Software model business process variant types

Information

  • Patent Grant
  • 8312416
  • Patent Number
    8,312,416
  • Date Filed
    Thursday, April 13, 2006
    18 years ago
  • Date Issued
    Tuesday, November 13, 2012
    12 years ago
Abstract
Methods and apparatus, including computer program products, to realize a software model are described. Process components are defined that characterize software implementing respective and distinct business processes and additionally define at least one process agent that enables communications between a business object associated with the corresponding process component and a business object associated with any other process component. Business Process Variant Types are also defined that associate one or more of the process agents for the corresponding process component so that selection of a process variant type causes the associated one or more process agents to be activated.
Description
BACKGROUND

The subject matter of this patent applications relates to modeling software systems, and more particularly to modeling of Business Process Variant Types in connection with the composition and interaction of components in a software system.


Enterprise software systems are generally large and complex. Such systems can require many different components, distributed across many different hardware platforms, possibly in several different geographical locations. Typical software modeling systems may not be able to reduce this complexity for end users. In order to design, configure, update or implement an enterprise software system, one is required to understand details of the system at varying levels, depending on his or her role in designing, managing or implementing the system. For example, a systems administrator may need a high-level technical understanding of how various software modules are installed on physical hardware, such as a server device or a network, and how those software modules interact with other software modules in the system. A person responsible for configuring the software may need a high-level functional understanding of the operations that each functional component provides. An application designer may need a low-level technical understanding of the various software interfaces that portions of the application require or implement. And an application developer may need a detailed understanding of the interfaces and functionality he or she is implementing in relation to the remainder of the system.


SUMMARY

In one aspect, one or more process components can be defined. Each these process components characterize software implementing respective and distinct business processes and can define at least one process agent. Each such process agent enables communications between a business object associated with the corresponding process component and a business object associated with any other process component. One or more Business Process Variant Types can also be defined for at least one for at least one of the process components. Each of the Business Process Variant Types associates one or more of the process agents defined for the corresponding process component so that selection of a process variant type causes the associated one or more process agents to be activated.


The process components can characterize inbound operations to handle incoming messages associated with a modification of reading of data encapsulated in a business object associated with the process component. One or more of the inbound operations can be a synchronous operation operable to receive a synchronous message generated by an external synchronous outbound operation defined by an external process component. In some variations, one or more of the inbound operations is operable to receive a message of a first type and convert it into a message of a second type.


The process components can also characterize outbound operations to handle outgoing messages associated with a modification or reading of data encapsulated in at least one business object associated with another process component. The outbound operations can be called after the business object associated with a corresponding outbound operation is read or modified. One or more of the outbound operations is an asynchronous outbound operation operable to generate an asynchronous message for receipt by an asynchronous inbound operation defined by an external process component. Additionally, in some variations, outbound operations can send messages after they are called.


The process agents can comprise inbound process agents, outbound process agents, or a combination of both. The inbound process agents can characterize inbound operations to handle incoming messages. The outbound process agents can characterize outbound operations to transmit outgoing messages to an external process component.


In some variations, a first of the process components is associated with a first deployment unit and a second of the process components is associated with a second deployment unit. Such deployment units can characterize independently operable and deployable software.


The process components can additionally define service interfaces having pair-wise interactions between pairs of process components. Relatedly, one or more business objects, each which being solely associated with a single process component can be defined. In some implementations, none of the business objects of any one of the process components interacts directly with any of the business objects associated with any of the other process components.


A plurality of process components can be logically associated to realize a business scenario. This logical association can take the form of an interaction scenario. The logical association is dependent on the selected Business Process Variant Types as process components only interact, in some variations, based on the activated outbound process agents. As a result, interactions between process components not having a process variant type activating process agents coupled the process components can be limited. Business Process Variant Types can also be used to verify that connected process components have corresponding Business Process Variant Types activating relevant outbound process agents.


In an interrelated aspect, a plurality of process agents can be defined for each of two process components. Each process agent is either an inbound process agent or an outbound process agent. An inbound process agent is operable to receive a message from an inbound operation. An outbound process agent is operable to cause an outbound operation to send a message. Thereafter, interactions between at least one inbound process agent of a first process component and at least one outbound process agent of a second process component are defined. Additionally, interactions between at least one inbound process agent of the second process component and at least one outbound process agent of the first process component are defined. One or more Business Process Variant Types are defined for at least one of the process components. Each of the Business Process Variant Types associates one or more of the process agents defined for the corresponding process component. Selection of a process variant type causes the associated one or more process agents to be activated.


In a further interrelated aspect, a process interaction map is displayed in a first view, a process component architectural design is illustrated in a second view, and a process component interaction architectural design is illustrated in a third view. The process interaction maps illustrates interactions among a plurality of process components linked together by selected Business Process Variant Types. Each of the process components characterizes software implementing a respective and distinct business process, and each of the process components defines a respective service interface for interacting with other process component. The process component architectural design illustrates an inbound part, a business object part, and an outbound part for a selected process component. The inbound part identifies all external process components that use one or more inbound operations of the selected process component. The business object part identifies all business objects associated with the selected process component. The outbound part identifies all external process components utilized by one or more outbound operations of the selected component. The process component interaction architectural design illustrates message transfer between exactly two process components to modify or read business objects associated with each business object. Each process component illustrates a plurality of process agents, each process agent being either an inbound process agent or an outbound process agent. The inbound process agent is operable to receive a message from an inbound operation. The outbound process agent is operable to cause an outbound operation to send a message. In addition, only outbound process agents associated with a selected process variant type are activated.


Computer program products, which can be tangibly encoded on computer readable-material, are also described. Such computer program products can include executable instructions that cause a computer system to implement one or more of the acts and/or components described herein.


Similarly, computer systems are also described that can include a processor and a memory coupled to the processor. The memory can encode one or more programs that cause the processor to implement one or more of the acts and/or components described herein.


The subject matter described herein provides many advantages. A model provides modeling entities to represent aspects of a software system. Multiple views of the model are provided in a user interface. The model views offer varying levels of detail, allowing users to focus on the information that is important for their task. Model entities can be reused and correspond to reusable software that implements functionality corresponding to the model entity. The model supports dynamic mapping between incompatible message formats. A model can incorporate external components. The models can be used to generate metadata, which can be stored in a repository and used in various downstream processes and tools.


Moreover, the subject matter described herein provides a logical abstraction of how various software modules can interact to effect a business scenario. In particular, effective use can be made of process components as units of software reuse, to provide a design that can be implemented reliably in a cost effective way. Deployment units, each of which is deployable on a separate computer hardware platform independent of every other deployment unit, enable a scalable design. Furthermore, service interfaces of the process components can define a pair-wise interaction between pairs of process components that are in different deployment units in a scalable manner.


One implementation of the subject matter described in this specification provides all of the above advantages.


Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and in the description below. Further features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a modeling method;



FIG. 2 is an illustration of a modeling system;



FIG. 3 is an illustration of process component modeling entities.



FIGS. 4A-4C are illustrations of a process interaction map;



FIG. 5 is an illustration of a process component model;



FIG. 6 is an illustration of a process component interaction model;



FIGS. 7A-7B are illustrations of a business object map;



FIG. 8 is an illustration of an integration scenario model entity;



FIGS. 9-9A are illustrations of an integration scenario catalog;



FIGS. 10A-10B are illustrations of a GUI for presenting one or more graphical depictions of views of a model and modeling entities;



FIG. 11 is an illustration of process component interaction with an external process component;



FIG. 12 is an illustration of process component interaction through a mapping model element;



FIG. 13 is an illustration of a partial integration scenario based on a cash sales invoice process variant type;



FIG. 14 is an illustration of a partial integration scenario based on a standard customer invoice process variant type;



FIG. 15 illustrates Business Process Variant Types and outbound process agents for a customer invoice processing process component;



FIG. 16 illustrates sample process components and their respective Business Process Variant Types; and



FIG. 17 illustrates an integration scenario in which selected Business Process Variant Types are displayed within each process component.





Like reference numbers and designations in the various drawings indicate like elements.


DETAILED DESCRIPTION

In the context of this document, a model is a representation of a software system, part of a software system, or an aspect of a software system. A model can be associated with one or more views. A view of a model represents a subset of the information in the model. For purposes of discussion, the term “model” will be used to refer to both a model or a view of the model. A modeling system can be used to create, modify and examine a model. A model can be used in a software development process to describe or specify a software application, or parts or aspects of a software application, for developers implementing or modifying the application. The model specifies the design to a useful level of detail or granularity. A compliant implementation of the modeled functionality will conform to the specification represented by the model.



FIG. 1 is a process flow diagram illustrated a method 100, at which, at 110, one or more process components are defined. Each of the process components characterizes software implementing respective and distinct business processes and defines at least one process agent. Each process agent enables communications between a business object associated with the corresponding process component and a business object associated with any other process component. Thereafter, at 120, one or more Business Process Variant Types for at least one of the process components is defined. Each of the Business Process Variant Types associates one or more of the process agents defined for the corresponding process component so that selection of a process variant type causes the associated one or more process agents to be activated.



FIG. 2 illustrates a modeling system 200. An interactive graphical user interface (GUI) 204 allows a user to create, inspect and modify a model. The GUI 204 can present a model in different views offering differing levels of detail. This arrangement allows users to focus on information that is appropriate to their role or the task at hand. A model design component 206 coupled to the GUI 204 provides one or more tools for modifying and manipulating a model, as will be discussed below. A repository 202 is capable of storing one or more models and associated information. By way of illustration and without limitation, the repository can incorporate one or more files, databases, services, combinations of these, or other suitable means for providing persistent storage of model information.



FIG. 3 is an illustration of process component modeling entities (or “process components”) in a model. For brevity, where the sense is clear from the context, the term “process component” will be used to refer both to the modeling entity and to an implementation in a software system of a process represented by that modeling entity. The same dual use will be made of other terms to refer both to the modeling entity and an implementation represented by the entity, where the meaning is clear from the context.


A process component is a software package that realizes a business process and exposes its functionality as services. The functionality contains business transactions. A process component contains one or more semantically related business objects (e.g., 330, 310). A business object belongs to no more than one process component.


Process components are modular and context-independent. Context-independent means that a process component is not specific to a given integration scenario (integration scenarios are described later.) Therefore, process components are reusable, that is, they can be used in different integration scenarios.


A process component has one or more service interface modeling entities (316, 318, 320, 322, 336, 338) (or “interfaces”). An interface is a named grouping of one or more operations. It specifies offered (inbound service interface) or used (outbound service interface) functionality. While in general process components will have service interfaces, it is permissible to define a process component having no service operations. This would be appropriate, for example, for process components that inherently or by design interact only with process components deployed on the same hardware platform, in which circumstances a non-service method of interacting, e.g., through shared memory or database records, might be preferred.


An operation belongs to exactly one process component. A process component generally has multiple operations. An operation is the smallest, separately-callable function, described by a set of data types used as input, output, and fault parameters serving as a signature. An operation can use multiple message types for inbound, outbound, or error messages. An operation is specific to one interface, i.e., the same operation cannot be used in more than one interface.


Operations are described for purposes of exposition in terms of process agents. A process agent (or “agent”) is an optional modeling entity representing software that implements an operation. Operations can be implemented through other conventional techniques. Operations (and hence agents) can be synchronous or asynchronous, and inbound or outbound. As will described below, a process component can characterize more process agents than are required for a particular implementation.


Synchronous outbound operations send synchronous request messages and process response messages. Synchronous inbound operations respond to messages from synchronous outbound operations. Synchronous communication is when a message is sent with the expectation that a response will be received promptly. Asynchronous communication comes with the expectation that a response will be provided by a separate operation invoked at a later point in time.


An asynchronous outbound operation is specific to a sending business object. If the asynchronous outbound operation is triggering a new communication to another process component, it is specific for the triggered process component. However, the same asynchronous outbound process operation can be used for two operations which are part of the same message choreography. If the asynchronous outbound operation is sending only a confirmation (not triggering), it might be re-used for different receiving process components.


Inbound operations are called after a message has been received. Based on a business object's status, inbound operations may initiate communication across deployment units, may initiate business-to-business (B2B) communication, or both by sending messages using well-defined services.


The model can describe the potential invocation by one process component of an operation on another process component. Graphically, this is depicted as an arc (340, 342) in FIG. 3 connecting the two process components 306 and 308. Invocation of an operation on a process component is always accomplished by another process component sending a message to the process component, if the two process components are part of different deployment units, which are described below. Interaction between two process components in the same deployment unit, on the other hand, can be implemented by the passing of messages, as described, or it can be implemented by the use of resources, e.g., data objects, database records, or memory, that are accessible to both process components when they are deployed.


Messages are described by message modeling entities (or “messages”) in the model.


A process agent can be associated with a single interface. For example, interface 338 is associated with process agent 332, interface 336 is associated with process agent 334, interface 316 is associated with process agent 312, and interface 318 is associated with process agent 314. In one variation, each operation is associated with a process agent.


An output operation generally responds to an action (e.g., create, read, update, delete, etc.) with a business object associated with the operation. The operation will generally perform some processing of the data of the business object instance whose change triggered the event. An outbound operation triggers subsequent business process steps by sending messages using well-defined outbound services to another process component, which generally will be in another deployment unit, or to a business partner. For example, outbound process agent 324 in process component 306 can invoke an operation of interface 322 to send a message that will be received by the inbound process agent 312 in process component 308. The message is routed to a specific operation in interface 316 according to the signature or type of the message, which the inbound process agent 312 handles.


Inbound process agents when implemented are pieces of software that are used for the inbound part of a message-based communication. An inbound process agent starts the execution of the business process step requested in a message by creating or updating one or multiple business object instances, e.g., for associated business objects (330, 310) in response to receiving a message. Outbound process agents when implemented can send messages in response to a business object changing or interaction with a business object. For example, the inbound process agent 312 may modify business object 310, thus triggering outbound process agent 314 to send a message to the inbound process agent 328. If two operation invocations are part of the same message choreography, they are associated with the same process agent.


A business object model entity models a business object. A business object is a representation of a type of a uniquely identifiable business entity (an object instance) described by a structural model and zero or more service interfaces. Implemented business processes operate on business objects.


A business object represents a specific view on some well-defined business content. A business object represents content, which a typical business user would expect and understand with little explanation. Business objects are further categorized as business process objects and master data objects. A master data object is an object that encapsulates master data (i.e., data that is valid for a period of time). A business process object, which is the kind of business object generally found in a process component, is an object that encapsulates transactional data (i.e., data that is valid for a point in time). The term business object will be used generically to refer to a business process object and a master data object, unless the context requires otherwise. Properly implemented, business objects are implemented free of redundancies.


Business process objects are associated with exactly one process component. Master data objects are either associated with exactly one process component or exactly one deployment unit.


Business objects residing in a foundation layer are called business foundation objects. The foundation layer is deployed on every platform, and its business objects, process components, and reuse services are available to be used by all application scenarios. It is assumed that business objects in the foundation layer will be local in all integration scenarios and can be directly accessed synchronously from business objects within deployment units in an application layer. Business objects in the foundation layer can be associated with more than one process component. Process components in the foundation layer have no BPVTs as such process components do not have process agents, and messages—only direct calls.



FIGS. 4A-4C are illustrations of a process interaction map 400. A process interaction map is a modeling entity that describes interactions between two or more process components. It can be presented in the GUI 204 (FIG. 2) by the model design component 206 as a circuit diagram, for example, with arcs indicating potential interactions between process components. In a visual rendition of the map 400, process components are represented as icons (e.g., 404, 406, 408). So called “external” process components are indicated with dashed lines (e.g., 406, 408). External process components are shown to place the modeled process components in their operational context relative to another system, e.g., a system belonging to another company, such as a customer or other third party. The GUI 204 allows a user to connect and disconnect process components (i.e., to indicate potential interactions), move process components, and zoom in a specific portion of the map 400 to see more detail, as indicated by view 414.


Groups of process components can be organized into scenarios and deployment units. An integration scenario modeling entity (or “scenario”) describes a group of process components that interact directly or indirectly (i.e., through one or more other process components) with each other. A process component belongs to one deployment unit. Scenarios are discussed below.


A deployment unit modeling entity (e.g., 402, 410, 412) models a deployment unit, which includes one or more process components that can be deployed together on a single computer system platform.


Separate deployment units can be deployed on separate physical computing systems and include one or more process components. For example, a physical system can be a cluster of computers having direct access to a common database. The process components of one deployment unit interact with those of another deployment unit only using messages passed through one or more data communication networks or other suitable communication channels. Thus, a deployment unit software entity deployed on a platform belonging to Company A can interact with a deployment unit software entity deployed on a separate platform belonging to Company B, allowing for business-to-business communication. Or deployment units in different divisions of the same company can interact with each other. More than one instance of a given deployment unit software entity can execute at the same time.



FIG. 5 is an illustration of a process component model (PCM) 500. A PCM is a view of a model that incorporates the model entities associated with a particular process component. A PCM can also describe potential interactions between a process component and other process components in the same or in different deployment units. For example, the process component illustrated in 500 can interact with a Customer Requirement Processing component 504 and a Customer Invoice Processing component 525. Moreover, a PCM can describe interaction with external process components that are controlled by third parties (e.g., 528).


The PCM models operations incorporated in a process component. For example, inbound operation Change Sales Order based on Customer Requirement Fulfillment Confirmation 508, and outbound operations Request Invoicing 520 and Confirm Sales Order 522. The arc 530 connecting the process component 504 to the interface 502 represents that the process component 504 can invoke an operation on that interface. The arcs 532 and 534 represent that the process component illustrated in 500 can invoke an operation on process components 525 and 528, respectively.


The PCM optionally models process agents (e.g., 510, 516, 518) corresponding to the process component's operations. For example, the Change Sales Order based on Customer Requirement inbound process agent 510 models processing or responding to a message routed to inbound operations 508 or 540. The inbound process agent 510, for example, will access and modify the Sales Order business object 514 as part of the processing, e.g., change the delivery date of goods or services on the sales order.


Process component 525 can receive one or more messages by way of outbound operation 520, as denoted by the arc 532 connecting outbound operation 520 to the process component 525. Based on the change associated with the business object 514, the Request Invoicing from Sales Order to Customer Invoice Processing outbound process agent 518 invokes operation 520 in interface 526 to send a message to process component 525. Likewise, external process component 528 can receive one or more messages sent by outbound operation 522, as denoted by the arc 534 connecting operation 522 to the process component 528. Based on the state or a state change associated with the business object 514, outbound process agent 516 can invoke operation 522 to send a message to external process component 528.



FIG. 6 is an illustration of a process component interaction model (PCIM) 600. PCIMs can be reused in different integration scenarios. A PCIM is a view of a model that incorporates relevant model entities associated with potential interaction between two process components (e.g., 602, 604). Interfaces, process agents and business objects that are not relevant to the potential interaction are excluded. The PCIM 600 shows interactions between a Time and Labor Management process component 602 and a Goods and Service Acknowledgement process component 604.


The Time and Labor Management process component 602 includes an Employee Time Calendar business object 606 that gives a read-only information of a calendar based overview of different time data (e.g., Planned working time, an absences and working time confirmation) of employees and their superposition (e.g., illness, vacation, etc). The Employee Time Calendar business object 606 may use a Notify Goods and Services Acknowledgement outbound process agent 608 to invoke a Notify of Goods and service Acknowledgement Notification operation 610 or a Notify of Goods and Service Acknowledgement Cancellation operation 612, which are both included in the Internal Service Acknowledgement Out interface 614. The Notify of Goods and service Acknowledgement Notification operation 610 notifies the Goods and Service Acknowledgement process component 604 of a service provided by an external employee. The Notify of Goods and service Acknowledgement Notification operation 610 sends a Goods and Service Acknowledgement Request message 616 when an active employee time with Goods and Service Acknowledgement relevant information is created or changed.


The Goods and Service Acknowledgement process component 604 receives the Goods and Service Acknowledgement Request message 616 via an Internal Acknowledgement In interface 618. Upon receipt of the Goods and Service Acknowledgement Request message 616, a Create Goods and Service Acknowledgement operation 620 is invoked to create Goods and service Acknowledgement, and Time and Labor Management by initiating a Maintain GSA based on Internal Acknowledgment inbound process agent 622. The Maintain GSA based on Internal Acknowledgment inbound process agent 622 updates or creates a Goods and Service Acknowledgement business object 624 to report the receipt of goods and services. The Goods and Service Acknowledgement business object 624 may be used when employees of a company can confirm that they have received the goods and services they ordered through internal requests, purchasers, or designated recipients of goods and services, can confirm that they have received the goods and services they ordered on behalf of the employees for whom they are responsible, or suppliers or service providers can report that they have delivered the requested goods, or have rendered they requested services.


The Notify Goods and Services Acknowledgement outbound process agent 608 may also invoke the Notify of Goods and Service Acknowledgement Cancellation operation 612 to notify the Goods and Service Acknowledgement process component 604 of a cancellation of goods and service. The Notify of Goods and Service Acknowledgement Cancellation operation 612 sends a Goods and Service Acknowledgement Cancellation Request message 626 when an active employee time with Goods and Service Acknowledgement relevant information is cancelled. Upon receipt of the Goods and Service Acknowledgement Cancellation Request message 626, a Cancel Goods and Service Acknowledgement operation 628 is invoked to cancel Goods and service Acknowledgement. Next, the Maintain GSA based on Internal Acknowledgment inbound process agent 622 updates the Goods and Service Acknowledgement business object 624 to report the cancellation of goods and services.


The message format of a message sent by an outbound operation need not match the message format expected by an inbound operation. If the message formats do not match, and the message is transformed, or mapped. Message mapping is indicated by interposition of an intermediary mapping model element between the source and the destination of the message in a PCM or a PCIM (see below).



FIGS. 7A-7B are illustrations of a business object map 700. A business object map is a view of a model that incorporates deployment units, process components, and business objects. Interfaces, operations and process agents are excluded from the view. Each model entity is only represented once in the business object map. Hence, the business object map is a representation of all deployment units, process components, and business objects. In the illustrated business object map 700, and as shown in the highlighted portion 728 illustrated in FIG. 7B, a Customer Invoice Processing process component 726 in Customer Invoicing deployment unit 704 incorporates two business objects: a customer invoice request 710 and a customer invoice 708. A Project Processing process component 724 in a Project Management deployment unit 706 includes five business objects: a Project Request 718, a Project 720, a Project Snapshot 712, a Project Simulation 714, and a Project Template 722.



FIG. 8 is an illustration of an integration scenario model entity 800 (or “integration scenario”). An integration scenario is a realization of a given end-to-end business scenario. It consists of the process components and the interactions between them, which are required for its realization. A process component is only represented once in an integration scenario model, even though the actual flow in the software system might invoke the same process component multiple times. An integration scenario model entity describes at a high level the potential interaction between process components in one or more deployment units that are relevant to realization of the business scenario. For example, an integration scenario can be a set of process components and their interactions working together to realize a business scenario to achieve a business objective, such as selling products to generate revenue. Internal details of process components are not described, nor are details of process component interactions (e.g., interfaces, operations and messages).


The illustrated integration scenario 800 is for a service procurement software application. The service procurement application is software that implements an end-to-end process used to procure services. The scenario 800 includes nine deployment units: a Financial Accounting unit 802, a Project Management unit 804, a Purchasing unit 806, a Supplier Invoicing unit 808, a Payment unit 810, a RFQ Processing unit 812, a Due Item Management unit 814, a Requisitioning unit 816, and a Human Capital Management unit 818.


The Financial Accounting deployment unit 802 includes an Accounting process component 803 that records all relevant business transactions.


The Project Management deployment unit 804 includes a Project Processing component 820 that is responsible for structuring, planning, and executing measures or projects (e.g., short-term measures, complex projects, etc).


The Purchasing deployment unit 806 includes four process components: a Purchase Request Processing process component 828, a Purchase Order Processing process component 830, a Purchasing Contract process component 832, and a Goods and Service Acknowledgement process component 833.


The Purchase Request Processing process component 828 provides a request or instruction to the purchasing department to purchase specified goods or services in specified quantities within a specified time.


The Purchase Order Processing process component 830 includes a purchase order business object and a purchase order confirmation business object. The purchase order is a request from a purchaser to an external supplier to deliver a specified quantity of goods, or perform a specified service within a specified time. The purchase order confirmation is a communication from a supplier to a purchaser to advise that a purchase order has been received. In particular, a purchase order confirmation may advise the purchaser of the supplier accepting the purchase order, or the supplier proposing changes to the purchase order, or the supplier not accepting the purchase order.


The Purchasing Contract process component 832 handles an agreement between a purchaser and a supplier that details the supply of goods or the performance of services at agreed conditions. The Purchasing Contract process component includes the purchasing contract business object.


The Goods and Service Acknowledgement 833 includes a Goods and Service Acknowledgement business object. The Goods and service Acknowledgement business object is a document that states the recipient's, for example, a purchaser's, obligation to pay the supplier for goods received or services rendered. An invoice is normally created after the goods and service acknowledgement has been confirmed.


The Supplier Invoicing deployment unit 808 includes a Supplier Invoice Processing process component 836. The Supplier Invoice Processing process component 836 includes a supplier invoice business object and a supplier invoice request business object. The supplier invoice is a document that states the recipient's obligation to pay the supplier for goods received or services rendered. The invoice may be created after the goods and service acknowledgment has been confirmed. The supplier invoice request is a document that is sent to invoice verification, advising that an invoice for specified quantities and prices is expected and may be created through evaluation settlement. The system uses the invoice request as a basis for invoice verification, as well as for the automatic creation of the invoice. The Payment deployment unit 810 includes a Payment Process component 838. The Payment Processing process component 838 is used to handle all incoming and outgoing payments as well as represent the main database for a liquidity status.


The RFQ deployment unit 812 includes an RFQ Processing process component 840. An RFQ Processing deployment unit includes a Request for Response business object and a quote business object. The request for quotation (RFQ) is a description of materials and services that purchasers use to request responses from potential suppliers. Requests for Quotation can be one of the following types: a request for (price) information, a request for quote that may run over a certain period of time, a request for proposal in complex purchasing situation or live auctions that may be performed over a short time frame. The quote is a response to a request for quotation in which a supplier offers to sell goods and services at a certain price. The quote can be subject to complex pricing and conditions.


The Due Item Management deployment unit 814 includes a Due Item Processing process component 842. The Due Item Processing process component 842 is used to manage all payables, receivables from service and supply and corresponding sales including a withholding tax.


The Requisitioning deployment unit 816 includes an Internal Request Processing process component 844. The Internal Request Processing deployment unit 816 includes an Internal Request business object. Employees of a company may make an internal request for the procurement of goods or services for the company. For example, the employees may order stationary, computer hardware, or removal services by creating an internal request. The internal request can be fulfilled by an issue of a purchase request to the purchasing department, a reservation of goods from stock, or a production request.


The Human Capital Management deployment unit 818 includes a Time and Labor Management process component 848. The Time and Labor Management process component 848 supports the definition of employees' planned working time as well as the recording or the actual working times and absences and their evaluation.


The foundation layer includes a Source of Supply Determination process component 834, a Customer Invoice Processing at Supplier process component 837, a Sales Order Processing at Supplier process component 846, a Payment Processing at Business Partner process component 850, a Bank statement create at bank process component 852, and a Payment order processing at house bank process component 854.


The service procurement design includes a Source of Supply Determination process component 834 that uses two business objects to determine a source of supply: a supply quota arrangement business object, and a source of supply business object. A supply quota arrangement is a distribution of material requirements or goods to different sources of supply, business partners, or organizational units within a company. An example of the use of supply quota arrangements is the distribution of material requirements between in-house production and different sources for external procurement. A supply quota arrangement can also define the distribution of goods to customers in case of excess production or shortages. A source of supply is an object that describes a logical link between a possible source of products and a possible target.


A number of external process components, described below, will be used to describe the architectural design. These include a Customer Invoice Processing at Supplier process component 837, a Sales Order Processing at Supplier process component 846, a Payment Processing at Business Partner process component 850, a Bank statement create at bank process component 852, and a Payment order processing at house bank process component 854.


The Supplier Invoicing deployment unit 808 receives messages from a Customer Invoice at Supplier processing component 837, which is used, at a supplier, to charge a customer for the delivery of goods or services.


The service procurement design includes a Sales Order Processing at Supplier process component 846 that may receive messages from the RFQ Processing process component 840. The Sales Order Processing at Supplier process component 846 handles customers' requests to a company for delivery of goods or services at a certain time. The requests are received by a sales area, which is then responsible for fulfilling the contract.


The Payment Processing at Business Partner process component 850, the Bank statement create at bank process component 852, and the Payment order processing at house bank process component 854 may interact with the Payment Processing process component 838. The Payment Processing Process component 838 may send updates to a Payment Processing at Business Partner processing component 850, which is used to handle, at business partner, all incoming and outgoing payments and represent the main data base for the liquidity status. The Payment Processing Process component 838 also receives messages from the Bank statement creates at bank process component 852. The message may include a bank Statement for a bank account. The Payment Processing Process component 838 send messages to the Payment order processing at house bank process component 854. The message may include a Bank Payment Order that is a Payment Order which will be sent to a house bank. The bank payment order may contain bank transfers as well direct debits.


The connector 829 symbol is a graphical convention to improve graphical layout for human reading. A connector is a placeholder for another process component. For example, the connector 829 could be a placeholder for an Accounting process component.



FIGS. 9-9A are illustrations of an integration scenario catalog (or “scenario catalog”) 900. A scenario catalog presents an organized view of a collection of integration scenarios. The view can be organized in a number of ways, including hierarchically or associatively based on one or more attributes of the integration scenarios. The illustrated integration scenario catalog 900 represents a structured directory of integration scenarios. For example, a scenario directory Sell from Stock 902 representing a family of scenarios includes two entries: a reference to a Sell from Stock integration scenario 904, and a reference to a Sell from Stock for Delivery Schedules integration scenario 906.



FIG. 10A-10B is an illustration of the GUI 204 (from FIG. 2) for presenting one or more graphical depictions of views of a model and modeling entities. Each view can present a different level of detail or emphasize a different aspect of the model. This allows for different classes of users to focus on the information that is important for carrying out their duties without being distracted by extraneous detail. One or more of the following graphical depictions can be presented: a scenario catalog 1002, an integration scenario model 1004, a PCIM 1008, and a PCM 1010. In one variation, the GUI 204 allows a user to “drill down” to increasing levels of model detail. For example, selection of a scenario icon 1006 in the integration scenario catalog 1002 can cause an associated integration scenario model 1004 to be presented. Selection of a graphical representation of a process component 1014 in the integration scenario can cause an associated PCM 1010 for the process component to be presented. Likewise, selection of an arc 1012 connecting process components in different deployment units can cause a PCIM 1008 for the process components connected by the arc to be presented.


In one implementation, the aforementioned graphical depictions can be presented singularly or in combination with each other in the GUI 204. Moreover, a given graphical depiction can present all of its underlying information or a portion thereof, while allowing other portions to be viewed through a navigation mechanism, e.g., user selection of a graphical element, issuance of a command, or other suitable means.


Information can also be represented by colors in the display of model entities. For example, color can be used to distinguish types of business objects, types of process agents and types of interfaces.



FIG. 11 is an illustration of process component interaction with an external process component, representing an external system. As discussed earlier, a process component can interact with an external process component. This interaction can be modeled even though the interfaces of the external process are unknown, as is the case in this example. (However, if this information is known, it can be incorporated into the model.)


In this example, potential interactions are shown between a Purchase Order Processing process component 1102 and an external Sales Order Processing at Supplier process component 1104. The Purchase Order Processing process component 1102 includes a Purchase Order business object 1106 which is a request from a purchaser to an external supplier to deliver a specified quantity of goods, or perform a specified service, within a specified time. The Request Purchase Order to Supplier outbound process agent 1108 can request invocation of a Request Purchase Order Creation operation 1112, a Request Purchase Order Cancellation operation 1114, or a Request Purchase Order Change operation 1116 in an Ordering Out interface 1110.


The Request Purchase Order Cancellation operation 1114 requests a Cancellation of a Purchase Order that was formerly ordered at a supplier which creates a Purchase Order Cancellation Request message 1118. The Request Purchase Order Change operation 1116 requests a change of a purchase order that was formerly ordered at the supplier which creates a Purchase Order Change Request message 1120. The Request Purchase Order Creation operation 1112 requests a Purchase Order from a Supplier which creates a Purchase Order Change Request 1122.


Upon receiving a create, a change, or a cancellation message, the Sales Order Processing process component 1104 may create a Purchase Order Confirmation message 1123 to update the Purchase Order Processing component 1102. To complete the update, a Create Purchase Order Confirmation operation 1124, included in an Order In interface 1125, may transfer the update to the Purchase Order Confirmation business object 1128 by using a Create Purchase Order inbound process agent 1126. The Purchase Order Confirmation business object 1128 is a confirmation from an external supplier to the request of a purchaser to deliver a specified quantity of material, or perform a specified service, at a specified price within a specified time.



FIG. 12 is an illustration 1200 of process component interaction through a mapping model element 1214 (or “mapper”). As discussed above, if message formats between two process component operations do not match, the message can be transformed by a mapper on its way from the outbound process agent to the inbound process agent. For example, output process agent 1216 associated with process component 1202 can send a message 1210 to inbound process agent 1217 in process component 1204 by way of operation 1218 in interface 1206. If the message format associated with operation 1218 does not match that of operation 1220, a transformation of the message from its original format to a format compatible with operation 1220 can be described by a mapper 1214 interposed between the two process agents. The mapper 1214 generates a new message 1212 based on the original message 1210, where the new message has a format that is compatible with operation 1220.


Depending on the integration scenario being implemented, different message choreographies among process components may be required. However, only specific outbound process agents need to be activated to enable these message choreographies. Often, there can be numerous outbound process agents which are defined by a process component which are not needed for a particular integration scenario. Leaving outbound process agents active even though they are not being utilized has some drawbacks. For example, although a relevance condition of an outbound process agent is coded so that it can be determined that the process component is not active, calling all such outbound process agents and evaluating all of the relevance conditions can degrade performance. Moreover, coding such relevance conditions increases development efforts and system complexity. In another example, if a relevance condition is not defined or is not checked, sending messages to an inactive (not configured) process component will produce a large number of errors.


In some variations, process component can have one or more associated business Business Process Variant Types (“BPVTs”). A BPVT is a modeling entity that represents a typical way of processing within a process component from a business point of view. A BPVT defines which process agents of a process component are activated, which in turn defines other process components with which the process component interacts. The criteria to define a BPVT can include associated message choreographies or business configuration parameters belonging to different BPVTs of a process component. In some cases, BPVTs of one process component can have the same message choreography as another process component while the business configuration settings differ. As a result, the message choreography of a process component is different for different BPVT of such a process component. There are two categories of BPVTs: main BPVTs which are unique for a particular business object or a business object node and additional BPVTs which are optional and only exist in combination with a main BPVT.


During application run-time the BPVT will be derived (based on business configuration settings, master data, incoming messages or user interaction) and stored in a business object node. The derived BPVT could be passed in a message or used as one of the parameters in a relevance condition of outbound process agent. BPVTs can be passed in connection with service and support error tickets (to allow, for example, an embedded support scenario).


BPVTs can be used to ensure consistency among different deployments based on the modeling methodologies described herein. Moreover, BPVTs can be used to verify that process interaction models associated with a particular integration scenario have been correctly assigned.



FIGS. 13 and 14 respectively illustrate partial integration scenarios 1300, 1400 in which a customer invoice processing process component 1302 includes different selected BPVTs. In a first variation illustrated in FIG. 13, a cash sales invoice BPVT 1304 is selected. With cash sales invoice the customer invoice processing 1302 interacts with a due item processing process component 1306, a confirmation and inventory process component 1308, a payment processing process component 1310, and an accounting process component 1312 via four outbound process agents. However, in a second variation illustrated in FIG. 14, a standard customer invoice BPVT 1402 is selected. With the standard customer invoice BPVT 1402, the customer invoice processing process component 1302 interacts only with the due item processing process component 1306 and the accounting process component 1312 via two outbound process agents.


The relationship between the two variations illustrated in FIGS. 13 and 14 is further depicted in FIG. 15. FIG. 15 provides a sample graphical user interface in which a BPVT is related to one or more outbound process agents. With this implementation, the customer invoice processing process component 1302 is illustrated as including both the standard customer invoice BPVT 1402 which has two associated outbound process agents and the cash sales invoice 1304 which has four outbound process agents. In this implementation, the standard customer invoice BPVT 1402 is selected so that connections are provided in a process agent framework activating a notify customer invoice to accounting outbound process agent 1504, and a notify customer invoice to due item processing outbound process agent 1506 via a process agent framework 1502. However, a notify customer invoice to payment outbound process agent 1508 and a notify customer invoice to inventory outbound process agent 1510 are not activated as such outbound process agents 1508, 1510 are only utilized by the cash sales invoice BPVT 1304.



FIG. 16 is an illustration of a process component catalog 1600. The process component catalog 1600 presents an organized view of a collection of process components 1602 and their associated BPVTs 1604. The view can be organized in a number of ways, including hierarchically or associatively based on one or more attributes of the process components. Selection of a BPVT 1602 will cause only those outbound process agents associated with the BPVT 1604 to be activated, which in turn results, in defining associated process component interaction models, process agents, and connectivity configurations.



FIG. 17 illustrates a sample scenario integration model 1700 that includes a plurality of interconnected process components (with the arrows defining outbound operations having corresponding outbound process agents). However, it will be appreciated that many variations of the integration model are available and that some of the identified process components and associated BPVTs may be omitted and other process components and BPVTs may be added depending on the desired implementation. The integration model 1700 includes a supply chain control deployment unit 1702, a customer relationship management deployment unit 1704, a logistics execution deployment unit 1706, a customer invoicing deployment unit 1708, a due item management deployment unit 1710, a financial accounting deployment unit 1712, and a payment deployment unit 1714. The supply chain control deployment unit 1702 comprises a customer requirement processing process component 1716 that is limited by a standard customer requirement BPVT 1718, a supply and demand matching deployment unit 1720 that is limited by a consumption based planning BPVT 1722, and a logistics execution control process component 1724 that is limited by a outbound delivery trigger and response BPVT 1726.


The customer relationship management deployment unit 1704 includes a customer quote processing (which is an optional process component in integration scenario sell-from-stock”) deployment unit 1728 limited by a sales order quote item BPVT 1730 which in turn is further limited by an available-to-promise BPVT 1732. The customer relationship management deployment unit 1704 further includes a sales order processing deployment unit 1730 which is limited by a sell-from-stock BPVT 1732 which in turn is further limited by an available-to-promise BPVT 1734, a pricing BPVT 1736, and a free goods processing BPVT 1738. In addition, an inbound process agent of the customer relationship management deployment unit 1704 is coupled to an outbound process agent of a purchase order processing at customer process component 1704 which is implemented at a customer site.


The logistics execution deployment unit 1706 includes a site logistics processing process component 1744 which is limited by a standard shipping BPVT 1746 which in turn is further limited by a warehouse orders BPVT 1748. The site logistics processing process component 1748 is further coupled via an outbound process agent to an accounting process component 1742 external to the logistics execution deployment unit 1705. The logistics execution deployment unit further includes an outbound delivery processing process component 1750 which is limited by a standard outbound delivery BPVT 1752 and which is coupled, via an outbound process agent, to an inbound delivery processing at customer process component 1758 which resides at a customer site. In addition, the logistics execution deployment unit includes a confirmation and inventory process component 1754 which is limited by a confirmation and inventory posting for site logistic process BPVT 1756.


The customer invoicing deployment unit 1708 includes a customer invoice processing process component 1758 which is limited by a standard customer invoice BPVT 1760 and which is further coupled via outbound process agents to the accounting process component 1742 and a supplier invoice processing at customer process component 1714 residing at a customer site.


The due item management deployment unit 1710 comprises a due item processing process component 1762 which is limited by a due payment order BPVT 1764 and which is coupled, via an outbound process agent, to an accounting process component 1742.


The financial accounting deployment unit 1712 includes the accounting process component which is coupled, via an outbound process agent, to another accounting process component 1766 which is defined by an accounting for sales BPVT 1768 and a profit center accounting BPVT 1770.


The payment deployment unit 1714 includes a payment processing process component 1772 which is limited by an incoming bank transfer/direct credit BPVT 1774, an incoming credit card payment PCT 1776, an incoming direct debit BPVT 1778, an incoming bill of exchange BPVT 1780, an incoming check payment BPVT 1782, and an incoming lockbox payment BPVT 1784. The payment deployment unit 1714 is also coupled to the accounting process component 1742 via an outbound process agent, a payment processing at business partner process component 1786 via inbound and outbound process agents, a payment order processing at house bank process component 1788 via an inbound process agent, and a bank statement creation at bank process component 1790 via an inbound process agent. In the payment processing process component 1772, at least one of the BPVTs 1774, 1776, 1778, 1780, 1782, and 1784 has to be used. How a customer pays (with check or credit card) is a decision not specifically determined by the integration scenario.


The subject matter described in this specification and all of the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structural means disclosed in this specification and structural equivalents thereof, or in combinations of them. The subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more computer programs tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program (also known as a program, software, software application, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file. A program can be stored in a portion of a file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.


The subject matter described in this specification can be implemented in a computing system that includes a back-end component (e.g., a data server), a middleware component (e.g., an application server), or a front-end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described herein), or any combination of such back-end, middleware, and front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


The subject matter has been described in terms of particular variations, but other variations can be implemented and are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Other variations are within the scope of the following claims.

Claims
  • 1. A computer-implemented method comprising: defining, with a computing system, one or more process components, each of the process components characterizing software implementing respective and distinct business processes and defining at least one process agent, each process agent enabling communications between a business object associated with the corresponding process component and a business object associated with any other process component; anddefining, with the computing system, one or more Business Process Variant Types for at least one of the process components, wherein each Business Process Variant Type for a particular process component is associated with a set of process agents of the particular process component different from sets of process agents associated with other Business Process Variant Types for the particular process component, wherein selection of a particular process variant type causes the associated one or more process agents of the particular process variant type to be activated and causes any process agents not associated with the particular process variant type to be deactivated,wherein each Business Process Variant Type for a particular process component comprises a modeling entity defined, at least in part, by associated message choreographies belonging to different ones of the one or more Business Process Variant Types for at least one of the process components.
  • 2. A method as in claim 1, wherein the process agents are outbound process agents.
  • 3. A method as in claim 1, wherein the process components characterize inbound operations to handle incoming messages associated with a modification or reading of data encapsulated in a business object associated with the process component.
  • 4. A method as in claim 1, wherein the process components characterize outbound operations to handle outgoing messages associated with a modification or reading of data encapsulated in at least one business object associated with another process component.
  • 5. A method as in claim 4, wherein the outbound operations are called after the business object associated with a corresponding outbound operation is read or modified.
  • 6. A method as in claim 5, wherein the outbound operations send messages after they are called.
  • 7. A method as in claim 3, wherein one or more of the inbound operations is a synchronous operation operable to receive a synchronous message generated by an external synchronous outbound operation defined by an external process component.
  • 8. A method as in claim 4, wherein one or more of the outbound operations is an asynchronous outbound operation operable to generate an asynchronous message for receipt by an asynchronous inbound operation defined by an external process component.
  • 9. A method as in claim 3, wherein one or more of the inbound operations is operable to receive a message of a first type and convert it into a message of a second type.
  • 10. A method as in claim 1, wherein at least one of the process agents is an inbound process agent characterizing an inbound operation to handle incoming messages.
  • 11. A method as in claim 1, wherein at least one of the process agents is an outbound process agent characterizing an outbound operation to transmit outgoing messages to an external process component.
  • 12. A method as in claim 1, wherein a first one of the process components is associated with a first deployment unit and a second one of the process components is associated with a second deployment unit, the deployment units characterizing independently operable software.
  • 13. A method as in claim 1, wherein the process components define service interfaces having pair-wise interactions between pairs of process components.
  • 14. A method as in claim 1, further comprising: defining one or more business objects, each business object being associated with a single process component.
  • 15. A method as in claim 14, wherein none of the business objects of any one of the process components interacts directly with any of the business objects associated with any of the other process components.
  • 16. A method as in claim 1, further comprising: logically associating a plurality of process components to realize a business scenario.
  • 17. A method as in claim 1, further comprising: limiting interactions between process components not having a process variant type activating process agents coupled the process components.
  • 18. A method as in claim 1, further comprising: verifying that each coupled process component has a corresponding process variant type activating an outbound process agent.
  • 19. A method as in claim 1, wherein a particular one of the Business Process Variant Types for a particular one of the process components comprises substantially similar message choreography as another of the process components, and the particular one of the Business Process Variant Types for a particular one of the process components comprises different business configuration settings than the another of the process components.
  • 20. A method as in claim 1, further comprising: verifying, with at least one of the Business Process Variant Types, process interaction models associated with a particular integration scenario.
  • 21. A method as in claim 1, further comprising: deriving, during an application run-time, at least one of the Business Process Variant Types based, at least in part, on business configuration settings, master data, or incoming messages; andstoring the derived Business Process Variant Type in a business object node.
  • 22. A method as in claim 1, wherein the one or more Business Process Variant Types are defined in at least two categories comprising: a first category defining one or more main Business Process Variant Types that are unique for a particular business object; anda second category defining one or more optional Business Process Variant Types that only exist in combination with at least one of the main Business Process Variant Types.
  • 23. A computer-implemented method of defining interactions between two process components, the method comprising: defining, with a computing system, for each process component, a plurality of process agents, each process agent being either an inbound process agent or an outbound process agent, an inbound process agent being operable to receive a message from an inbound operation, an outbound process agent being operable to cause an outbound operation to send a message; anddefining, with the computing system, interactions between at least one inbound process agent of a first process component and at least one outbound process agent of a second process component;defining, with the computing system, interactions between at least one inbound process agent of the second process component and at least one outbound process agent of the first process component; anddefining, with the computing system, one or more Business Process Variant Types for at least one of the process components, wherein each Business Process Variant Type for a particular process component is associated with a set of process agents of the particular process component different from sets of process agents associated with other Business Process Variant Types for the particular process component, wherein selection of a particular process variant type causes the associated one or more process agents of the particular process variant type to be activated and causes any process agents not associated with the particular process variant type to be deactivated,wherein each Business Process Variant Type for a particular process component comprises a modeling entity defined, at least in part, by associated message choreographies belonging to different ones of the one or more Business Process Variant Types for at least one of the process components.
  • 24. A computer-implemented method comprising: displaying, in a first view, a process interaction map illustrating interactions among a plurality of process components linked together by selected Business Process Variant Types, each of the process components characterizing software implementing a respective and distinct business process, and each of the process components defining a respective service interface for interacting with other process component;displaying, in a second view, a process component architectural design illustrating an inbound part, a business object part, and an outbound part for a selected process component, the inbound part identifying all external process components that use one or more inbound operations of the selected process component, the business object part identifying all business objects associated with the selected process component, the outbound part identifying all external process components utilized by one or more outbound operations of the selected component; anddisplaying, in a third view, a process component interaction architectural design illustrating message transfer between exactly two process components to modify or read business objects associated with each business object, each process component illustrating a plurality of process agents, each process agent being either an inbound process agent or an outbound process agent, the inbound process agent being operable to receive a message from an inbound operation, the outbound process agent being operable to cause an outbound operation to send a message,wherein only outbound process agents associated with a selected process variant type are activated and outbound process agents not associated with the selected process variant type are deactivated, wherein each Business Process Variant Type comprises a modeling entity defined, at least in part, by associated message choreographies belonging to different ones of the one or more Business Process Variant Types for at least one of the process components.
  • 25. A computer program product encoded on a tangible, non-transitory storage medium, the product comprising computer readable instructions for causing one or more processors to perform operations comprising: defining a process component, the process component characterizing software implementing respective and distinct business processes and defining a plurality of process agents, each process agent enabling communications between a business object associated with the process component and a business object associated with any other process component; anddefining a first Business Process Variant Type and a second Business Process Variant Type for the process component, the first Business Process Variant Type associated with a first set of one or more process agents from the plurality of process agents and the second Business Process Variant Type associated with at least one process agent from the plurality of process agents not included in the first set, wherein selection of the first Business Process Variant Type activates the one or more process agents in the first set and deactivates the at least one process agent not included in the first set,wherein each Business Process Variant Type for a particular process component comprises a modeling entity defined, at least in part, by associated message choreographies belonging to different ones of the one or more Business Process Variant Types for at least one of the process components.
US Referenced Citations (346)
Number Name Date Kind
4947321 Spence et al. Aug 1990 A
5550734 Tarter et al. Aug 1996 A
5560005 Hoover et al. Sep 1996 A
5586312 Johnson et al. Dec 1996 A
5632022 Warren et al. May 1997 A
5634127 Cloud et al. May 1997 A
5680619 Gudmundson et al. Oct 1997 A
5704044 Tarter et al. Dec 1997 A
5710917 Musa et al. Jan 1998 A
5768119 Havekost et al. Jun 1998 A
5822585 Noble et al. Oct 1998 A
5832218 Gibbs et al. Nov 1998 A
5848291 Milne et al. Dec 1998 A
5867495 Elliott et al. Feb 1999 A
5881230 Christensen et al. Mar 1999 A
5893106 Brobst et al. Apr 1999 A
5918219 Isherwood Jun 1999 A
5987247 Lau Nov 1999 A
H1830 Petrimoulx et al. Jan 2000 H
6028997 Leymann et al. Feb 2000 A
6038393 Iyengar et al. Mar 2000 A
6049838 Miller et al. Apr 2000 A
6070197 Cobb et al. May 2000 A
6151582 Huang et al. Nov 2000 A
6167563 Fontana et al. Dec 2000 A
6167564 Fontana et al. Dec 2000 A
6177932 Galdes et al. Jan 2001 B1
6182133 Horvitz Jan 2001 B1
6208345 Sheard et al. Mar 2001 B1
6237136 Sadahiro May 2001 B1
6272672 Conway Aug 2001 B1
6311170 Embrey Oct 2001 B1
6338097 Krenzke et al. Jan 2002 B1
6424991 Gish Jul 2002 B1
6434740 Monday et al. Aug 2002 B1
6442748 Bowman-Amuah Aug 2002 B1
6445782 Elfe et al. Sep 2002 B1
6446045 Stone et al. Sep 2002 B1
6446092 Sutter Sep 2002 B1
6473794 Guheen et al. Oct 2002 B1
6493716 Azagury et al. Dec 2002 B1
6571220 Ogino et al. May 2003 B1
6594535 Costanza Jul 2003 B1
6601233 Underwood Jul 2003 B1
6601234 Bowman-Amuah Jul 2003 B1
6606744 Mikurak Aug 2003 B1
6609100 Smith et al. Aug 2003 B2
6671673 Baseman et al. Dec 2003 B1
6678882 Hurley et al. Jan 2004 B1
6687734 Sellink et al. Feb 2004 B1
6691151 Cheyer et al. Feb 2004 B1
6721783 Blossman et al. Apr 2004 B1
6738964 Zink et al. May 2004 B1
6747679 Finch et al. Jun 2004 B1
6750885 Finch et al. Jun 2004 B1
6764009 Melick et al. Jul 2004 B2
6772216 Ankireddipally et al. Aug 2004 B1
6789252 Burke et al. Sep 2004 B1
6845499 Srivastava et al. Jan 2005 B2
6847854 Discenzo Jan 2005 B2
6859931 Cheyer et al. Feb 2005 B1
6889197 Lidow May 2005 B2
6889375 Chan et al. May 2005 B1
6895438 Ulrich May 2005 B1
6898783 Gupta et al. May 2005 B1
6904399 Cooper et al. Jun 2005 B2
6907395 Hunt et al. Jun 2005 B1
6954736 Menninger et al. Oct 2005 B2
6985939 Fletcher et al. Jan 2006 B2
6990466 Hu Jan 2006 B1
7003474 Lidow Feb 2006 B2
7031998 Archbold Apr 2006 B2
7043448 Campbell May 2006 B2
7047518 Little et al. May 2006 B2
7050056 Meyringer May 2006 B2
7050873 Discenzo May 2006 B1
7051071 Stewart et al. May 2006 B2
7055136 Dzoba et al. May 2006 B2
7058587 Horne Jun 2006 B1
7069536 Yaung Jun 2006 B2
7072855 Godlewski et al. Jul 2006 B1
7076762 Fisher Jul 2006 B2
7076766 Wirts et al. Jul 2006 B2
7117447 Cobb et al. Oct 2006 B2
7120597 Knudtzon et al. Oct 2006 B1
7120896 Budhiraja et al. Oct 2006 B2
7131069 Rush et al. Oct 2006 B1
7155403 Cirulli et al. Dec 2006 B2
7155409 Stroh Dec 2006 B1
7181694 Reiss et al. Feb 2007 B2
7184964 Wang Feb 2007 B2
7194431 Land et al. Mar 2007 B1
7197740 Beringer et al. Mar 2007 B2
7200569 Gallagher et al. Apr 2007 B2
7206768 deGroeve et al. Apr 2007 B1
7216091 Blandina et al. May 2007 B1
7219107 Beringer May 2007 B2
7222786 Renz et al. May 2007 B2
7225240 Fox et al. May 2007 B1
7249044 Kumar et al. Jul 2007 B2
7257254 Tunney Aug 2007 B2
7280955 Martin Oct 2007 B2
7283973 Loghmani et al. Oct 2007 B1
7293254 Bloesch et al. Nov 2007 B2
7299970 Ching Nov 2007 B1
7315830 Wirtz et al. Jan 2008 B1
7322024 Carlson et al. Jan 2008 B2
7324966 Scheer Jan 2008 B2
7353180 Silverstone et al. Apr 2008 B1
7356492 Hazi et al. Apr 2008 B2
7367011 Ramsey et al. Apr 2008 B2
7370315 Lovell et al. May 2008 B1
7376601 Aldridge May 2008 B1
7376604 Butcher May 2008 B1
7376632 Sadek et al. May 2008 B1
7383201 Matsuzaki et al. Jun 2008 B2
7386833 Granny et al. Jun 2008 B2
7401334 Fussell Jul 2008 B2
7406716 Kanamori et al. Jul 2008 B2
7415697 Houlding Aug 2008 B1
7418409 Goel Aug 2008 B1
7418424 Martin et al. Aug 2008 B2
7448022 Ram et al. Nov 2008 B1
7451432 Shukla et al. Nov 2008 B2
7460654 Jenkins et al. Dec 2008 B1
7461030 Hibler et al. Dec 2008 B2
7469233 Shooks et al. Dec 2008 B2
7493594 Shenfield et al. Feb 2009 B2
7516088 Johnson et al. Apr 2009 B2
7523054 Tyson-Quah Apr 2009 B2
7529699 Fuse et al. May 2009 B2
7536325 Randell et al. May 2009 B2
7536354 deGroeve et al. May 2009 B1
7546520 Davidson et al. Jun 2009 B2
7546575 Dillman et al. Jun 2009 B1
7565640 Shukla et al. Jul 2009 B2
7624371 Kulkarni et al. Nov 2009 B2
7631291 Shukla et al. Dec 2009 B2
7640195 Von Zimmermann et al. Dec 2009 B2
7640291 Maturana et al. Dec 2009 B2
7644390 Khodabandehloo et al. Jan 2010 B2
7653898 Ali et al. Jan 2010 B1
7657406 Tolone et al. Feb 2010 B2
7657445 Goux Feb 2010 B1
7665083 Demant et al. Feb 2010 B2
7668761 Jenkins et al. Feb 2010 B2
7672888 Allin et al. Mar 2010 B2
7676786 Shenfield et al. Mar 2010 B2
7681176 Wills et al. Mar 2010 B2
7693586 Dumas et al. Apr 2010 B2
7703073 Illowsky et al. Apr 2010 B2
7739160 Ryan et al. Jun 2010 B1
7742985 Digrigoli et al. Jun 2010 B1
7747980 Illowsky et al. Jun 2010 B2
7765156 Staniar et al. Jul 2010 B2
7765521 Bryant Jul 2010 B2
7784025 Challapalli et al. Aug 2010 B2
7788145 Wadawadigi et al. Aug 2010 B2
7788319 Schmidt et al. Aug 2010 B2
7793256 Charisius et al. Sep 2010 B2
7793258 Sundararajan et al. Sep 2010 B2
7797698 Diament et al. Sep 2010 B2
7814142 Mamou et al. Oct 2010 B2
7822682 Arnold et al. Oct 2010 B2
7835971 Stockton et al. Nov 2010 B2
7886041 Outhred et al. Feb 2011 B2
7895568 Goodwin et al. Feb 2011 B1
7904350 Ayala et al. Mar 2011 B2
7917889 Devarakonda et al. Mar 2011 B2
7925985 Moore Apr 2011 B2
8001519 Conallen et al. Aug 2011 B2
8006224 Bateman et al. Aug 2011 B2
8086995 Luo et al. Dec 2011 B2
8140455 Hutson et al. Mar 2012 B2
20010052108 Bowman-Amuah Dec 2001 A1
20020026394 Savage et al. Feb 2002 A1
20020042756 Kumar et al. Apr 2002 A1
20020049622 Lettich et al. Apr 2002 A1
20020073114 Nicastro et al. Jun 2002 A1
20020078046 Uluakar et al. Jun 2002 A1
20020082892 Raffel et al. Jun 2002 A1
20020103660 Cramon et al. Aug 2002 A1
20020104071 Charisius et al. Aug 2002 A1
20020107826 Ramachandran et al. Aug 2002 A1
20020120553 Bowman-Amuah Aug 2002 A1
20020133368 Strutt et al. Sep 2002 A1
20020138281 Cirulli et al. Sep 2002 A1
20020138358 Scheer Sep 2002 A1
20020143598 Scheer Oct 2002 A1
20020156695 Edwards Oct 2002 A1
20020161907 Moon Oct 2002 A1
20020184111 Swanson Dec 2002 A1
20020188486 Gil et al. Dec 2002 A1
20020198798 Ludwig et al. Dec 2002 A1
20020198828 Ludwig et al. Dec 2002 A1
20030009754 Rowley et al. Jan 2003 A1
20030069774 Hoffman et al. Apr 2003 A1
20030074271 Viswanath et al. Apr 2003 A1
20030074360 Chen et al. Apr 2003 A1
20030083762 Farrah et al. May 2003 A1
20030084127 Budhiraja et al. May 2003 A1
20030130860 Datta et al. Jul 2003 A1
20030182206 Hendrix et al. Sep 2003 A1
20030212602 Schaller Nov 2003 A1
20030233290 Yang et al. Dec 2003 A1
20040015367 Nicastro et al. Jan 2004 A1
20040034578 Oney et al. Feb 2004 A1
20040093268 Ramchandani et al. May 2004 A1
20040111304 Meka et al. Jun 2004 A1
20040111639 Schwartz et al. Jun 2004 A1
20040128180 Abel et al. Jul 2004 A1
20040133481 Schwarze et al. Jul 2004 A1
20040153359 Ho et al. Aug 2004 A1
20040158506 Wille Aug 2004 A1
20040172510 Nagashima et al. Sep 2004 A1
20040181470 Grounds Sep 2004 A1
20040181538 Lo et al. Sep 2004 A1
20040205011 Northington et al. Oct 2004 A1
20040236639 Candadai et al. Nov 2004 A1
20040236687 Tyson-Quah Nov 2004 A1
20040243489 Mitchell et al. Dec 2004 A1
20040254866 Crumbach et al. Dec 2004 A1
20040255152 Kanamori et al. Dec 2004 A1
20050010501 Ward, Jr. Jan 2005 A1
20050022160 Uluakar et al. Jan 2005 A1
20050033588 Ruiz et al. Feb 2005 A1
20050044015 Bracken et al. Feb 2005 A1
20050060235 Byrne Mar 2005 A2
20050060408 McIntyre et al. Mar 2005 A1
20050065828 Kroswek et al. Mar 2005 A1
20050108680 Cheng et al. May 2005 A1
20050113092 Coppinger et al. May 2005 A1
20050114829 Robin et al. May 2005 A1
20050125310 Hazi et al. Jun 2005 A1
20050144125 Erbey et al. Jun 2005 A1
20050144226 Purewal Jun 2005 A1
20050156500 Birecki et al. Jul 2005 A1
20050160104 Meera et al. Jul 2005 A1
20050165784 Gomez et al. Jul 2005 A1
20050177435 Lidow Aug 2005 A1
20050203760 Gottumukkala et al. Sep 2005 A1
20050203813 Welter et al. Sep 2005 A1
20050209732 Audimoolam et al. Sep 2005 A1
20050209943 Ballow et al. Sep 2005 A1
20050216325 Ziad et al. Sep 2005 A1
20050222896 Rhyne et al. Oct 2005 A1
20050235020 Gabelmann et al. Oct 2005 A1
20050240592 Mamou et al. Oct 2005 A1
20050246250 Murray Nov 2005 A1
20050246482 Gabelmann et al. Nov 2005 A1
20050256775 Schapler et al. Nov 2005 A1
20050256882 Able et al. Nov 2005 A1
20050257125 Roesner et al. Nov 2005 A1
20050257197 Herter et al. Nov 2005 A1
20050262192 Mamou et al. Nov 2005 A1
20050284934 Ernesti et al. Dec 2005 A1
20050288987 Sattler et al. Dec 2005 A1
20050289020 Bruns et al. Dec 2005 A1
20050289079 Krishan et al. Dec 2005 A1
20060004802 Phillips et al. Jan 2006 A1
20060053063 Nagar Mar 2006 A1
20060064344 Lidow Mar 2006 A1
20060074704 Shukla et al. Apr 2006 A1
20060074731 Green et al. Apr 2006 A1
20060080338 Seubert et al. Apr 2006 A1
20060085243 Cooper et al. Apr 2006 A1
20060085294 Boerner et al. Apr 2006 A1
20060085336 Seubert et al. Apr 2006 A1
20060089886 Wong Apr 2006 A1
20060095439 Buchmann et al. May 2006 A1
20060129978 Abrari et al. Jun 2006 A1
20060143029 Akbay et al. Jun 2006 A1
20060206352 Pulianda Sep 2006 A1
20060248504 Hughes Nov 2006 A1
20060274720 Adams et al. Dec 2006 A1
20060287939 Harel et al. Dec 2006 A1
20060288350 Grigorovitch et al. Dec 2006 A1
20070011650 Hage et al. Jan 2007 A1
20070075916 Bump et al. Apr 2007 A1
20070094098 Mayer et al. Apr 2007 A1
20070094261 Phelan et al. Apr 2007 A1
20070129964 Helmolt et al. Jun 2007 A1
20070129984 von Helmolt et al. Jun 2007 A1
20070129985 Helmolt et al. Jun 2007 A1
20070143164 Kaila et al. Jun 2007 A1
20070150332 Grichnik et al. Jun 2007 A1
20070150387 Seubert et al. Jun 2007 A1
20070150855 Jeong Jun 2007 A1
20070156430 Kaetker et al. Jul 2007 A1
20070156474 Scherberger et al. Jul 2007 A1
20070156475 Berger et al. Jul 2007 A1
20070156476 Koegler et al. Jul 2007 A1
20070156482 Bagheri Jul 2007 A1
20070156489 Berger et al. Jul 2007 A1
20070156493 Tebbe et al. Jul 2007 A1
20070156499 Berger et al. Jul 2007 A1
20070156500 Merkel et al. Jul 2007 A1
20070156538 Peter et al. Jul 2007 A1
20070156550 Der Emde et al. Jul 2007 A1
20070156731 Ben-Zeev Jul 2007 A1
20070162893 Moosmann et al. Jul 2007 A1
20070168303 Moosmann et al. Jul 2007 A1
20070174068 Alfandary et al. Jul 2007 A1
20070174145 Hetzer et al. Jul 2007 A1
20070174811 Kaetker et al. Jul 2007 A1
20070186209 Kaetker et al. Aug 2007 A1
20070197877 Decorte et al. Aug 2007 A1
20070198391 Dreyer et al. Aug 2007 A1
20070214065 Kahlon et al. Sep 2007 A1
20070220046 Moosmann et al. Sep 2007 A1
20070220143 Lund et al. Sep 2007 A1
20070233539 Suenderhauf et al. Oct 2007 A1
20070233541 Schorr et al. Oct 2007 A1
20070233574 Koegler et al. Oct 2007 A1
20070233575 Berger et al. Oct 2007 A1
20070233598 Der Emde et al. Oct 2007 A1
20070234282 Prigge et al. Oct 2007 A1
20070239508 Fazal et al. Oct 2007 A1
20070239569 Lucas et al. Oct 2007 A1
20070265862 Freund et al. Nov 2007 A1
20080004929 Raffel et al. Jan 2008 A9
20080010049 Pouchak et al. Jan 2008 A1
20080017722 Snyder et al. Jan 2008 A1
20080027831 Gerhardt Jan 2008 A1
20080065437 Dybvig Mar 2008 A1
20080120129 Seubert et al. May 2008 A1
20080147507 Langhammer Jun 2008 A1
20080162382 Clayton et al. Jul 2008 A1
20080208707 Erbey et al. Aug 2008 A1
20080215354 Halverson et al. Sep 2008 A1
20090037287 Baitalmal et al. Feb 2009 A1
20090037492 Baitalmal et al. Feb 2009 A1
20090063112 Hader et al. Mar 2009 A1
20090171716 Suenderhauf et al. Jul 2009 A1
20090171818 Penning et al. Jul 2009 A1
20090172699 Jungkind et al. Jul 2009 A1
20090189743 Abraham et al. Jul 2009 A1
20090192858 Johnson Jul 2009 A1
20100070324 Bock et al. Mar 2010 A1
20100070331 Koegler et al. Mar 2010 A1
20100070336 Koegler et al. Mar 2010 A1
20100070395 Elkeles et al. Mar 2010 A1
20100070555 Duparc et al. Mar 2010 A1
20100100464 Ellis et al. Apr 2010 A1
20100138269 Cirpus et al. Jun 2010 A1
20110252395 Charisius et al. Oct 2011 A1
Foreign Referenced Citations (3)
Number Date Country
0023874 Apr 2000 WO
WO 2004083984 Sep 2004 WO
WO 2005114381 Dec 2005 WO
Related Publications (1)
Number Date Country
20070265862 A1 Nov 2007 US