This application claims the benefit under 35 U.S.C. §119(a) of Korean Patent Application No. 10-2014-0009156, filed on Jan. 24, 2014, in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference for all purposes.
1. Field
The following description relates to software-defined networking technology.
2. Description of the Related Art
Software-defined networks (hereinafter referred to as SDN) suddenly being an issue in the telecommunications industry is a next-generation networking technology for setting and controlling the path of a network through software programming. Also, SDN allows for convenient and easy processing of its complicated operations and management.
To this end, in the SDN, a data plane and a control plane of the network are separated, and a standardized interface is provided therebetween. A network administrator may control, in various ways, a telecommunications function operated on the data plane by programming the control plane in accordance with various network situations.
Due to growth of the mobile terminal market, an increase of big data and high-definition content, and a suddenly increasing demand for a cloud-based virtualization service, and the like, a reassessment of the current network structure and management system is much need, especially because of problems such as changes in traffic patterns, the spread of virtualization technology, its congestion-causing complex structure, troubles with network management, vendor dependence, etc.
Changes in the networking environment and the discord between market demand and network elements are two main causes for the birth of SDN. SDN, combined with an OpenFlow protocol, can configure a complex path that could not be configured in the existing network. Also, SDN can effectively handle a change in traffic patterns. Moreover, SDN can quickly configure a virtual network that is needed in a cloud environment where creation, deletion, and movement of a virtual machine frequently occur. Furthermore, SDN can economically build a large capacity network and perform a function of a variable adaptive line rate.
The following description relates to a software-defined networking (SDN) method for processing large volumes of traffic on demand.
In one general aspect, an SDN method includes: a control device transmitting a control command, which includes defining a control parameter based on software in response to a traffic request of a node by monitoring a traffic flow, and transmitting a control command with respect to the software-defined control parameter to one or more nodes through a control channel by using an OpenFlow; and the one or more nodes executing the control command wherein the one or more nodes have received the control command from the control device.
In another general aspect, an SDN method in a fixed mobile convergence subscriber network includes: a control device transmitting a control command, which includes defining a control parameter based on software in response to a traffic request of a subscriber terminal device by monitoring a traffic flow, and transmitting a control command with respect to the software-defined control parameter to a device of a central base station through a control channel by using OpenFlow; the device of a central base station transmitting the control command received from the control device to each subscriber terminal device of a wired or wireless form through distribution of network resources; and the subscriber terminal device receiving the control command from the device of a central base station and executing the received control command.
In another general aspect, an SDN method in a mobile communications base station network based on analog wireless-optical transmission includes: a control device transmitting a control command to a digital unit (DU), which includes defining a control parameter based on software in response to a traffic request of a radio unit (RU) by monitoring a traffic flow, and transmitting a control command with respect to the software-defined control parameter to the DU through a control channel by using OpenFlow; the DU transmitting the control command received from the control device to each RU, converting a digital baseband signal to an analog signal in accordance with the control command, shifting upward the converted digital baseband signal to an intermediate frequency (IF) signal, multiplexing the IF signal, and transmitting the multiplexed IF signal to each RU; and each RU receiving and executing the control command, extracting the IF signal from the multiplexed IF signal received from the DU in response to the control command, converting the extracted IF signal into a high frequency signal, and transmitting the converted IF signal to free space.
Other features and aspects may be apparent from the following detailed description, the drawings, and the claims.
Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
The following description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be suggested to those of ordinary skill in the art. Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.
Referring to
All the processes described above operate through a control channel that is separate from the data channel according to the management policy of a control device 10 that monitors the network's performance in the center in real time. In an optical communications network where the concept of SDN is combined, the control device 10 monitors the movement of traffic at all times. If the control device 10 detects, at a specific time, a request for a change of the traffic acquired in consideration of a quality of service (QoS) policy while monitoring the movement of the traffic, the control device 10 responds to the request for a change of the traffic by using a concept of software-based management and control. For example, the control device 10 defines, based on software, control parameters related to the transmissions within a physical layer that is inside the optical communications network, and with these parameters, controls each of the nodes to maximize effectiveness.
A network in which the concept of SDN is combined operates based on various switching paradigms which are different from the existing network. That is, as the static switching is only available previously, not only the semi-static switching but also dynamic switching is available over the network where the SDN concept is combined. Thus, a more flexible control of the traffic is possible, which then leads to more efficient energy use, which ultimately means a reduction in the overall operating expenses
Referring to
The upper layer of the control device 20 is configured with GUI-format flow maps 200 for a flow control. The lower layer of each flow map 200 is configured with software-defined planners 202 for efficient control. For example, the software-defined planners 202 may include a software-defined wavelength conversion planner, a software-defined transmission speed planner, a software-defined modulation format planner, a software-defined path switching planner, etc.
An extended OpenFlow controller 204 is positioned in the lowest layer of the control device 20 to thereby transmit input control commands to each of the nodes 21 and 22 through extended OpenFlow application programming interfaces (hereinafter referred to as E-OpenFlow API) 206. E-OpenFlow APIs 210 and 220 of the nodes 21 and 22, respectively, converts a control command transmitted from the control device 20 into a programmable language and then relays it to each firmware 212 and 222, the ones in charge of controlling the hardware, so that actual actions may be carried out in nodes 21 and 22. Ultimately, each firmware 212 and 222 controls the operation of each hardware 214 and 224 related to a control command so as to enable appropriate actions to be performed according to the control command that was received.
What is important here is that a channel 208, which is used for transmitting control commands, exists separately as an add-on. The control channel 208 may have its physical path added and operated independently from a data transfer channel. Also, the control channel 208 may share the physical path but operate as separated logically. In such a case, the control channel 208 may additionally assign and manage physical layer network resources of a wavelength or frequency, etc. for the configuration of the control channel 208.
Referring to
Subsequently, the control device 20 defines, based on software, a control parameter through software-defined planners 202 in 320. The control parameter may be network resources for a physical layer transmission, such as a wavelength conversion, a transmission speed, a modulation format, path switching, etc. In addition, an E-OpenFlow API 206 transmits a control command to each of nodes 21 and 22 through a control channel 208 by the control by the extended OpenFlow controller 204 in 330 and 350. Each of the nodes 21 and 22 collects the control command in 360 through E-OpenFlow APIs 210 and 220, converts the control command into a programmable language in 370, and transmits the control command to each firmware 212 and 222 which are in charge of the control within a hardware so as to enable the control command to be operated indeed in each of devices, and each firmware 212 and 214 finally control operations of each hardware 214 and 224 related to the control command to thereby execute the control command in 380 so that the operations appropriate for the indeed transmitted control command are performed.
Referring to
Most control flows 500, 510, 520, 530, 540, 550, 590, and 592 are not much different from the control flows mentioned above with reference to
Three of these added operations 560, 570, and 580 do not require additional special functions and perform the simple role of re-transmission for the smooth transmission of an extended OpenFlow-based control signal. Thus, the control device 40 may control primary functions related to the physical layer transmission of the main node 41 and the sub-node 42 through the processes described above, and in addition, perform the control command appropriate for requests of traffic that changes every moment for each of nodes 41 and 42.
Referring to
What is important here is that a data channel for each of the nodes 602, 604, 606, and 608 is connected usually with optical fibers, and a control channel between the control device 600 and each of the nodes 602, 604, 606, and 608 is connected using a method of configuring various communications paths including the optical fibers. As examples of the method of configuring a communications path, there is wireless transmission using an RF signal or a visible light communication method, etc. However, the examples are not limited thereto. Furthermore, each of the nodes 602, 604, 606, and 608 may be directly connected through the control device 600 and a control channel, or be connected between a specific main node and the control device 600 through a control channel with a concept of a main node and a sub-node. Here, what is characteristic here is that there is a stand-alone control channel between be main node and the sub-node.
Recently, there are efforts underway to combine the wired subscriber network infrastructure and a wireless subscriber network infrastructure to build, operate, and manage the combined infrastructure due to a rapid revitalization of a mobile communications service. Under these efforts, capital expenditures (CAPEX) and operating expenditures (OPEX) of a communications service provider are reduced so as to ultimately improve average revenue per user (ARPU) in a provider's position. Particularly, some attempts for combining, into a single infrastructure, wired superspeed optical subscriber network and a front-haul network of a mobile communications base station with much homogeneity and managing the infrastructure, partially begin or some setups thereof are already completed to execute a commercial service. In order to build a wired service subscriber network in such a fixed wireless convergence subscriber network, a passive optical network (PON) technology is usually used, which is a core technology, and above all, technologies are usually used, such as time-division multiplexing (TDM), wavelength-division multiplexing (WDM), orthogonal frequency-division multiplexing (OFDM), sub-carrier multiplexing-PON (SCM-PON), etc.
In the PON technology, dividing physical network resources to make upper or downward communications with each of the subscribers is usual. The communications are performed by assigning, for each of the subscribers, a time slot in TDM-PON; a wavelength in WDM-PON; an orthogonal frequency in OFDM-PON; and a sub-carrier of a frequency domain in SCM-PON. Generally, physical network resources are properly distributed to be appropriate for the wired subscribers' requests for the bandwidth so as to communicate with a telephone station (a central base station). But recently, systems that request transmission of large traffic volumes, such as a fourth generation mobile communications system may assign, to each of the base stations, a quantity of traffic that is similar to a quantity of the traffic that has been assigned for each of the subscribers in an existing wired subscriber network. Accordingly, the system for requesting transmission of large traffic directly converts some distribution networks, which configure the wired subscriber network, into a front-haul network required for the operation of a mobile communications base station system and then uses it. Thus, network resources such as a time-slot, a wavelength, an orthogonal frequency, and a sub-carrier, etc., which are mentioned above, begin to be used in the traffic transmission of a mobile communications base station system.
Such a network is commonly called a fixed mobile convergence subscriber network. A fixed mobile convergence subscriber network, in which SDN concepts are applied, includes a control device 70 for execution of the SDN in a central base station 7 as illustrated in
The control device 70 monitors the movement of traffic at all times according to the subscriber's terminal and the service type thereof, which is separately connected to the PON distribution network. In a case where an increase or decrease of the traffic is requested in a terminal or system connected to a specific distribution network, the control device 70 may identify the current management status of resources in the entire network and take measures to respond appropriately to the requests.
For example, it is generally assumed that in an enterprise network 78, approx. 100 Gb/s is needed for traffic requests. In such a case, the control device 70 assigns a random single or multiple wavelengths or frequency resources and then selects a specific modulation method so that a traffic volume of 100 Gb/s may indeed be transmitted. To this end, the control device 70 defines, based on software, a path, a wavelength, a time or frequency assignment, a modulation method, channel bandwidth and interval, etc., and configures a transmission environment so as to perform the relevant functions.
In another example, for managing a distribution network where there is a mobile communications base station, the control device 70 performs the management and control of the base station system appropriate for the wireless front-haul network 76. For example, during the daytime, the control device 70 assigns the proper wavelength (or frequency and time) resources so as to enable the processing of a traffic volume 10 Gb/s so as to process large traffic volume requested by a plurality of mobile communications subscribers. Also, in order to process target traffic requests, the control device 70 uses a 16 quadrature amplitude modulation (QAM) method which is one of methods of increasing the symbol rate and enhancing spectroscopic transmission efficiency.
However, compared to the day, less than 10% of traffic requests are generated during night time, and as such, the control device 70 assigns the proper wavelength (or frequency and time) resources so as to enable the processing of 1 Gb/s traffic volume. At this time, the control device 70 processes the target traffic using on-off keying (OOK) modulation method that reduces the symbol rate. All the processes mentioned above are performed through the monitoring and control of the control device 70 located in a central base station 7. Furthermore, all transmissions of control commands and executions thereof are done through the respective control channel paths related thereto.
Referring to
A control device 80 controls each of these functions by using a protocol based on an extended OpenFlow. Flowever, the variable functions mentioned here are only examples and does not indicate any limitation to specific functions.
The upper layer of the control device 80 is configured with a flow map 800 of a GUI form for flow control, and in the lower layer of each flow map 800, software-defined planners 802 are positioned for an efficient control. The software-defined planners 802 may include a software-defined time slot planner, a software-defined modulation format planner, a software-defined forward error correction (FEC) code planner, etc.
In a case of a WDM-PON, the planners 802 may include a software-defined wavelength planner, a software-defined modulation format planner, a software-defined wavelength interval planner, etc. In the case of OFDM-PON, the planners 802 may include a software-defined OFDM sub-carrier planner, a software-defined modulation format planner, a software-defined fast Fourier transform (FFT) size planner, a bandwidth planner, etc.
In the lowest layer of the control device 80, an extended OpenFlow controller 804 is positioned to be connected to the extended OpenFlow (E-OpenFlow) API 806 so that the input control command is transmitted respectively to the central base station (OLT) 81 or the subscriber terminal (ONU) 82.
The E-OpenFlow 810 converts, into a programmable language, the control command received from the control device 80 and transmits the converted control command to firmware 812 which are in charge of a control within hardware so as to enable the control command to be practically operated in each device. The firmware 812 finally controls operations of hardware 814 related to the control command so as to enable operations appropriate for the practically transmitted control command to be performed.
Here, the important matter is that a physical channel for transmitting the control command is separated. The control channel 208 may have its physical path operated independently from a data transfer channel and, and share the physical path but be operated as logically separate. In such a case, physical layer network resources, such as a wavelength or frequency, etc., for a configuration of the control channel are assigned and operated.
Specifically,
Most control flows 900, 910, 920, 930, 940, 950, 990, and 992 are not much different from control flows mentioned above with reference to
Referring to
According to situations by using a control command of a software-defined upper application form, the control device 600 automatically or semi-automatically changes quantitative and qualitative characteristics of traffic provided for each of the subscribers according to a traffic flow at the entire network level with regard to the traffic requested for each of the subscribers
Recently, due to fast dispersion of a third-generation and fourth-generation mobile communications service and its market, mobile communications service subscribers using mobile terminals explosively increase. Thus, an existing mobile communications base station system has limitation to a traffic processing capacity for supporting explosively increasing subscribers. One method of improving this is a distributed antenna system (DAS), and most of the base stations may be built based on the DAS in the near future. However, even such a DAS is not capable of catching up with a trend to increase a bandwidth of a fast advancing mobile communications service, thus being predicted to reach the limit of the traffic processing capacity sooner or later.
One of technologies to innovatively improve this problem is an analog wireless-optical transmission technology. The existing analog wireless-optical transmission technology directly modulates data to a carrier wave of an RF region directly used in a mobile communications service and transmits optically the modulated data. However, such a method does not have excellent effects in reducing the implementation and operation costs, and has a performance problem that a link budget is limited depending on a usage of a high frequency when the data is transmitted.
Thus, analog wireless-optical transmission and intermediate frequency (IF) multiplexing transmission technologies receive attention these days. Here, the analog wireless-optical transmission and intermediate frequency (IF) multiplexing transmission technology is regarding a technology of converting, by a digital unit (hereinafter referred to as DU), a mobile communications service signal to an IF to transmit the converted mobile communications service signal to a radio unit (hereinafter referred to as RU) in an optical area, and again converts the transmitted mobile communications service signal to an RF carrier wave appropriate for the mobile communications service to propagate the converted mobile communications service signal to free space in the RU that is an end of a base station. Realizing the analog wireless-optical transmission and IF multiplexing transmission technology has advantages of cheap implementation costs and making a base station system large in terms of capacity and wide in terms of an area. Hence, the analog wireless-optical transmission and IF multiplexing transmission technology is evaluated to be appropriate as a front-haul technology only used for a mobile communications base station used for post-fourth-generation or fifth-generation mobile communications systems. However, new technical problems of making multiple DUs large in terms of capacity to manage the DUs and controlling and managing parameters related to transmission performances of various types of physical layers so as to improve transmission characteristics of the multiple RUs may occur.
Means for improving the above-mentioned problems is applying an SDN concept to a DAS-based base station system used for mobile communications. If the SDN concept has been applied, a wavelength for wireless-optical transmission, an IF, a bandwidth, and an OFDM-related parameter and modulation method, etc., for mobile communications system may be more easily controlled and managed in a software-defined method. Hence, necessary expenses may be innovatively improved at a system operating level, and furthermore, the network resources may be operated effectively so as to be suitable for a traffic quantity requested for each of the RUs (antennas within the DAS system).
To execute the above-mentioned concept, a mobile communications base station system according to an exemplary embodiment may form a control device 1102 in a centralized large capacity DU 1100. The DU 1100 is connected to the control device 1102 through a control channel that is separate. The DU 1100 is connected to each of the RUs 1110, 1120, and 1130 through a control channel generated by using an additional wavelength or an intermediate frequency, etc., within a physical connection path.
In an analog wireless-optical transmission-based mobile communications base station system, a single DU 1100 of a large capacity is connected to multiple RUs 1110, 1120, and 1130 by using transmission media, such as optical fibers. In configuring the connection between the single DU 1100 and the multiple RUs 1110, 1120, and 1130, various topologies may be applied according to a provider's environment and a present distribution condition of base stations. For example,
Such a distributed antenna system (DAS) may be applied to not only building a base station used for an existing mobile communications system but also building a short-distance DAS within a house or a building. In a system accepting a relatively short distance, the multiple-mode optical fiber or the plastic optical fiber may be used as transmission media as needed.
Referring to
To this end, the DU shifts upward, into a specific IF signal, the OFDM-based LTE signal that is converted into an analog signal within a single wavelength and multiplexes the upward-shifted OFDM-based LTE signal in a frequency domain so as to transmits optically the multiplexed OFDM-based LTE signal. On the contrary, when received, the RU photoelectric-transforms the signal that is optically received while the IF is loaded and extracts the IF through shifting-downward of the frequency. After the IF goes through a specific proper filtering process and an amplifying process so as to be appropriate for free space transmission, the RU shifts upward again the IF into an RF carrier frequency that is set as a target. Thus, as many as (the number of acceptable wavelengths)×(the number of IF carriers capable for being multiplexed for each wavelength) in the entire system, the number of the RUs that the single DU is capable of accepting is derived. For example, if the system is capable of accepting 80 wavelengths and multiplexing 48 IFs, the single DU may accept 3,840 RUs. The total number of the IFs and its interval and bandwidth, etc., between each of the IFs, which are loaded in the single wavelength, are not limited to the exemplary embodiments mentioned above.
The control device 1102 monitors a traffic flow at all times according to a subscriber terminal and its service type which is separately connected to a mobile communications base station distribution network. In a case where an increase or decrease of the traffic is requested in a terminal or a system which is connected to a specific distribution network, the control device 1102 may identify the current management status of resources managed in the entire network and deduce a response plan appropriate for the requests.
For example, if the RU-11110 manages a system of 3 FA, 3 SECTOR, and 8×8 multiple-input multiple-output (MIMO), the traffic corresponding to such a system is requested to the control device 1102. In such a case, by assigning a specific single- or multiple-wavelength or IF resources and selecting a specific modulation method, the control device 1102 configures a transmission environment by software-defining and controlling a wavelength, the IF assignment, a modulation method, a channel bandwidth, an orthogonal frequency-division multiplexing (OFDM)-related parameter, etc., so as to transmit a quantity of currently requested traffic.
In another example, for the RU-21120 with 2 FA and 2 SECTOR, the control device 1102 properly assigns the wavelength and the IF resources appropriate for the RU-21120 to enable target traffic to be processed. In yet another example, for the RU-31130 that manages a system of 2 FA, 2 SECTOR, and 8×8 MMO, the control device 1102 properly assigns the wavelength and the IF resources to enable the traffic appropriate for the RU-31130 to be processed with respect to the target traffic. All the above-mentioned processes are performed through the control channel for monitoring the control device 1102 and transmitting the control command.
The network structure according to an exemplary embodiment in
A DU 1210 and an RU 1220 include each hardware 1216 and 1226 that include functional blocks of a physical layer (PHY) and a media access control (MAC), each of which is variably controllable in relation to network resources, such as a wavelength, an IF, a bandwidth, a modulation method, an OFDM-related parameter, etc. However, the variable functions mentioned here are only examples and does not indicate any limitation to specific functions.
A control device 1200 controls each of the DU 1210 and the RU 1220 by using an extended OpenFlow-based protocol. An upper layer of the control device 1200 is configured with flow map 1202 of a GUI form for a flow control, and a lower layer of each flow map 1202 is configured with software-defined planners 1204 for an efficient control. For example, the software-defined planners 1204 may include a software-defined wavelength planner, a software-defined IF planner, a software-defined bandwidth planner, a software-defined modulation format planner, a software-defined OFDM planner, etc. In the lowest layer of the control device 1200, an extended OpenFlow-based controller 1206 is positioned to be connected to an extended OpenFlow API 1208 so that an input control command is transmitted for each of the DU or RUs.
The E-OpenFlow API 1208 transmits the control command to the E-OpenFlow API 1210 of the DU 1210 through a control channel 1209, and the E-OpenFlow API 1210 of the DU 1210 converts the received control command into a programmable language and transmits the converted control command to firmware 1214 which is in charge of a hardware control so as to enable the control command to be practically operated in the DU 1210. The firmware 1214 finally controls operations of hardware 1216 related to the control command so as to enable appropriate operations to be performed according to the practically transmitted control command.
Here, the important matter is that a physical channel for the control command exists additionally as separate. In the control channel, a physical path may be operated independently from a data transfer channel, and share the physical path but be operated as separated logically. In such a case, physical layer network resources of a wavelength or an IF, etc., may be additionally assigned and managed for the configuration of the control channel 208.
Referring to
Three of these added operations 1360, 1370, and 1380 do not require additional special functions, etc., and performs only a simple role of a re-transmission for the smooth transmission of an extended OpenFlow-based control signal. Thus, the control device 1200 may control primary functions related to a physical layer transmission between the DU 1210 and the RU 1220 through the processes described above, and in addition, may transmit the control command appropriate for requests of traffic that changes every moment for each of the RU 1220 and the DU 1210.
Specifically in
A current network structure and management structure is required to be reviewed because of technological and economic issues, such as the growth of mobile devices and the large and high-definition content and an increasing demand for a cloud-based virtualization service. To solve this, in the present disclosure, the SDN structure used in an upper layer is extended to be applied to a lower physical layer.
Accordingly, in addition to basic advantages of an SDN-based networking structure, the present disclosure may be capable of efficiently controlling and managing a transmission parameter in a physical layer. Eventually, the present disclosure is capable of configuring and managing a network suitable for transmission of video content, such as on-demand high-definition content, etc., having burst characteristics.
Furthermore, since SDN-based network resources are capable of being managed and operated in an optical communications network, a fixed mobile convergence subscriber network, a wired broadband subscriber network, a distributed mobile communications base station network, etc., the present disclosure is capable of flexibly responding to requests for traffic changes of an individual subscriber or a base station, etc., and simply and economically improving the transmission performance and increasing the capacity.
A number of examples have been described above. Nevertheless, it should be understood that various modifications may be made. For example, suitable results may be achieved if the described techniques are performed in a different order and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Accordingly, other implementations are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0009156 | Jan 2014 | KR | national |