sep 2011 | B2 |
8024055 | Holmgren | Sep 2011 | B1 |
8028038 | Weel | Sep 2011 | B2 |
8028323 | Weel | Sep 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8086752 | Millington et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8112032 | Ko et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8169938 | Duchscher et al. | May 2012 | B2 |
8214873 | Weel | Jul 2012 | B2 |
8230099 | Weel | Jul 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8315555 | Ko et al. | Nov 2012 | B2 |
8326951 | Millington | Dec 2012 | B1 |
8370678 | Millington et al. | Feb 2013 | B2 |
8423659 | Millington | Apr 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8527876 | Wood et al. | Sep 2013 | B2 |
8588949 | Lambourne et al. | Nov 2013 | B2 |
8775546 | Millington | Jul 2014 | B2 |
8989406 | Wong et al. | Mar 2015 | B2 |
9191699 | Agerbak et al. | Nov 2015 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
20010009604 | Ando et al. | Jul 2001 | A1 |
20010022823 | Renaud | Sep 2001 | A1 |
20010032188 | Miyabe et al. | Oct 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020002562 | Moran et al. | Jan 2002 | A1 |
20020003548 | Krusche et al. | Jan 2002 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034374 | Barton | Mar 2002 | A1 |
20020042844 | Chiazzese | Apr 2002 | A1 |
20020049843 | Barone et al. | Apr 2002 | A1 |
20020065926 | Hackney et al. | May 2002 | A1 |
20020068558 | Janik | Jun 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020073228 | Cognet et al. | Jun 2002 | A1 |
20020089529 | Robbin | Jul 2002 | A1 |
20020090914 | Kang et al. | Jul 2002 | A1 |
20020093478 | Yeh | Jul 2002 | A1 |
20020109710 | Holtz et al. | Aug 2002 | A1 |
20020112244 | Liou et al. | Aug 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020129156 | Yoshikawa | Sep 2002 | A1 |
20020143998 | Rajagopal et al. | Oct 2002 | A1 |
20020163361 | Parkin | Nov 2002 | A1 |
20020165921 | Sapieyevski | Nov 2002 | A1 |
20020168938 | Chang | Nov 2002 | A1 |
20020188762 | Tomassetti et al. | Dec 2002 | A1 |
20020194309 | Carter et al. | Dec 2002 | A1 |
20030002609 | Faller et al. | Jan 2003 | A1 |
20030020763 | Mayer et al. | Jan 2003 | A1 |
20030023741 | Tomassetti et al. | Jan 2003 | A1 |
20030035444 | Zwack | Feb 2003 | A1 |
20030041173 | Hoyle | Feb 2003 | A1 |
20030041174 | Wen et al. | Feb 2003 | A1 |
20030043924 | Haddad et al. | Mar 2003 | A1 |
20030066094 | Van Der Schaar et al. | Apr 2003 | A1 |
20030099212 | Anjum et al. | May 2003 | A1 |
20030099221 | Rhee | May 2003 | A1 |
20030126211 | Anttila et al. | Jul 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030195964 | Mane | Oct 2003 | A1 |
20030198257 | Sullivan et al. | Oct 2003 | A1 |
20030210796 | McCarty et al. | Nov 2003 | A1 |
20030231871 | Ushimaru | Dec 2003 | A1 |
20030235304 | Evans et al. | Dec 2003 | A1 |
20040001484 | Ozguner | Jan 2004 | A1 |
20040001591 | Mani et al. | Jan 2004 | A1 |
20040008852 | Also et al. | Jan 2004 | A1 |
20040010727 | Fujinami | Jan 2004 | A1 |
20040015252 | Aiso et al. | Jan 2004 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040024925 | Cypher et al. | Feb 2004 | A1 |
20040027166 | Mangum et al. | Feb 2004 | A1 |
20040032348 | Lai et al. | Feb 2004 | A1 |
20040066736 | Kroeger | Apr 2004 | A1 |
20040075767 | Neuman et al. | Apr 2004 | A1 |
20040131192 | Metcalf | Jul 2004 | A1 |
20040170383 | Mazur | Sep 2004 | A1 |
20040175159 | Oetzel et al. | Sep 2004 | A1 |
20040203378 | Powers | Oct 2004 | A1 |
20040249965 | Huggins et al. | Dec 2004 | A1 |
20040249982 | Arnold et al. | Dec 2004 | A1 |
20040252400 | Blank et al. | Dec 2004 | A1 |
20050010691 | Oyadomari et al. | Jan 2005 | A1 |
20050013394 | Rausch et al. | Jan 2005 | A1 |
20050021590 | Debique et al. | Jan 2005 | A1 |
20050047605 | Lee et al. | Mar 2005 | A1 |
20050058149 | Howe | Mar 2005 | A1 |
20050081213 | Suzuoki et al. | Apr 2005 | A1 |
20050114538 | Rose | May 2005 | A1 |
20050125357 | Saadat et al. | Jun 2005 | A1 |
20050177643 | Xu | Aug 2005 | A1 |
20050181348 | Carey et al. | Aug 2005 | A1 |
20050195205 | Abrams, Jr. | Sep 2005 | A1 |
20050281255 | Davies et al. | Dec 2005 | A1 |
20050283820 | Richards et al. | Dec 2005 | A1 |
20050288805 | Moore et al. | Dec 2005 | A1 |
20050289224 | Deslippe et al. | Dec 2005 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060095516 | Wijeratne | May 2006 | A1 |
20060119497 | Miller et al. | Jun 2006 | A1 |
20060143236 | Wu | Jun 2006 | A1 |
20060195480 | Spiegelman et al. | Aug 2006 | A1 |
20060225097 | Lawrence-Apfelbaum | Oct 2006 | A1 |
20060248173 | Shimizu | Nov 2006 | A1 |
20070038999 | Millington et al. | Feb 2007 | A1 |
20070048713 | Plastina et al. | Mar 2007 | A1 |
20070054680 | Mo et al. | Mar 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070143493 | Mullig et al. | Jun 2007 | A1 |
20070150830 | Ording et al. | Jun 2007 | A1 |
20070169115 | Ko et al. | Jul 2007 | A1 |
20070180137 | Rajapakse | Aug 2007 | A1 |
20070271388 | Bowra et al. | Nov 2007 | A1 |
20070299778 | Haveson et al. | Dec 2007 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080052371 | Partovi et al. | Feb 2008 | A1 |
20080091771 | Allen et al. | Apr 2008 | A1 |
20080120429 | Millington et al. | May 2008 | A1 |
20080144861 | Melanson et al. | Jun 2008 | A1 |
20080195239 | Rotholtz | Aug 2008 | A1 |
20090031336 | Chavez et al. | Jan 2009 | A1 |
20090157905 | Davis | Jun 2009 | A1 |
20090222115 | Malcolm et al. | Sep 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20100010852 | Lang | Jan 2010 | A1 |
20100049835 | Ko et al. | Feb 2010 | A1 |
20100228740 | Cannistraro et al. | Sep 2010 | A1 |
20100299639 | Ramsay et al. | Nov 2010 | A1 |
20100312366 | Madonna | Dec 2010 | A1 |
20100318911 | Holladay | Dec 2010 | A1 |
20110066943 | Brillon et al. | Mar 2011 | A1 |
20110087842 | Lu et al. | Apr 2011 | A1 |
20120029671 | Millington et al. | Feb 2012 | A1 |
20120030366 | Collart et al. | Feb 2012 | A1 |
20120060046 | Millington | Mar 2012 | A1 |
20120096125 | Kallai | Apr 2012 | A1 |
20120129446 | Ko et al. | May 2012 | A1 |
20120263318 | Millington | Oct 2012 | A1 |
20120326835 | Cockrell et al. | Dec 2012 | A1 |
20130080599 | Ko et al. | Mar 2013 | A1 |
20130173034 | Reimann | Jul 2013 | A1 |
20130191454 | Oliver et al. | Jul 2013 | A1 |
20130202131 | Kemmochi et al. | Aug 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140192986 | Lee et al. | Jul 2014 | A1 |
20140219483 | Hong | Aug 2014 | A1 |
20140363024 | Apodaca | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
101930779 | Dec 2010 | CN |
102123154 | Jul 2011 | CN |
102375954 | Mar 2012 | CN |
102496214 | Jun 2012 | CN |
0251584 | Jan 1988 | EP |
0672985 | Sep 1995 | EP |
1111527 | Jun 2001 | EP |
1122931 | Aug 2001 | EP |
1389853 | Feb 2004 | EP |
2284327 | May 1995 | GB |
2007164120 | Jun 2007 | JP |
2011243144 | Dec 2011 | JP |
199525313 | Sep 1995 | WO |
199961985 | Dec 1999 | WO |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2005013047 | Feb 2005 | WO |
Entry |
---|
European Patent Office, Extended European Search Report dated Jan. 11, 2017, issued in connection with European Application No. 15737316.8, 10 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2003, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Akyildiz et al., “Multimedia Group Synchronization Protocols for Integrated Services Networks,” IEEE Journal on Selected Areas in Communications, 1996 pp. 162-173, vol. 14, No. 1. |
“AudioTron Quick Start Guide, Version 1.0”, Voyetra Turtle Beach, Inc., Mar. 2001, 24 pages. |
“AudioTron Reference Manual, Version 3.0”, Voyetra Turtle Beach, Inc., May 2002, 70 pages. |
“AudioTron Setup Guide, Version 3.0”, Voyetra Turtle Beach, Inc., May 2002, 38 pages. |
Benslimane Abderrahim, “A Multimedia Synchronization Protocol for Multicast Groups,” Proceedings of the 26th Euromicro Conference, 2000, pp. 456-463, vol. 1. |
Biersack et al., “Intra- and Inter-Stream Synchronization for Stored Multimedia Streams,” IEEE International Conference on Multimedia Computing and Systems, 1996, pp. 372-381. |
Blakowski G. et al., “A Media Synchronization Survey: Reference Model, Specification, and Case Studies”, Jan. 1996, vol. 14, No. 1, 5-35. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Bretl W.E., et al., MPEG2 Tutorial [online], 2000 [retrieved on Jan. 13, 2009] Retrieved from the Internet:, pp. 1-23. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
Huang C.M., et al., “A Synchronization Infrastructure for Multicast Multimedia at the Presentation Layer,” IEEE Transactions on Consumer Electronics, 1997, pp. 370-380, vol. 43, No. 3. |
International Bureau, International Preliminary Report on Patentability dated Jul. 28, 2016, issued in connection with International Application No. PCT/US2015/011351, filed on Jan. 14, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Apr. 2, 2015, issued in connection with International Application No. PCT/US2015/011351, filed on Jan. 14, 2015, 14 pages. |
Ishibashi et al., “A Group Synchronization Mechanism for Live Media in Multicast Communications,” IEEE Global Telecommunications Conference, 1997, pp. 746-752, vol. 2. |
Ishibashi et al., “A Group Synchronization Mechanism for Stored Media in Multicast Communications,” IEEE Information Revolution and Communications, 1997, pp. 692-700, vol. 2. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Microsoft Corporation, “Using Microsoft Outlook 2003,” Cambridge College, 2001. |
Mills David L., “Network Time Protocol (Version 3) Specification, Implementation and Analysis,” Network Working Group, Mar. 1992, 7 pages. |
Mills, David L, “Precision Synchronization of Computer Network Clocks,” ACM SIGCOMM Computer Communication Review, 1994, pp. 28-43, vol. 24, No. 2. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Nilsson, M., “ID3 Tag Version 2”, Mar. 26, 1998, 28 pages. |
Non-Final Office Action dated May 19, 2016, issued in connection with U.S. Appl. No. 15/008,652, filed Jan. 28, 2016, 12 pages. |
North American MPEG-2 Information, “The MPEG-2 Transport Stream”, Retrieved from the Internet:, 2006, pp. 1-5. |
Notice of Allowance dated Nov. 2, 2015, issued in connection with U.S. Appl. No. 14/155,490, filed Jan. 15, 2014, 9 pages. |
Notice of Allowance dated Sep. 6, 2016, issued in connection with U.S. Appl. No. 15/008,652, filed Jan. 28, 2016, 11 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Park et al., “Group Synchronization in MultiCast Media Communications,” Proceedings of the 5th Research on Multicast Technology Workshop, 2003, 5 pages. |
Polycom Conference Composer manual: copyright 2001. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Rothermel et al., “An Adaptive Stream Synchronization Protocol,” 5th International Workshop on Network and Operating System Support for Digital Audio and Video, 1995, 13 pages. |
Schulzrinne H., et al., “RTP: A Transport Protocol for Real-Time Applications, RFC 3550,” Network Working Group, 2003, pp. 1-89. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Yamaha DME 32 manual: copyright 2001. |
Chinese Patent Office, First Office Action dated Nov. 12, 2018, issued in connection with Chinese Application No. 201580004370.5, 12 pages. |
Japanese Patent Office, Office Action dated May 9, 2017, issued in connection with Japanese Patent Application No. 2016-546832, 6 pages. |
Japanese Patent Office, Translation of Office Action dated May 9, 2017, issued in connection with Japanese Patent Application No. 2016-546832, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20170060528 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15008652 | Jan 2016 | US |
Child | 15339049 | US | |
Parent | 14155490 | Jan 2014 | US |
Child | 15008652 | US |