Software application manager for messaging applications

Information

  • Patent Grant
  • 12177273
  • Patent Number
    12,177,273
  • Date Filed
    Monday, December 4, 2023
    a year ago
  • Date Issued
    Tuesday, December 24, 2024
    3 days ago
Abstract
Among other things, embodiments of the present disclosure improve the functionality of electronic messaging systems by enabling users in an electronic chat conversation to run applications together. In some embodiments, when one user in a chat launches an application, an icon or other visual representation of the application appears in a portion of the chat window (e.g., in a “chat dock”) for other users in the chat to access.
Description
BACKGROUND

The popularity of electronic messaging, particularly instant messaging, continues to grow. Users increasingly share media content items such as electronic images and videos with each other, reflecting a global demand to communicate more visually. Users also increasingly utilize their mobile devices to communicate with each other using chat and message programs, as well as to run games and other programs.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. Some embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:



FIG. 1 is a block diagram showing an example messaging system for exchanging data (e.g., messages and associated content) over a network.



FIG. 2 is block diagram illustrating further details regarding a messaging system, according to exemplary embodiments.



FIG. 3 is a schematic diagram illustrating data which may be stored in the database of the messaging server system, according to various exemplary embodiments.



FIG. 4 is a flow diagram of an exemplary process according to various aspects of the disclosure.



FIGS. 5A-5L are screenshots illustrating the aspects of the method described in FIG. 4.



FIG. 6 is a block diagram illustrating a representative software architecture, which may be used in conjunction with various hardware architectures herein described.



FIG. 7 is a block diagram illustrating components of a machine, according to some exemplary embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein.





DETAILED DESCRIPTION

The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.


Among other things, embodiments of the present disclosure improve the functionality of electronic messaging systems by enabling users in an electronic chat conversation to run applications together. In some embodiments, when one user in a chat launches an application, an icon or other visual representation of the application appears in a portion of the chat window (e.g., in a “chat dock”) for other users in the chat to access.



FIG. 1 is a block diagram showing an example of a messaging system 100 for exchanging data (e.g., messages and associated content) over a network. The messaging system 100 includes multiple client devices 102, each of which hosts a number of applications including a messaging client application 104. Each messaging client application 104 is communicatively coupled to other instances of the messaging client application 104 and a messaging server system 108 via a network 106 (e.g., the Internet). As used herein, the term “client device” may refer to any machine that interfaces to a communications network (such as network 106) to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may use to access a network.


In the example shown in FIG. 1, each messaging client application 104 is able to communicate and exchange data with another messaging client application 104 and with the messaging server system 108 via the network 106. The data exchanged between messaging client applications 104, and between a messaging client application 104 and the messaging server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video or other multimedia data).


The network 106 may include, or operate in conjunction with, an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1xRTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.


The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client application 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client application 104 or by the messaging server system 108, it will be appreciated that the location of certain functionality either within the messaging client application 104 or the messaging server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108, but to later migrate this technology and functionality to the messaging client application 104 where a client device 102 has a sufficient processing capacity.


The messaging server system 108 supports various services and operations that are provided to the messaging client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client application 104. This data may include, message content, client device information, geolocation information, media annotation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces (UIs) of the messaging client application 104.


Turning now specifically to the messaging server system 108, an Application Program Interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.


Dealing specifically with the Application Program Interface (API) server 110, this server receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the Application Program Interface (API) server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client application 104 in order to invoke functionality of the application server 112. The Application Program Interface (API) server 110 exposes various functions supported by the application server 112, including account registration, login functionality, the sending of messages, via the application server 112, from a particular messaging client application 104 to another messaging client application 104, the sending of electronic media files (e.g., electronic images or video) from a messaging client application 104 to the messaging server application 114, and for possible access by another messaging client application 104, the setting of a collection of media data (e.g., story), the retrieval of a list of friends of a user of a client device 102, the retrieval of such collections, the retrieval of messages and content, the adding and deletion of friends to a social graph, the location of friends within a social graph, opening and application event (e.g., relating to the messaging client application 104).


The application server 112 hosts a number of applications and subsystems, including a messaging server application 114, an image processing system 116 and a social network system 122. The messaging server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content including images and video clips) included in messages received from multiple instances of the messaging client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available, by the messaging server application 114, to the messaging client application 104. Other processor and memory intensive processing of data may also be performed server-side by the messaging server application 114, in view of the hardware requirements for such processing.


The application server 112 also includes an image processing system 116 that is dedicated to performing various image processing operations, typically with respect to electronic images or video received within the payload of a message at the messaging server application 114.


The social network system 122 supports various social networking functions services, and makes these functions and services available to the messaging server application 114. To this end, the social network system 122 maintains and accesses an entity graph 304 within the database 120. Examples of functions and services supported by the social network system 122 include the identification of other users of the messaging system 100 with which a particular user has relationships or is “following”, and also the identification of other entities and interests of a particular user.


The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the messaging server application 114.


Some embodiments may include one or more wearable devices, such as a pendant with an integrated camera that is integrated with, in communication with, or coupled to, a client device 102. Any desired wearable device may be used in conjunction with the embodiments of the present disclosure, such as a watch, eyeglasses, goggles, a headset, a wristband, earbuds, clothing (such as a hat or jacket with integrated electronics), a clip-on electronic device, or any other wearable devices.



FIG. 2 is block diagram illustrating further details regarding the messaging system 100, according to exemplary embodiments. Specifically, the messaging system 100 is shown to comprise the messaging client application 104 and the application server 112, which in turn embody a number of some subsystems, namely an ephemeral timer system 202, a collection management system 204 and an annotation system 206.


The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the messaging client application 104 and the messaging server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message, or collection of messages (e.g., a SNAPCHAT® story), selectively display and enable access to messages and associated content via the messaging client application 104.


The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image, video and audio data). In some examples, a collection of content (e.g., messages, including images, video, text, and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert. The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the messaging client application 104.


The collection management system 204 furthermore includes a curation interface 208 that allows a collection manager to manage and curate a particular collection of content. For example, the curation interface 208 enables an event organizer to curate a collection of content relating to a specific event (e.g., delete inappropriate content or redundant messages). Additionally, the collection management system 204 employs machine vision (or image recognition technology) and content rules to automatically curate a content collection. In certain embodiments, compensation may be paid to a user for inclusion of user generated content into a collection. In such cases, the curation interface 208 operates to automatically make payments to such users for the use of their content.


The annotation system 206 provides various functions that enable a user to annotate or otherwise modify or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the messaging system 100. The annotation system 206 operatively supplies a media overlay (e.g., a SNAPCHAT® filter) to the messaging client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the messaging client application 104 based on other information, such as, social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., an image or video) at the client device 102. For example, the media overlay including text that can be overlaid on top of a photograph/electronic image generated by the client device 102. In another example, the media overlay includes an identification of a location overlay (e.g., Venice beach), a name of a live event, or a name of a merchant overlay (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.


In some exemplary embodiments, as discussed in more detail below, embodiments of the present disclosure may generate, display, distribute, and apply media overlays to media content items. For example, embodiments may utilize media content items generated by a client device 102 (e.g., an image or video captured using a digital camera coupled to the client device 102) to generate media overlays that can be applied to other media content items.



FIG. 3 is a schematic diagram 300 illustrating data 300 that is stored in the database 120 of the messaging server system 108, according to certain exemplary embodiments. While the content of the database 120 is shown to comprise a number of tables, the data could be stored in other types of data structures (e.g., as an object-oriented database).


The database 120 includes message data stored within a message table 314. The entity table 302 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 302 may include individuals, corporate entities, organizations, objects, places, events etc. Regardless of type, any entity regarding which the messaging server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).


The entity graph 304 furthermore stores information regarding relationships and associations between entities. Such relationships may be social, professional (e.g., work at a common corporation or organization) interested-based or activity-based, merely for example.


The database 120 also stores annotation data, in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of varies types, including a user-selected filters from a gallery of filters presented to a sending user by the messaging client application 104 when the sending user is composing a message.


Other types of filters include geolocation filters (also known as Geofilters) which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the messaging client application 104, based on geolocation information determined by a GPS unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the messaging client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Example of data filters include current temperature at a specific location, a current speed at which a sending user is traveling, battery life for a client device 102 or the current time. Other annotation data that may be stored within the image table 308 is so-called “Lens” data. A “Lens” may be a real-time special effect and sound that may be added to an image or a video.


As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the entity table 302. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.


A story table 306 stores data regarding collections of messages and associated image, video or audio data, which are compiled into a collection (e.g., a SNAPCHAT® story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., each user for which a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the messaging client application 104 may include an icon that is user selectable to enable a sending user to add specific content to his or her personal story.


A collection may also constitute a “live story,” which is a collection of content from multiple users that is created manually, automatically or using a combination of manual and automatic techniques. For example, a “live story” may constitute a curated stream of user-submitted content from varies locations and events. Users, whose client devices have location services enabled and are at a common location event at a particular time may, for example, be presented with an option, via a user interface of the messaging client application 104, to contribute content to a particular live story. The live story may be identified to the user by the messaging client application 104, based on his or her location. The end result is a “live story” told from a community perspective.


A further type of content collection is known as a “location story,” which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus).


Embodiments of the present disclosure may generate and present customized images for use within electronic messages/communications such as short message service (SMS) or multimedia message service (MMS) texts and emails. The customized images may also be utilized in conjunction with the SNAPCHAT stories, SNAPCHAT filters, and ephemeral messaging functionality discussed herein.



FIG. 4 depicts an exemplary process according to various aspects of the present disclosure. In this example, method 400 includes receiving a request to launch a software application from a user in an electronic group conversation (405), creating a software application session form the group (410), transmitting software application information (415) and state and synchronization information (420) to users in the conversation, and displaying information regarding the software application session (425). Method 400 further includes adding or removing users from the software application session (430) and terminating the software application session (435). The steps of method 400 may be performed in whole or in part, may be performed in conjunction each other as well as with some or all of the steps in other methods, and may be performed by any number of different systems, such as the systems described in FIGS. 1 and 7.


The system (e.g., messaging server system 108 in FIG. 1) may receive (405) an electronic communication transmitted from a client computing device of a user (e.g., client device 102 in FIG. 1) over a network such as the Internet (e.g., network 106 in FIG. 1) containing a request to launch a software application from a user engaged in a group conversation with one or more other users via their respective client computing devices. Embodiments of the present disclosure may transmit and receive electronic communications containing media content items, media overlays, or other content any form of electronic communication, such as SMS texts, MMS texts, emails, and other communications. Media content items included in such communications may be provided as attachments, displayed inline in the message, within media overlays, or conveyed in any other suitable manner.



FIG. 5A illustrates an example of a screenshot showing a conversation window displayed on the display screen of a first user's client computing device (a smartphone in this example). In this example, the users selects the “add” button to bring up a software application launcher interface depicted in FIG. 5B. Continuing this example, the user selects the exemplary “App Name” application (e.g., by selecting the name of the application or the icon in the menu). In response to the selection, the user's computing device transmits an electronic communication to the system containing a request to create a software application session for the selected software application.


In response to the request to open the software application, the system creates a software application session (410) and associates the session with each respective client computing device of each respective user in the group conversation. Continuing the previous example, after the user selects the application in FIG. 5B, the system creates a session for the software application and displays information regarding the session (425) on the display screens of the respective computing devices of the respective users in the conversation. In FIG. 5C, for example, a visual representation of the software application (an icon in this example) is displayed at the top of the conversation window. This section of the conversation window may also be referred to herein as the “chat dock.”


Among other things, rather than running software applications for a single user (as in conventional systems), various embodiments of the chat dock run software applications for all users in the conversation. As such, the chat dock is shared between the users in the thread. For instance, if one user launches a software application, a representation of that application (e.g., an icon) appears in the respective chat dock of the conversation window for all other respective users in the group conversation. If the application is terminated, the representation of the application is removed from the chat docks of the different users in the conversation.


Any number of different users in a conversation may open any suitable number of applications to create software application sessions shown in the chat dock. In some embodiments, once a user in a conversation has opened an application and the application session is active in the conversation, the system may remove the running application(s) from the application launcher or other menu interface for that user, as well as other users in the conversation. In FIG. 5D, for example, the “App Name” application is removed from the application launcher (from FIG. 5B) after the “App Name” application session is added to the conversation (as shown in FIG. 5C). In FIG. 5F, the user initially launching software application (Dylan) types a message in the conversation window inviting the other users in the conversation (Max and Dave) to join him in using the application, a two-dimensional scrolling video game in this example. In FIG. 5G the display screen of Dylan's computing device displays a full-screen image of the game and waits for other users to join to begin playing. FIG. 5H shows a screenshot displayed on the display screen of Max's computing device, where the icon for the application in the chat dock and Dylan's icon in the bottom of the conversation window visually change (from the display in FIG. 5F) to indicate Dylan is using the application. In some embodiments, the visual change may include a color change (e.g., a red ring may be displayed around the icons). The visual change may also include differences in size, shading, and other characteristics.


In FIG. 5I, the screen of the game is shown on Dylan's display screen, waiting for a second user to join. In this example, a second user (Max) selects the game icon from the chat dock displayed on his computing device and his computing device transmits an electronic communication containing a request to launch the application. In response to receiving the request to join the application from the second user's computing device, the system transmits an electronic communication to the second user's computing device containing executable code for the second user's computing device to execute locally to run the software application. The system adds (430) the second user (Max) to the software application session and transmits information regarding the software application session (415) and state and synchronization information (420) to the first user's (Dylan) computing device and the second user's (Max) computing device.


The state updates and synchronization information transmitted to different client computing devices involved in a software application session may be customized for each client. In the two-dimensional scrolling game example of FIGS. 5F-5L, for instance, the state updates and synchronization information includes updates to visible states within the software application for the first client computing device and/or the second client computing device. In FIG. 5J, for example, the second client computing device associated with the user Max joins the game and Max's player avatar is shown (labeled “Me”) next to Dylan's player avatar (labeled “Dylan”) on the game screen, thus reflecting the initial state of the game before it begins. During execution of the software application, as the state of the application session changes (e.g., visible changes in the game occur) updates are streamed to the client and processed by the running application code on the client. In the two dimensional game example, for instance, a user moving his/her player avatar or taking other actions causes changes in the game's state that are reflected in the state updates. The system likewise transmits synchronization updates to all client devices involved in the application session to ensure the users in the session have current and accurate information. For example, if Dylan moves his player avatar across the game screen, the system will transmit synchronization information to Max's device so that the movement of Dylan's player avatar is reflected in real-time or near-real time on Max's display screen. As shown in FIG. 5J, different client devices may receive different state updates. For example, the first user (Dylan) may receive an update to a visual state of his player avatar to label it “Me,” and Max's avatar “Max,” but the second user (Max) would receive a second (different) update to label Max's avatar “Me” and Dylan's avatar “Dylan.”


In some embodiments, different users in the conversation may have different levels of access in a software application and/or different roles within the application. For instance, consider the two-dimensional game example from above, where two users (Max and Dylan) are playing the game. The system may receive a request from a third client computing device of a third user (e.g., “Dave” from the group conversation) containing a request to observer the software application. In response to the request to observe from Dave, the system transmits an electronic communication containing representations (e.g., code, data, images, video, etc.) of actions taken within the software application by the first user (Dylan) and the second user (Max). FIG. 5K, for example, depicts a screen displayed on the display screen of Dave's computing device with an option to spectate the game being played by Max and Dylan. Subsequent to selecting the “spectate” option, the system displays the game as seen from Dylan's perspective (FIG. 5L) with a scroll option at the bottom of the page to select the perspective of different users from which to view the game. In other types of games, such as three-dimensional first-person shooting games, a spectator may thus switch among different users on a map to view the action of the game from different perspectives, thus allowing a user not actually playing the game to still be engaged in the event with his/her friends from the group conversation.


In some embodiments the system (e.g., messaging server system 108 or another server) verifies that a client computing device (or user thereof) has permission to launch a software application into the conversation and/or permission to use the application. Likewise, the system may verify that the other users in the conversation have permission to use the application. The system may verify permissions of users or systems according to a variety of different criteria, such as according to digital ownership (e.g., by verifying a license for the software) or according to a content policy (e.g., is the user at least 18 years old, locale restrictions, etc.).


The system transmits information (415) about the updated conversation, including the new application session, to participants in the conversation (e.g., via electronic communication to the respective client computing devices for each respective user in the group conversation). A client computing device launching a software application session may use metadata provided in the information from the system to enter an application. Similarly, the client computing devices of other users may use the information from the system to add the new application session to the chat dock in the respective conversation window displayed on each respective device.


In some embodiments, the information regarding the software application session may include executable code for a client computing device to execute locally to run the software application. In some embodiments, the system may push executable code to a client, while in other cases the client may fetch/request necessary code and data to execute the application session. The system may also deliver incremental upgrades for new versions of code in this manner.


The client computing devices of users in a group conversation may utilize network connections (e.g., with other client devices and the system) to perform real-time communications with other users within the application session using, for example, text, audio, video, drawing, fixed images, and/or screen sharing. Such connections may also be used for real-time communication between the application code running on a first user's client device with application code running on a second user's client device and with application code running on the system which supports the application running on the users' client devices.


In method 400, the system transmits state and synchronization information (420) to the clients participating in the application session, and client devices associated with the software application session may likewise transmit state and synchronization information to the system or to each other. Each client runs the delivered application code locally to display (425) information regarding the software application session. For example, clients may present a user interface to the user of client device, process incoming input from the user via the user interface of the device, and send and receive state updates and synchronization information from the system and other clients participating in the application session.


As noted above, embodiments of the present disclosure may display (425) a visual indicator (e.g., an icon, coloring around an icon, shading of an icon, etc.) in the conversation window indicating that a user is engaged in the software application. In addition to receiving requests from the client devices of users in the conversation to launch or join a software application session, the system may also receive requests or notifications from such client devices for leaving or terminating an application session.


For example, the system may receive an electronic communication from a client computing device containing a notification that the client computing device (or user thereof) is leaving is leaving the software application session. In response to receiving the notification, the system updates the user's status and provides the updated information to the clients participating in the application session.


In some embodiments, for example, in response to a user leaving the software application session, the system causes the client devices of the members of the group conversation to remove or modify the visual indicator that the user is engaged in the software application session (i.e., to reflect the user is no longer engaged in the application session). The system may also close the user interface (e.g., a window) associated with the software application on the display screen of the device of the user leaving the software application session. In some embodiments, after a user leaves a session, the user's client computing device continues to receive updates corresponding to the existence of the application session and which participants are currently participating in the application session, but no longer receives state updates.


The system may receive a request from a client device to terminate (435) an application session. Additionally or alternatively, the system may terminate an application session based on a variety of different criteria, such as the expiration of a predetermined time limit for users to use the application, an insufficient balance in a pay-to-play model of a software application, and other criteria.


The system may verify the user requesting termination of the application session has permissions to do so. In some embodiments, for example, the system may only allow a user that originally launches an application session to terminate it. In response to a valid request, the system terminates the application session and the updated state of the application session is broadcast to the clients of participating users. For example, the system may cause the clients of participating users to remove the visual representation corresponding to the application session (e.g., the icon associated with the application) from the conversation's chat dock.


The system may display (425) the chat dock, application icons within the chat dock, and other information related to a software application session in a variety of different ways. In some embodiments, for example, the chat dock is displayed by the system automatically (e.g., in the conversation header or footer) whenever at least 1 application is running in the conversation. In some embodiments, the chat dock window is displayed as a separate application docking window that overlays the conversation thread within the conversation window. In such cases, the chat dock may be hidden automatically by the system whenever all applications have been terminated in the conversation and displayed again when at least one application session is opened again.


Software Architecture



FIG. 6 is a block diagram illustrating an exemplary software architecture 606, which may be used in conjunction with various hardware architectures herein described. FIG. 6 is a non-limiting example of a software architecture and it will be appreciated that many other architectures may be implemented to facilitate the functionality described herein. The software architecture 606 may execute on hardware such as machine 700 of FIG. 7 that includes, among other things, processors 704, memory 714, and I/O components 718. A representative hardware layer 652 is illustrated and can represent, for example, the machine 700 of FIG. 7. The representative hardware layer 652 includes a processing unit 654 having associated executable instructions 604. Executable instructions 604 represent the executable instructions of the software architecture 606, including implementation of the methods, components and so forth described herein. The hardware layer 652 also includes memory or storage modules memory/storage 656, which also have executable instructions 604. The hardware layer 652 may also comprise other hardware 658.


As used herein, the term “component” may refer to a device, physical entity or logic having boundaries defined by function or subroutine calls, branch points, application program interfaces (APIs), or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions.


Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various exemplary embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations.


A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


A processor may be, or in include, any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor) that manipulates data values according to control signals (e.g., “commands”, “op codes”, “machine code”, etc.) and which produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC) or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.


Accordingly, the phrase “hardware component”(or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access.


For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented components.


Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other exemplary embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.


In the exemplary architecture of FIG. 6, the software architecture 606 may be conceptualized as a stack of layers where each layer provides particular functionality. For example, the software architecture 606 may include layers such as an operating system 602, libraries 620, applications 616 and a presentation layer 614. Operationally, the applications 616 or other components within the layers may invoke application programming interface (API) API calls 608 through the software stack and receive messages 612 in response to the API calls 608. The layers illustrated are representative in nature and not all software architectures have all layers. For example, some mobile or special purpose operating systems may not provide a frameworks/middleware 618, while others may provide such a layer. Other software architectures may include additional or different layers.


The operating system 602 may manage hardware resources and provide common services. The operating system 602 may include, for example, a kernel 622, services 624 and drivers 626. The kernel 622 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 622 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 624 may provide other common services for the other software layers. The drivers 626 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 626 include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.


The libraries 620 provide a common infrastructure that is used by the applications 616 or other components or layers. The libraries 620 provide functionality that allows other software components to perform tasks in an easier fashion than to interface directly with the underlying operating system 602 functionality (e.g., kernel 622, services 624 or drivers 626). The libraries 620 may include system libraries 644 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 620 may include API libraries 646 such as media libraries (e.g., libraries to support presentation and manipulation of various media format such as MPREG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D in a graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 620 may also include a wide variety of other libraries 648 to provide many other APIs to the applications 616 and other software components/modules.


The frameworks/middleware 618 (also sometimes referred to as middleware) provide a higher-level common infrastructure that may be used by the applications 616 or other software components/modules. For example, the frameworks/middleware 618 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks/middleware 618 may provide a broad spectrum of other APIs that may be utilized by the applications 616 or other software components/modules, some of which may be specific to a particular operating system 602 or platform.


The applications 616 include built-in applications 638 or third-party applications 640. Examples of representative built-in applications 638 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, or a game application. Third-party applications 640 may include an application developed using the ANDROIDTM or IOSTM software development kit (SDK) by an entity other than the vendor of the particular platform, and may be mobile software running on a mobile operating system such as IOS™, ANDROID™, WINDOWS® Phone, or other mobile operating systems. The third-party applications 640 may invoke the API calls 608 provided by the mobile operating system (such as operating system 602) to facilitate functionality described herein.


The applications 616 may use built in operating system functions (e.g., kernel 622, services 624 or drivers 626), libraries 620, and frameworks/middleware 618 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as presentation layer 614. In these systems, the application/component “logic” can be separated from the aspects of the application/component that interact with a user.



FIG. 7 is a block diagram illustrating components (also referred to herein as “modules”) of a machine 700, according to some exemplary embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 7 shows a diagrammatic representation of the machine 700 in the example form of a computer system, within which instructions 710 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 700 to perform any one or more of the methodologies discussed herein may be executed. As such, the instructions 710 may be used to implement modules or components described herein. The instructions 710 transform the general, non-programmed machine 700 into a particular machine 700 programmed to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 700 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 700 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 700 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 710, sequentially or otherwise, that specify actions to be taken by machine 700. Further, while only a single machine 700 is illustrated, the term “machine” shall also be taken to include a collection of machines that individually or jointly execute the instructions 710 to perform any one or more of the methodologies discussed herein.


The machine 700 may include processors 704, memory memory/storage 706, and I/O components 718, which may be configured to communicate with each other such as via a bus 702. The memory/storage 706 may include a memory 714, such as a main memory, or other memory storage, and a storage unit 716, both accessible to the processors 704 such as via the bus 702. The storage unit 716 and memory 714 store the instructions 710 embodying any one or more of the methodologies or functions described herein. The instructions 710 may also reside, completely or partially, within the memory 714, within the storage unit 716, within at least one of the processors 704 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 700. Accordingly, the memory 714, the storage unit 716, and the memory of processors 704 are examples of machine-readable media.


As used herein, the term “machine-readable medium,” “computer-readable medium,” or the like may refer to any component, device or other tangible media able to store instructions and data temporarily or permanently. Examples of such media may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)) or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions. The term “machine-readable medium” may also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” may refer to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.


The I/O components 718 may include a wide variety of components to provide a user interface for receiving input, providing output, producing output, transmitting information, exchanging information, capturing measurements, and so on. The specific I/O components 718 that are included in the user interface of a particular machine 700 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 718 may include many other components that are not shown in FIG. 7. The I/O components 718 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various exemplary embodiments, the I/O components 718 may include output components 726 and input components 728. The output components 726 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 728 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like. The input components 728 may also include one or more image-capturing devices, such as a digital camera for generating digital images or video.


In further exemplary embodiments, the I/O components 718 may include biometric components 730, motion components 734, environmental environment components 736, or position components 738, as well as a wide array of other components. One or more of such components (or portions thereof) may collectively be referred to herein as a “sensor component” or “sensor” for collecting various data related to the machine 700, the environment of the machine 700, a user of the machine 700, or a combinations thereof.


For example, the biometric components 730 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like. The motion components 734 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, velocity sensor components (e.g., speedometer), rotation sensor components (e.g., gyroscope), and so forth. The environment components 736 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 738 may include location sensor components (e.g., a Global Position system (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like. For example, the location sensor component may provide location information associated with the system 700, such as the system's 700 GPS coordinates or information regarding a location the system 700 is at currently (e.g., the name of a restaurant or other business).


Communication may be implemented using a wide variety of technologies. The I/O components 718 may include communication components 740 operable to couple the machine 700 to a network 732 or devices 720 via coupling 722 and coupling 724 respectively. For example, the communication components 740 may include a network interface component or other suitable device to interface with the network 732. In further examples, communication components 740 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 720 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).


Moreover, the communication components 740 may detect identifiers or include components operable to detect identifiers. For example, the communication components 740 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 740, such as, location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting a NFC beacon signal that may indicate a particular location, and so forth.


Where a phrase similar to “at least one of A, B, or C,” “at least one of A, B, and C,” “one or more A, B, or C,” or “one or more of A, B, and C” is used, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.


A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawings that form a part of this document: Copyright 2016, SNAP, INC. 2016, All Rights Reserved.


Changes and modifications may be made to the disclosed embodiments without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.

Claims
  • 1. A system comprising: at least one processor; andmemory coupled to the at least one processor and storing instructions that, when executed by the at least one processor, cause the system to perform operations comprising:receiving, from a first computing device of a first user engaged in a group conversation with a respective computing device of one or more other respective users, an electronic communication containing a request to launch a software application into the group conversation;in response to the request to launch the software application, creating a software application session for the software application and associating the software application session with each respective computing device of each respective user in the group conversation;transmitting a respective electronic communication containing information regarding the software application session to each respective computing device of each respective user in the group conversation;determining that the first user is engaged in the software application session via the first computing device, and that a second user in the group conversation is engaged in the software application session via a second computing device; andcausing display of a first interface element on a third computing device of a third user in the group conversation, the first interface element being user-selectable to observe the software application session.
  • 2. The system of claim 1, wherein the operations further comprise: in response to the request to launch the software application, causing display of an icon representing the software application within a docking window on a respective display screen of each respective computing device of the one or more other respective users.
  • 3. The system of claim 2, wherein: the docking window is separate from a conversation thread corresponding to the group conversation; andthe docking window overlays the conversation thread.
  • 4. The system of claim 2, wherein the operations further comprise: in response to determining that the first user is engaged in the software application session:causing display of the icon to visually change within the docking window.
  • 5. The system of claim 2, wherein: the docking window is configured to be displayed when at least one software application is open with respect to the group conversation, and to otherwise be hidden from display.
  • 6. The system of claim 5, wherein the operations further comprise: in response to detecting that all software applications open with respect to the group conversation have been terminated, causing the docking window to be removed from display on the respective display screen of each respective computing device.
  • 7. The system of claim 1, wherein: the determining that the second user is engaged in the software application session comprises:receiving, from the second computing device, an electronic communication containing a request to launch the software application.
  • 8. The system of claim 1, wherein the operations further comprise: transmitting an electronic communication containing information regarding the software application to the second computing device that contains executable code for the second computing device to execute locally to run the software application.
  • 9. The system of claim 1, wherein the operations further comprise: receiving from the third computing device an electronic communication contamifig a request to observe the software application session, the electronic communication being generated in response to selection of the first interface element by the third user.
  • 10. The system of claim 9, wherein the operations further comprise: after receiving the electronic communication from the third computing device:transmitting an electronic communication containing representations of actions taken within the software application session, by one or more of the first user and the second user, to the third computing device.
  • 11. The system of claim 9, wherein the operations further comprise: after receiving the electronic communication from the third computing device:causing display of an interface element on the first computing device, the interface element indicating that the third user is observing the software application session.
  • 12. The system of claim 1, wherein: creating the software application session includes verifying that the first user has permission to create the software application session.
  • 13. The system of claim 1, wherein the operations further comprise: receiving, from the first computing device, an electronic communication containing a request to terminate the software application session; andterminating the software application session in response to the request to terminate the software application session.
  • 14. The system of claim 13, wherein: terminating the software application session includes verifying that the first user has permission to terminate the software application session.
  • 15. The system of claim 1, wherein: the electronic communication containing information regarding the software application session transmitted to the first computing device contains executable code for the first computing device to execute locally to run the software application.
  • 16. The system of claim 1, wherein the operations further comprise: transmitting state updates and synchronization information to one or more of the first computing device and the second computing device engaged in the software application session.
  • 17. The system of claim 16, wherein: the state updates and synchronization information includes an update to a visible state of the software application for one or more of the first computing device and the second computing device.
  • 18. The system of claim 17, wherein: the state updates include a first visible state update associated with the first user and a second visible state update associated with the second user.
  • 19. A computer-implemented method comprising: receiving, from a first computing device of a first user engaged in a group conversation with a respective computing device of one or more other respective users, an electronic communication containing a request to launch a software application into the group conversation;in response to the request to launch the software application, creating a software application session for the software application and associating the software application session with each respective computing device of each respective user in the group conversation;transmitting a respective electronic communication containing information regarding the software application session to each respective computing device of each respective user in the group conversation;determining that the first user is engaged in the software application session via the first computing device, and that a second user in the group conversation is engaged in the software application session via a second computing device; andcausing display of a first interface element on a third computing device of a third user in the group conversation, the first interface element being user-selectable to observe the software application session.
  • 20. A non-transitory computer-readable medium storing instructions that, when executed by a computer system, cause the computer system to perform operations comprising: receiving, from a first computing device of a first user engaged in a group conversation with a respective computing device of one or more other respective users, an electronic communication containing a request to launch a software application into the group conversation;in response to the request to launch the software application, creating a software application session for the software application and associating the software application session with each respective computing device of each respective user in the group conversation;transmitting a respective electronic communication containing information regarding the software application session to each respective computing device of each respective user in the group conversation;determining that the first user is engaged in the software application session via the first computing device, and that a second user in the group conversation is engaged in the software application session via a second computing device; andcausing display of a first interface element on a third computing device of a third user in the group conversation, the first interface element being user-selectable to observe the software application session.
PRIORITY

This application is a continuation of U.S. patent application Ser. No. 18/172,662, filed Feb. 22, 2023, which application is a continuation of U.S. patent application Ser. No. 17/473,222, filed Sep. 13, 2021, now issued as U.S. Pat. No. 11,659,014, which application is a continuation of U.S. patent application Ser. No. 15/818,430, filed Nov. 20, 2017, now issued as U.S. Pat. No. 11,122,094, which application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 62/538,358, filed on Jul. 28, 2017, all of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (265)
Number Name Date Kind
5880731 Liles et al. Mar 1999 A
6023270 Brush, II et al. Feb 2000 A
6223165 Lauffer Apr 2001 B1
6772195 Hatlelid et al. Aug 2004 B1
6789109 Samra et al. Sep 2004 B2
6842779 Nishizawa Jan 2005 B1
7053924 Ohkawa et al. May 2006 B2
7266188 Carlson Sep 2007 B2
7275215 Werndorfer et al. Sep 2007 B2
7342587 Danzig et al. Mar 2008 B2
7386799 Clanton et al. Jun 2008 B1
7468729 Levinson Dec 2008 B1
7483961 Affaki Jan 2009 B2
7549924 Canessa et al. Jun 2009 B2
7587755 Kramer Sep 2009 B2
7636755 Blattner et al. Dec 2009 B2
7639251 Gu et al. Dec 2009 B2
7775885 Van Luchene et al. Aug 2010 B2
7828656 Paulsen et al. Nov 2010 B2
7859551 Bulman et al. Dec 2010 B2
7885931 Seo et al. Feb 2011 B2
7925703 Dinan et al. Apr 2011 B2
8037139 Fish et al. Oct 2011 B1
8088044 Tchao et al. Jan 2012 B2
8095878 Bates et al. Jan 2012 B2
8103734 Galli et al. Jan 2012 B2
8108774 Finn et al. Jan 2012 B2
8117281 Robinson et al. Feb 2012 B2
8130219 Fleury et al. Mar 2012 B2
8146005 Jones et al. Mar 2012 B2
8151191 Nicol Apr 2012 B2
8384719 Reville et al. Feb 2013 B2
RE44054 Kim Mar 2013 E
8396708 Park et al. Mar 2013 B2
8425322 Gillo et al. Apr 2013 B2
8429711 Kramer Apr 2013 B2
8458601 Castelli et al. Jun 2013 B2
8462198 Lin et al. Jun 2013 B2
8484158 Deluca et al. Jul 2013 B2
8495503 Brown et al. Jul 2013 B2
8495505 Smith et al. Jul 2013 B2
8504926 Wolf Aug 2013 B2
8559980 Pujol Oct 2013 B2
8564621 Branson et al. Oct 2013 B2
8564710 Nonaka et al. Oct 2013 B2
8581911 Becker et al. Nov 2013 B2
8597121 Andres del Valle Dec 2013 B2
8601051 Wang Dec 2013 B2
8601379 Marks et al. Dec 2013 B2
8632408 Gillo et al. Jan 2014 B2
8648865 Dawson et al. Feb 2014 B2
8659548 Hildreth Feb 2014 B2
8683354 Khandelwal et al. Mar 2014 B2
8692830 Nelson et al. Apr 2014 B2
8706824 Davenport et al. Apr 2014 B2
8810513 Ptucha et al. Aug 2014 B2
8812171 Filev et al. Aug 2014 B2
8819153 Fish et al. Aug 2014 B1
8821297 Nagata et al. Sep 2014 B1
8832201 Wall Sep 2014 B2
8832552 Arrasvuori et al. Sep 2014 B2
8839327 Amento et al. Sep 2014 B2
8880627 Davenport et al. Nov 2014 B2
8890926 Tandon et al. Nov 2014 B2
8892999 Nims et al. Nov 2014 B2
8924250 Bates et al. Dec 2014 B2
8963926 Brown et al. Feb 2015 B2
8989786 Feghali Mar 2015 B2
9086776 Ye et al. Jul 2015 B2
9105014 Collet et al. Aug 2015 B2
9106652 Albouyeh et al. Aug 2015 B2
9106657 Albouyeh et al. Aug 2015 B2
9197427 Chazin et al. Nov 2015 B2
9241184 Weerasinghe Jan 2016 B2
9256860 Herger et al. Feb 2016 B2
9264463 Rubinstein et al. Feb 2016 B2
9277502 Moayerzadeh Ahmadi et al. Mar 2016 B2
9298257 Hwang et al. Mar 2016 B2
9314692 Konoplev et al. Apr 2016 B2
9330483 Du et al. May 2016 B2
9355186 Khanna et al. May 2016 B2
9357174 Li et al. May 2016 B2
9361510 Yao et al. Jun 2016 B2
9378576 Bouaziz et al. Jun 2016 B2
9380012 Davenport et al. Jun 2016 B2
9402057 Kaytaz et al. Jul 2016 B2
9412192 Mandel et al. Aug 2016 B2
9460541 Li et al. Oct 2016 B2
9489760 Li et al. Nov 2016 B2
9503845 Vincent Nov 2016 B2
9508197 Quinn et al. Nov 2016 B2
9544257 Ogundokun et al. Jan 2017 B2
9553832 Blayer et al. Jan 2017 B2
9576400 Van Os et al. Feb 2017 B2
9589357 Li et al. Mar 2017 B2
9592449 Barbalet et al. Mar 2017 B2
9648376 Chang et al. May 2017 B2
9697635 Quinn et al. Jul 2017 B2
9706040 Kadirvel et al. Jul 2017 B2
9744466 Fujioka Aug 2017 B2
9746990 Anderson et al. Aug 2017 B2
9749270 Collet et al. Aug 2017 B2
9792714 Li et al. Oct 2017 B2
9839844 Dunstan et al. Dec 2017 B2
9883838 Kaleal, III et al. Feb 2018 B2
9898849 Du et al. Feb 2018 B2
9911073 Spiegel et al. Mar 2018 B1
9936165 Li et al. Apr 2018 B2
9959037 Chaudhri et al. May 2018 B2
9980100 Charlton et al. May 2018 B1
9990373 Fortkort Jun 2018 B2
10039988 Lobb et al. Aug 2018 B2
10071308 Perlman Sep 2018 B2
10089604 Lasser et al. Oct 2018 B2
10097492 Tsuda et al. Oct 2018 B2
10116598 Tucker et al. Oct 2018 B2
10116615 Rubinstein et al. Oct 2018 B2
10140001 Langholz Nov 2018 B2
10155168 Blackstock et al. Dec 2018 B2
10225700 Cheung et al. Mar 2019 B2
10242477 Charlton et al. Mar 2019 B1
10242503 McPhee et al. Mar 2019 B2
10254956 Chaudhri et al. Apr 2019 B2
10262250 Spiegel et al. Apr 2019 B1
10361986 Crocker et al. Jul 2019 B2
10362219 Wilson et al. Jul 2019 B2
10382382 Chae et al. Aug 2019 B2
10389661 Odell et al. Aug 2019 B2
10437551 Stanek et al. Oct 2019 B1
10475225 Park et al. Nov 2019 B2
10504266 Blattner et al. Dec 2019 B2
10573048 Ni et al. Feb 2020 B2
10582157 Cushing et al. Mar 2020 B1
10657701 Osman et al. May 2020 B2
10778623 Wu et al. Sep 2020 B1
10913004 Wu et al. Feb 2021 B1
11052322 Wu et al. Jul 2021 B1
11103795 Wu et al. Aug 2021 B1
11122094 Eirinberg et al. Sep 2021 B2
11356392 Desserrey et al. Jun 2022 B2
11491406 Wu et al. Nov 2022 B2
11659014 Eirinberg et al. May 2023 B2
11683280 Desserrey et al. Jun 2023 B2
11882162 Eirinberg Jan 2024 B2
20020067362 Agostino Nocera et al. Jun 2002 A1
20020169644 Greene Nov 2002 A1
20040013254 Hamberg et al. Jan 2004 A1
20050162419 Kim et al. Jul 2005 A1
20050206610 Cordelli Sep 2005 A1
20060294465 Ronen et al. Dec 2006 A1
20070038701 Majors et al. Feb 2007 A1
20070113181 Blattner et al. May 2007 A1
20070168863 Blattner et al. Jul 2007 A1
20070176921 Iwasaki et al. Aug 2007 A1
20070198637 Deboy et al. Aug 2007 A1
20080104379 Peterman et al. May 2008 A1
20080158222 Li et al. Jul 2008 A1
20090016617 Bregman-Amitai et al. Jan 2009 A1
20090055484 Vuong et al. Feb 2009 A1
20090070688 Gyorfi et al. Mar 2009 A1
20090099925 Mehta et al. Apr 2009 A1
20090106672 Burstrom Apr 2009 A1
20090158170 Narayanan et al. Jun 2009 A1
20090164936 Kawaguchi Jun 2009 A1
20090177976 Bokor et al. Jul 2009 A1
20090202114 Morin et al. Aug 2009 A1
20090265604 Howard et al. Oct 2009 A1
20090300525 Jolliff et al. Dec 2009 A1
20090303984 Clark et al. Dec 2009 A1
20100011422 Mason et al. Jan 2010 A1
20100023885 Reville et al. Jan 2010 A1
20100115426 Liu et al. May 2010 A1
20100131866 Nielsen et al. May 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100203968 Gill et al. Aug 2010 A1
20100227682 Reville et al. Sep 2010 A1
20100251142 Geppert et al. Sep 2010 A1
20110093780 Dunn Apr 2011 A1
20110115798 Nayar et al. May 2011 A1
20110148864 Lee et al. Jun 2011 A1
20110184886 Shoham Jul 2011 A1
20110239136 Goldman et al. Sep 2011 A1
20110302509 Leacock et al. Dec 2011 A1
20110319175 Jensen Dec 2011 A1
20120113106 Choi et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120130717 Xu et al. May 2012 A1
20120311504 Van Os et al. Dec 2012 A1
20130103760 Golding et al. Apr 2013 A1
20130179518 Quan Jul 2013 A1
20130201187 Tong et al. Aug 2013 A1
20130218987 Chudge et al. Aug 2013 A1
20130249948 Reitan Sep 2013 A1
20130257877 Davis Oct 2013 A1
20140026198 Isozaki et al. Jan 2014 A1
20140043329 Wang et al. Feb 2014 A1
20140055554 Du et al. Feb 2014 A1
20140068467 Van et al. Mar 2014 A1
20140125678 Wang et al. May 2014 A1
20140129343 Finster et al. May 2014 A1
20140274354 George et al. Sep 2014 A1
20140279121 George et al. Sep 2014 A1
20140298210 Park et al. Oct 2014 A1
20150012842 Kuscher et al. Jan 2015 A1
20150032686 Kuchoor Jan 2015 A1
20150033140 Kuchoor Jan 2015 A1
20150033148 Kuchoor Jan 2015 A1
20150033149 Kuchoor Jan 2015 A1
20150038235 Kamekawa Feb 2015 A1
20150163258 Garcia, III et al. Jun 2015 A1
20150195220 Hawker et al. Jul 2015 A1
20150206349 Rosenthal et al. Jul 2015 A1
20160011845 Kuchoor Jan 2016 A1
20160092035 Crocker et al. Mar 2016 A1
20160117665 Davis Apr 2016 A1
20160134840 Mcculloch May 2016 A1
20160234149 Tsuda et al. Aug 2016 A1
20160236097 Sullivan et al. Aug 2016 A1
20170046024 Dascola et al. Feb 2017 A1
20170080346 Abbas Mar 2017 A1
20170087473 Siegel et al. Mar 2017 A1
20170113140 Blackstock et al. Apr 2017 A1
20170118145 Aittoniemi et al. Apr 2017 A1
20170148055 Boothroyd et al. May 2017 A1
20170199855 Fishbeck Jul 2017 A1
20170235848 Van Dusen et al. Aug 2017 A1
20170266569 Sullivan et al. Sep 2017 A1
20170279859 Pogorelik Sep 2017 A1
20170291111 Chandrasekaran et al. Oct 2017 A1
20170310934 Du et al. Oct 2017 A1
20170312634 Ledoux et al. Nov 2017 A1
20170357443 Paek et al. Dec 2017 A1
20180047200 O'Hara et al. Feb 2018 A1
20180113587 Allen et al. Apr 2018 A1
20180115503 Baldwin et al. Apr 2018 A1
20180193753 Kiwada et al. Jul 2018 A1
20180221774 Sullivan et al. Aug 2018 A1
20180227534 Zhou et al. Aug 2018 A1
20180241871 Sarafa et al. Aug 2018 A1
20180296928 Vaccari et al. Oct 2018 A1
20180309801 Rathod Oct 2018 A1
20180315076 Andreou Nov 2018 A1
20180315133 Brody et al. Nov 2018 A1
20180315134 Amitay et al. Nov 2018 A1
20180329622 Missig et al. Nov 2018 A1
20180331839 Gao et al. Nov 2018 A1
20180367483 Rodriguez et al. Dec 2018 A1
20190001223 Blackstock et al. Jan 2019 A1
20190036989 Eirinberg et al. Jan 2019 A1
20190057616 Cohen et al. Feb 2019 A1
20190104216 Van Hecke et al. Apr 2019 A1
20190188920 Mcphee et al. Jun 2019 A1
20190272064 Ghassabian Sep 2019 A1
20190314728 Sullivan et al. Oct 2019 A1
20200293184 Makovsky Sep 2020 A1
20200379617 Chang et al. Dec 2020 A1
20200380003 Abbasi Moghaddam et al. Dec 2020 A1
20210044559 Jain et al. Feb 2021 A1
20210069601 Wu et al. Mar 2021 A1
20210149553 Lereya et al. May 2021 A1
20210342785 Mann et al. Nov 2021 A1
20210392096 Desserrey et al. Dec 2021 A1
20220070233 Eirinberg et al. Mar 2022 A1
20220263779 Desserrey et al. Aug 2022 A1
20230208896 Eirinberg et al. Jun 2023 A1
Foreign Referenced Citations (37)
Number Date Country
1434623 Aug 2003 CN
102868588 Jan 2013 CN
103649985 Mar 2014 CN
109863532 Jun 2019 CN
110168478 Aug 2019 CN
110945858 Mar 2020 CN
110945858 Jun 2022 CN
115777194 Mar 2023 CN
2184092 May 2010 EP
2475137 Jul 2012 EP
3659327 Feb 2024 EP
2001230801 Aug 2001 JP
5497931 Mar 2014 JP
20130050871 May 2013 KR
101445263 Sep 2014 KR
101521332 May 2015 KR
20160075457 Jun 2016 KR
20170068379 Jun 2017 KR
102308415 Oct 2021 KR
WO-2003094072 Nov 2003 WO
WO-2004095308 Nov 2004 WO
WO-2006107182 Oct 2006 WO
WO-2007134402 Nov 2007 WO
WO-2012139276 Oct 2012 WO
WO-2013027893 Feb 2013 WO
WO-2013152454 Oct 2013 WO
WO-2013166588 Nov 2013 WO
WO-2014031899 Feb 2014 WO
WO-2014194439 Dec 2014 WO
WO-2016090605 Jun 2016 WO
WO-2018081013 May 2018 WO
WO-2018102562 Jun 2018 WO
WO-2018129531 Jul 2018 WO
WO-2019023596 Jan 2019 WO
WO-2019023596 Jan 2019 WO
WO-2019089613 May 2019 WO
WO-2021252218 Dec 2021 WO
Non-Patent Literature Citations (67)
Entry
U.S. Appl. No. 15/818,430 U.S. Pat. No. 11,122,094, filed Nov. 20, 2017, Software Application Manager for Messaging Applications.
U.S. Appl. No. 17/473,222 U.S. Pat. No. 11,659,014, filed Sep. 13, 2021, Software Application Manager for Messaging Applications.
U.S. Appl. No. 18/172,662, filed Feb. 22, 2023, Software Application Manager for Messaging Applications.
U.S. Appl. No. 16/177,320 U.S. Pat. No. 11,103,795, filed Oct. 31, 2018, Game Drawer.
U.S. Appl. No. 16/948,429 U.S. Appl. No. 11,356,392, filed Sep. 17, 2020, Messaging System Including an External-Resource Dock and Drawer.
U.S. Appl. No. 17/661,508 U.S. Pat. No. 11,683,280, filed Apr. 29, 2022, Messaging System Including an External-Resource Dock and Drawer.
“U.S. Appl. No. 15/818,430, Examiner Interview Summary mailed Jun. 16, 2020”, 3 pgs.
“U.S. Appl. No. 15/818,430, Examiner Interview Summary mailed Oct. 22, 2020”, 2 pgs.
“U.S. Appl. No. 15/818,430, Final Office Action mailed Jul. 15, 2020”, 23 pgs.
“U.S. Appl. No. 15/818,430, Final Office Action mailed Oct. 29, 2019”, 17 pgs.
“U.S. Appl. No. 15/818,430, Non Final Office Action mailed Mar. 10, 2020”, 18 pgs.
“U.S. Appl. No. 15/818,430, Non Final Office Action mailed Jun. 10, 2019”, 15 pgs.
“U.S. Appl. No. 15/818,430, Non Final Office Action mailed Nov. 3, 2020”, 23 pgs.
“U.S. Appl. No. 15/818,430, Notice of Allowance mailed Feb. 16, 2021”, 12 pgs.
“U.S. Appl. No. 15/818,430, Notice of Allowance mailed May 7, 2021”, 13 pgs.
“U.S. Appl. No. 15/818,430, Response filed Jan. 29, 2020 to Final Office Action mailed Oct. 29, 2019”, 10 pgs.
“U.S. Appl. No. 15/818,430, Response filed Feb. 3, 2021 to Non Final Office Action mailed Nov. 3, 2020”, 10 pgs.
“U.S. Appl. No. 15/818,430, Response filed Jun. 10, 2020 to Non Final Office Action mailed Mar. 10, 2020”, 10 pgs.
“U.S. Appl. No. 15/818,430, Response filed Oct. 15, 2020 to Final Office Action mailed Jul. 15, 2020”, 10 pgs.
“U.S. Appl. No. 15/818,430, Response filed Sep. 10, 2019 to Non-Final Office Action mailed Jun. 10, 2019”, 11 pgs.
“U.S. Appl. No. 16/177,320, Final Office Action mailed Jun. 12, 2020”, 8 pgs.
“U.S. Appl. No. 16/177,320, Non Final Office Action mailed Jan. 14, 2020”, 8 pgs.
“U.S. Appl. No. 16/177,320, Notice of Allowance mailed Apr. 27, 2021”, 5 pgs.
“U.S. Appl. No. 16/177,320, Notice of Allowance mailed Aug. 21, 2020”, 7 pgs.
“U.S. Appl. No. 16/177,320, PTO Response to Rule 312 Communication mailed Feb. 4, 2021”, 2 pgs.
“U.S. Appl. No. 16/177,320, Response filed Apr. 3, 2020 to Non Final Office Action mailed Jan. 14, 2020”, 10 pgs.
“U.S. Appl. No. 16/177,320, Response filed Jul. 20, 2020 to Final Office Action mailed Jun. 12, 2020”, 10 pgs.
“U.S. Appl. No. 16/948,429, 312 Amendment filed Apr. 25, 2022”, 3 pgs.
“U.S. Appl. No. 16/948,429, Corrected Notice of Allowability mailed Feb. 23, 2022”, 2 pgs.
“U.S. Appl. No. 16/948,429, Non Final Office Action mailed Sep. 16, 2021”, 14 pgs.
“U.S. Appl. No. 16/948,429, Notice of Allowance mailed Feb. 1, 2022”, 7 pgs.
“U.S. Appl. No. 16/948,429, Response filed Dec. 16, 2021 to Non Final Office Action mailed Sep. 16, 2021”, 10 pgs.
“U.S. Appl. No. 16/949,917, Non Final Office Action mailed Feb. 2, 2022”, 5 pgs.
“U.S. Appl. No. 16/949,917, Notice of Allowability mailed Oct. 13, 2022”, 2 pgs.
“U.S. Appl. No. 16/949,917, Notice of Allowance mailed Jun. 29, 2022”, 5 pgs.
“U.S. Appl. No. 16/949,917, Response filed Apr. 29, 2022 to Non Final Office Action mailed Feb. 2, 2022”, 9 pgs.
“U.S. Appl. No. 17/473,222, Final Office Action mailed Oct. 11, 2022”, 9 pgs.
“U.S. Appl. No. 17/473,222, Non Final Office Action mailed Apr. 5, 2022”, 10 pgs.
“U.S. Appl. No. 17/473,222, Notice of Allowance mailed Jan. 12, 2023”, 13 pgs.
“U.S. Appl. No. 17/473,222, Response filed Aug. 5, 2022 to Non Final Office Action mailed Apr. 5, 2022”, 10 pgs.
“U.S. Appl. No. 17/473,222, Response filed Dec. 5, 2022 to Final Office Action mailed Oct. 11, 2022”, 3 pgs.
“U.S. Appl. No. 17/661,508, Non Final Office Action mailed Oct. 27, 2022”, 8 pgs.
“U.S. Appl. No. 17/661,508, Notice of Allowance mailed Feb. 8, 2023”, 11 pgs.
“U.S. Appl. No. 17/661,508, Response filed Jan. 13, 2023 to Non Final Office Action mailed Oct. 27, 2022”, 8 pgs.
“U.S. Appl. No. 18/172,662, Non Final Office Action mailed Jul. 3, 2023”, 7 pgs.
“U.S. Appl. No. 18/172,662, Notice of Allowance mailed Sep. 20, 2023”, 8 pgs.
“U.S. Appl. No. 18/172,662, Response filed Sep. 6, 2023 to Non Final Office Action mailed Jul. 3, 2023”, 10 pgs.
“Chinese Application Serial No. 201880049601.8, Office Action mailed Apr. 14, 2021”, w/ English Translation, 5 pgs.
“Chinese Application Serial No. 201880049601.8, Office Action mailed Aug. 27, 2020”, w/ English Translation, 12 pgs.
“Chinese Application Serial No. 201880049601.8, Office Action mailed Nov. 3, 2021”, w/ English translation, 12 pgs.
“Chinese Application Serial No. 201880049601.8, Response filed Jan. 7, 2021 to Office Action mailed Aug. 27, 2020”, w/ English Claims, 13 pgs.
“Chinese Application Serial No. 201880049601.8, Response filed Jan. 18, 2022 to Office Action mailed Nov. 3, 2021”, With English claims, 12 pgs.
“Chinese Application Serial No. 201880049601.8, Response filed Jun. 29, 2021 to Office Action mailed Apr. 14, 2021”, w/ English Claims, 52 pgs.
“European Application Serial No. 18838485.3, Communication Pursuant to Article 94(3) EPC mailed Oct. 25, 2021”, 4 pgs.
“European Application Serial No. 18838485.3, Extended European Search Report mailed Jun. 16, 2020”, 8 pgs.
“International Application Serial No. PCT/US2018/044122, International Preliminary Report on Patentability mailed Feb. 6, 2020”, 7 pgs.
“International Application Serial No. PCT/US2018/044122, International Search Report mailed Nov. 12, 2018”, 3 pgs.
“International Application Serial No. PCT/US2018/044122, Written Opinion mailed Nov. 12, 2018”, 5 pgs.
“International Application Serial No. PCT/US2021/035094, International Preliminary Report on Patentability mailed Dec. 22, 2022”, 6 pgs.
“International Application Serial No. PCT/US2021/035094, International Search Report mailed Sep. 17, 2021”, 3 pgs.
“International Application Serial No. PCT/US2021/035094, Written Opinion mailed Sep. 17, 2021”, 4 pgs.
“Korean Application Serial No. 10-2020-7005774, Notice of Preliminary Rejection mailed Dec. 7, 2020”, w/ English Translation, 9 pgs.
“Korean Application Serial No. 10-2020-7005774, Response filed Feb. 5, 2021 to Notice of Preliminary Rejection mailed Dec. 7, 2020”, w/ English Claims, 26 pgs.
Babyjohanna, “How to quickly enter the game that a friend is playing”, [Online] Retreived from the Internet: < URL: https://jingyan.baidu.com/article/eb9f7b6d9e21dl869364e806.html>, (Oct. 30, 2014), 4 pgs.
Osborne, Alexander R., et al., “Games in Chat”, U.S. Appl. No. 16/177,318 filed Oct. 31, 2018, 85 pgs.
Osborne, Alexander R., et al., “In-Game Status Bar”, U.S. Appl. No. 16/177,332 filed Oct. 31, 2018, 72 pgs.
Osborne, Alexander R., et al., “Messaging and Gaming Applications Communication Platform”, U.S. Appl. No. 16/177,335 filed Oct. 31, 2018, 59 pgs.
Related Publications (1)
Number Date Country
20240106874 A1 Mar 2024 US
Provisional Applications (1)
Number Date Country
62538358 Jul 2017 US
Continuations (3)
Number Date Country
Parent 18172662 Feb 2023 US
Child 18528429 US
Parent 17473222 Sep 2021 US
Child 18172662 US
Parent 15818430 Nov 2017 US
Child 17473222 US