This invention relates to computing devices having housings, such as electronic gaming devices, including slot machines, and in particular to techniques to ensure the authenticity of the application program used in such devices.
Modern gaming machines, such as slot machines, are software controlled. For example, the final symbols displayed by motor driven reels are predetermined using a programmed microprocessor. Video gaming machines are totally controlled by a processor running a game program. As the games become more complex, such as incorporating special bonus games, the software becomes more complex and more expensive to develop.
It is important to implement security provisions to prevent copying of the game program and prevent unauthorized changes to the game program.
In some cases, an unscrupulous competitor may obtain a gaming machine and copy the object code using sophisticated reverse engineering techniques. The copied code may then be loaded into a generic platform gaming machine, which is then sold in various countries that offer little enforcement of copyrights. In other cases, the code may be illegally changed to alter the chances of winning.
Accordingly, what is needed is an ultra-high security technique that prevents a legitimate gaming application from being illegally changed or illegally copied and used in an unauthorized machine. Also what is needed is a technique that prevents any access to secret software in the gaming machine.
In one embodiment of the invention, a secure smart card or other secure modular memory device is plugged into (or otherwise connected to) a port of a game controller board internal to a gaming machine. The game controller board contains the main CPU, memory, and other circuitry for operating the gaming machine. The game program may be stored in a mass storage device, such as a CD ROM/reader, hard disc, or flash device, and connected to the game controller board via an I/O port. The plug-in module will be referred to herein as a dongle. The dongle is programmed to detect an encrypted “challenge” message from the host CPU and output an encrypted dongle “response.” If the host CPU determines that the response has the expected properties, then the host CPU verifies that the game program is authentic (i.e., the game program is accurate and authorized for use by that particular gaming machine and customer), and the game can be played. The challenge/response exchange may be performed before every game is played on the machine or at any other time.
If the dongle response is improper, then the host CPU will issue a halt command to halt play of the game.
The dongle is designed in such a way that its software cannot be copied. Existing smart card designs, standards, and encryption provide sufficient security. Since the smart card software cannot be copied, and encryption is used, there is no way to determine the proper dongle response to a particular challenge by the host CPU. So, even if the game application were successfully copied, without the associated secure dongle the game could not be performed.
Methods for handling (e.g., distributing and allocating) the dongles are also described to allow the manufacturer to control the post-sale uses of the gaming machines.
In a further step to achieve added security, the game controller board has a secure area, where any attempt to gain access to the circuitry results in the software being erased. Other security features are also disclosed, such as requiring that an authorized secure smart card be connected to each one of multiple game boards in a single gaming machine for accurate secure communications between boards.
A coin slot 22 accepts coins or tokens in one or more denominations to generate credits within machine 10 for playing games. A slot 24 for an optical reader and printer receives machine readable printed tickets and outputs printed tickets for use in cashless gaming. A bill acceptor 26 accepts various denominations of banknotes.
A coin tray 32 receives coins or tokens from a hopper upon a win or upon the player cashing out.
A card reader slot 34 accepts any of various types of cards, such as smart cards, magnetic strip cards, or other types of cards conveying machine readable information. The card reader reads the inserted card for player and credit information for cashless gaming. The card reader may also include an optical reader and printer for reading and printing coded barcodes and other information on a paper ticket.
A keypad 36 accepts player input, such as a personal identification number (PIN) or any other player information. A display 38 above keypad 36 displays a menu for instructions and other information and provides visual feedback of the keys pressed.
Player control buttons 40 include any buttons needed for the play of the particular game or games offered by machine 10 including, for example, a bet button, a repeat bet button, a play two-ways button, a spin reels button, a deal button, hold cards buttons, a draw button, a maximum bet button, a cash-out button, a display paylines button, a display payout tables button, select icon buttons, and any other suitable button. Buttons 40 may be replaced by a touch screen with virtual buttons.
A communications board 42 may contain conventional circuitry for coupling the gaming machine 10 to a local area network (LAN) or other type of network using Ethernet or any other protocol.
The game controller board 44 contains memory and a processor for carrying out programs stored in the memory. The game controller board 44 primarily carries out the game routines.
Peripheral devices/boards communicate with the game controller board 44 via a bus. Such peripherals may include a bill validator 45, a coin detector 46, a smart card reader or other type of credit card reader 47, and player control inputs 48 (such as buttons or a touch screen). An audio board 49 converts coded signals into analog signals for driving speakers. A display controller 50 converts coded signals to pixel signals for the display 51.
The game controller board contains a CPU, program RAM, and other circuits for controlling the operation of the gaming machine. Detail of one type of controller board is described later with respect to
The controller board 44 has a smart card I/O port for electrically contacting the power supply pads, clock pad, and serial I/O pad of a standard secure smart card 54 (also referred to herein as a dongle 54), such as one used for banking around the world. Such smart cards are extremely secure and their physical design and operation are dictated by various well known ISO standards, incorporated herein by reference. An overview of smart cards and their security features are described in the articles, “An Overview of Smart Card Security,” by Siu-cheung Chan, 1997, available on the world wide web at http://home.hkstar.com/˜alanchan/papers/smartCardSecurity/, and “Smart Card Technology and Security,” available on the world wide web at http://people.cs.uchicago.edu/˜dinoj/smartcard/security.html. Both articles are incorporated by reference to illustrate the pervasive knowledge of smart card security.
Detailed preferred requirements (but not mandatory) of the system are presented below. A less secure technique may be accomplished without all of the below preferred requirements. A general overview of the preferred dongle 54 capabilities is as follows.
In one embodiment, the dongle receives the challenge data from the host CPU and performs a function on the challenge data. The function performed is kept secure in the dongle. The function can be any suitable function. The function may be a proprietary or standard crypto algorithm that uses secret keys to create an encrypted version of the challenge data by, for example, using RSA, AES, 3DES, or Elliptic Curves. The crypto keys for the function are stored in the dongle. The host CPU then decrypts the dongle response using its secret key(s), which are the counterparts to the secret keys on the dongle, and compares the response to an expected response. If there is a match, then the host CPU knows that the smart card is authentic. The game program then continues its normal flow.
In step 63, the manufacturer of the gaming machine or an authorized customer inserts a secure dongle into an I/O port of the game controller board (or other location) for communicating with the host CPU. Typically, the manufacturer will insert the dongle prior to the machine being shipped to the customer. The dongle may also be distributed with the game software. The dongle is programmed to process a challenge from the host CPU and provide a response. Only a particular response will allow the gaming program to continue. The dongle will typically remain in the gaming machine.
In another embodiment, the gaming machines are client machines, and the game program is carried out on a remote server. In that case, the dongle may be connected internal to the gaming machine for communication with the server, and/or the dongle may be connected at the server location.
In step 65, prior to a game being played on the gaming machine, the host CPU issues a challenge for response by the dongle.
In step 67, the dongle responds, and the host CPU determines if the response has the expected properties. The response may be an encrypted version of the challenge using one or more crypto keys programmed into the dongle. The host CPU then decrypts the response and compares it to an expected response. The expected response may be generated by the CPU using the same functions used by the dongle. RSA, DES, and 3DES are examples of suitable encryption/decryption techniques. The published standards for these techniques are incorporated herein by reference. The encryption and decryption may use the same secret key (symmetric algorithm), or different keys are used for encryption and decryption (asymmetric algorithm). In RSA, the sender encrypts a message using the receiver's public key, and the receiver decrypts the message using the receiver's private key. The public key and the private key are mathematically related.
In step 69, if the host CPU determines that the dongle response is the expected response, the host CPU continues the normal gaming program (step 71), and the player plays the game. If the host CPU determines that the dongle response is not the expected response, the host CPU halts the normal gaming program (step 73), and may then issue an alarm or other indication that the dongle is not certified. This suggests that the gaming machine software is not legitimate or that an unauthorized user is attempting to run the game software.
The dongle challenge/response routine may be carried out during any portion of the normal program flow.
Certain preferred detailed specifications for one type of dongle are provided below. The preferred specifications are not required for the invention.
The next section introduces design and implementation details for realizing copy protection with a secure dongle approach.
The purpose of the design is to have a general basis on how to implement a copy protection scheme with dongles as secure as possible.
1.1 Dongle
The basic requirements for the dongle are that: 1) it is a separate device that can communicate with the game controller board; and 2) it is able to store data that is non-readable and non-copy able using practical techniques. In this invention dongles are used for establishing challenge—response—protocols.
The following types of dongles are suitable. The list is classified by security levels in descending order.
1.1.1 Types of Dongles
This section gives a list of general requirements that DRs must fulfil.
There are two main types of DRs: static DRs and dynamic DRs.
In the static DR, the function, which calculates the response from the challenge, is exclusively available in the dongle itself. Therefore this function is always secret. Static DRs receive a fixed challenge and reply with a fixed response. The advantage is the simplicity, since they are easy to implement and fast.
The request procedure for a specific static DR works as the following:
The values x and y are stored on the host application. y′ is the result of the DR. The values CONST_CHALLENGE and CONST_RESPONSE are only place holders for different challenge response pairs.
DR is a place holder for a specific static DR, which has a specific function that calculates the result y′.
The secret function can be a proprietary algorithm or a standard symmetric algorithm, where the secret key is stored exclusively on the dongle.
The verification function verify generally checks whether y′ matches the expectations or not. A very simple verification function would be, for instance, a one-to-one compare.
1.5 Dynamic Dongle Requests
Dynamic DRs offer a much higher sample space than static DRs. For dynamic DRs, both the application and the dongle have to calculate a DR function to be able to do the comparison.
Dynamic DRs should have a time-variant parameter which needs to be unpredictable and non-repeating. Typically sources for these values are random numbers, timestamps, or sequence numbers. There are good pseudo random number generators available.
Algorithms for the symmetric encryption can be AES, TripleDES or TEA with different key lengths.
1.5.1 Dongle Requests Using Symmetric Encryption
In symmetric encryption, the algorithm as well as the used key must be known from both communication partners, the host application and the dongle. Therefore, different keys should be used for different DRs. The pseudo code describes the procedure for a DR:
A random number is chosen from the system random number generator. The DR function fK,(x) is calculated by the host application and on the dongle. The verification function verify generally checks whether y′ matches the expectations or not. A very simple verification function would be, for instance, a one-to-one compare.
For symmetric encryption, a block cipher or a stream cipher can be used.
1.5.2 Dongle Requests Using Keyed One-Way Functions
Due to computational limitations or export restrictions, the symmetric encryption function can be replaced by a MAC (Message Authentication Code) function. Rather than decrypting and verifying, the results of the MAC functions are compared.
There are generally four types of MAC function available:
For the purpose of the Dongle Requests approach, 2 or 3 should be used.
1.5.3 Dongle Requests Using Asymmetric Encryption
Challenge-Response Protocols (CRPs) can also use asymmetric encryption approaches where secrets do not need to be share by the host application and the dongle. In asymmetric encryption, only the public key needs to be stored in the host application. These are the most secure DRs, but relatively slow.
An asymmetric DR looks like:
In this case x is encrypted with the public key by the host application and sent to the dongle. The dongle decrypts y with the private key and sends it back.
The verification function verify generally checks whether y′ matches the expectations or not.
For asymmetric encryption, RSA should be used.
1.6 Dongle Request Malfunction (DRMF)
The Dongle Request Malfunction (DRMF) is a function that is implemented when the response of the dongle does not match with the expected one.
DRMF must not influence gaming behaviour, except for a called HALT condition. There are several types of HALT conditions and also different methods to trigger them. For example a HALT condition can be reported to the user or not. There should be DRMFs with different behaviour in the system at the same time. Suitable DRMFs are presented below. The selection may be influenced by jurisdictional limitations.
The following DRMFs use defined normal exception or operation procedures:
An Electronic Gaming Machine (EGM) is a gaming device, which has at least one main microcontroller board (MMB) that contains a processor and controls the game and its presentation on the screen. Additional microcontroller boards are optional in the EGM.
This board might have a secure area (SA) that contains at least one Smart Card Access Key (SCAK) and protects it from being accessed from the outside. Thus, the key is assumed to be secure and the possibility of compromise is minimal.
1.7.1 Smart Card
The smartcard (SC) is attached to the MMB of the EGM and contains the jurisdiction specific Game Key (GK). A smart card may be dedicated to one entity (casino, casino group, etc.) and is permitted to be used only by this entity. In another embodiment, each EGM has its own unique smart card. In another embodiment, each game type has its own unique smart card. It is not possible to decrypt the application software and run a game on an EGM without a valid smart card.
To achieve the trust relationship between an entity and the manufacturer, the smart card and all information on the smart card must remain the property of the manufacturer.
1.7.2 Entity
An entity is a customer, a casino, a group of casinos, or anybody who legitimately buys the EGMs and is allowed to operate them. An entity obtains smartcards from the EGM manufacturer.
Controlling the Entities is a method for the EGM manufacturer to regionalise the control of software distribution.
1.7.3 Application Data
The Application Data comprises all software that runs on an EGM (game software, operating system, etc.). It is stored on the mass storage device (MSD) in the EGM in an encrypted form using a symmetric algorithm. The GK, which is used for encryption and decryption of the application data, differs from jurisdiction to jurisdiction.
For EGMs that rely on a remote application server for carrying out a game, a portion of the Application Data is stored on the MSD of the server.
1.7.4 Mass Storage Device
The Mass Storage Device (MSD) contains the encrypted application data and some unencrypted, executable software (e.g., the operating system). This can be, for instance, a hard disk, compact flash card, or a CD-ROM.
1.8 Definition of Keys
This section describes all the different keys that will be used in the security concept.
1.8.1 Smart Card Access Key
Every EGM has at least one Smart Card Access Key (SCAK). This is a symmetric or asymmetric cryptographic key. Using this SCAK the EGM is able to be authenticated by the and to establish an authenticated and encrypted connection between itself and the SC. If the SCAK is not available or incorrect, the smart card denies access and the EGM does not carry out the game.
The SCAK should be stored in a tamper resistant storage device on the EGM. This means that it must not be possible to access or to copy this SCAK from the EGM in any practical way.
1.8.2 Game Key
The Game Key (GK) is the symmetric key used to decrypt the EGM application data. It is unique to each jurisdiction and each game, or unique based on other associations. This separation reduces the impact if a GK is compromised. If it is compromised in one jurisdiction, the intellectual property is still protected in all other jurisdictions.
The Game Key is stored on the SC connected to the Main Microcontroller Board (MMB) and it is used for decryption.
1.8.3 Manufacturer's Private/Public Key Pair
The particular manufacturer's private/public key pair is used to identify smart cards as that manufacturer's smart cards. The public key is stored on each SC. The private key is used to sign the public key of a SC (which is unique for each SC). This signature is used to identify the particular manufacturer's SC.
The manufacturer's public key is stored immutably on each SC issued by the manufacturer. Its private key is used to “sign” each public key of all that manufacturer's secure devices. This makes the key exchange between two SCs much easier. If SC “A” wants to authenticate SC “B”, it just checks the signature of SC “B's” public key. If that key was signed by the manufacturer, SC A knows that SC B was issued by that manufacturer and that it can trust SC B.
The usage of this manufacturer's key makes the key handling for that manufacturer a lot easier. This is the case because no private keys of the SCs except that manufacturer's private key and the entity-specific private keys need to be stored in the manufacturer's internal key-database. It also makes the SCs more generic. No suites of keys need to be stored on the SCs and, thus, each SC works together with each other identified SC.
The manufacturer's private key is very sensitive, and it must never be made public. Therefore, this private key must be stored in a secure environment (e.g., in a smart card) controlled by the manufacturer. Only a restricted number of persons are allowed to have access to this key.
Entity Private/Public Key Pair
The entity private/public key pair is used in a mechanism to identify a smartcard as a smartcard dedicated to one entity. It is unique for each entity. The entity public key is stored immutably on each SC issued by the manufacturer to an entity. The entity private key is used to create data (e.g. licenses) issued to an entity and to show the SC that it is allowed to store that data on itself.
The private entity keys are sensitive and must never be made public. Therefore, these private keys must be stored in a secure environment.
1.8.4 Operating System Verification Key
The Operating System Verification Key (OSVK) is like the manufacturer's key, a private/public RSA key pair. It is used to verify the authenticity of the Operating System (OS) loader and the OS image on the mass storage device at EGM start-up.
Therefore, these two modules are signed by the private OSVK. On EGM start-up, the signatures of the loader and of the image are verified using the public OSVK. The OSVK public key is stored on each manufacturer's EGM. If the signature is correct, it is guaranteed that the OS was not changed and can be trusted.
The public OSVK is stored on every EGM. Since it is used to verify signatures it must be trustworthy and thus be stored in a write-protected memory area of the system (preferably in the BIOS). Since no signatures can be created with the public OSVK, it does not need to be read-protected.
The private OSVK key is very sensitive and it must never be made public. Therefore, this private key must be stored in a secure environment (e.g., in a smart card) controlled by the manufacturer. Only a restricted number of persons are allowed to have access to this key.
1.9 Preferred Detailed Description of Architecture of Main Microcontroller Board (MMB)
There are two main design goals of the security concepts described herein. The first goal is to prevent anybody from making a 1:1 copy of the game software and running it on another EGM. The second goal is to prevent the intellectual property (IP), which is the software and data, from being accessed, copied and/or modified by any attacker.
This section gives an overview of the general security architecture for a single board as well as for a multi-board EGM.
1.9.1 Single Board EGM
The EGM only has a single MMB. The SC is directly connected to the MMB and an authenticated and encrypted connection between these two devices is established to prevent anybody from listening to the communications between the MMB and the SC or getting access to sensitive data stored on the SC, such as the GK.
The SC has cryptographic and PKI (public key infrastructure) capabilities to do encryption and authentication. If the SC is not attached to the MMB the EGM will not run a game. It also holds secrets and other data that are checked during runtime by the game. This prevents anybody from running a game without an SC and from making a 1:1 copy of the game and running it on another EGM.
The protection of the IP is achieved by storing the application data for the EGM in an encrypted form on the Mass Storage Device MSD. The key to decrypt it at start-up, the so-called Game Key (GK), is stored on the SC connected to the MMB.
1.9.2 Multi Board EGM
When an additional board is used in the EGM, a third protection mechanism is applied. That is the encryption of the communication between the MMB and the additional board. The second board may also have a SC, though this SC is optional. If no SC is connected to the second board, all the cryptographic and PKI functionality must be implemented in software on that board.
For simplicity, this document only shows the process for a two board EGM. Though, the concept can be expanded to more than two boards. Therefore, the additional board is referred to as “Second Board” 90 and the (optional) SC 92 attached to this board is called SCSB.
Overview of Security Protection and Start-Up Sequence
The below section contains the different protection mechanisms of the security concept including boot security, dongle requests, and further runtime protection of the EGM.
1.10 EGM Start-Up
The boot process of the EGM can be separated into two different tasks, which will be refined in the further sections:
The OS boot sequence deals with the start-up of the OS, whereas the application start-up sequence is used to decrypt the application data software and start the game
To start the system the MMB needs to contain two different keys:
The public OSVK is stored on every EGM. Since it is used to verify signatures, it must be trustworthy and stored in a write-protected memory area of the system (e.g. in the BIOS).
Since no signatures can be created with the public OSVK it does not need to be read protected.
1.10.1 Secure Operating System Boot Sequence
The main job of the OS boot sequence is to guarantee that the OS loader and the OS image on the MSD were not compromised. To achieve this verification these two software modules are signed with the private OSVK. Before they are executed, the signature of each module is checked using the public OSVK. The first two steps are executed by the BIOS, the further two steps are executed by the OS loader:
After the OS has been started, the init-applications take control over the system. Now the SCAK is used to get access to the SC, read the GK and decrypt the applications. Then the applications are verified and, if everything was ok, the game is started.
The application start-up sequence can be separated into 5 different steps.
As shown in
During runtime, the MMB needs to check whether the SCMMB is still connected. This can be done in various ways, such as:
When the EGM is a multi board machine, also the communication between MMB and the additional boards is encrypted. For simplicity, this document only shows the process for a two board EGM. Though, the concept can be extended to more than two boards.
For that case, an encrypted and authenticated connection between the MMB and the additional boards is established at the start-up of the EGM. As shown in
The recommended algorithm to be used for this symmetric encryption is the Advanced Encryption Standard (AES), namely the Rijndael algorithm.
1.12.1 Security Protocol
To achieve this encryption and authentication, security can either be implemented within or atop the Network Layer or atop the Transport Layer referring to the standard ISO/OSI network protocol model. That means that it works with a connection oriented as well as a connection less protocols.
For the cryptographic tasks during the session key exchange process, SCs are used as the secure cryptographic devices and as a secure storage for the authentication keys.
An example for implementing a custom secure protocol is shown in
The physical connection between the MMB and the second board does not really matter. This example uses a connection oriented protocol (e.g. TCP/IP) at the Transport Layer, and the Security Protocol is set atop this layer. It is referred to as Secure Inter Board Communication (SIBC). SIBC contains all the functionality to establish a secure connection, to do the communication encryption, and to access the smart card cryptographic functionalities. The protocol stack will be equal on MMB and the second board.
1.12.1.1 Example for Connection Establishment and Key Exchange Protocol
The process of establishing the authenticated encrypted links between MMB and the second board applies asymmetric cryptography as a key exchange mechanism. It is described in the flow diagram of the key exchange protocol in
Since the SCs themselves only have limited functionality most of the protocol functions are implemented in software. That means that the SCs are only used for the key exchange in the protocol. Only the creation of session keys, the verification of the counterpart's signature of the public key, and the decryption of the encrypted session keys are performed on the SCs.
This key exchange protocol can be repeated during the runtime of the EGM. It is recommended to renew the session keys (and exchange them again with the described Key Exchange Protocol) several times during runtime to decrease the possibility of somebody listening to the data traffic.
1.12.1.2 Example for Session Key Generation
The session key for the encrypted link is generated by the SC. In order to create this key, the SC generates a random number. This number is hashed with an algorithm like SHA-1, preferably again on the SC. This hash result is the session key, which is sent to the software algorithm on the board to which the SC is connected for link decryption. The key is also encrypted with the other board's (SC's) public key and sent to that board for link encryption.
The “data portion” that is encrypted with the public key of the corresponding SC for key exchange should not only be the session key itself but also additional (random) data.
The SC is the secure device in the system. It must provide PKI functionality as well as symmetric cryptography and secure hash algorithms. Furthermore, it also must provide secure data storage. The access to the cryptographic functions and the secure data must be only granted, if the application on the MMB was authenticated by the SC, by using the SCAK.
Since the task of the SC is to create a secure link between the two boards, it must have the ability to create symmetric session keys, and it must provide public key facilities. In order to talk to an SC the EGM needs to hold a Smart Card Access Key (SCAK). This prevents unauthorized personal from misusing an SC. It is also possible to create the session key on the Host.
Continuous checks are done during runtime if the SCMMB is still connected to the EGM. If the SCMMB is missing, the EGM cannot operate, as it cannot decrypt the application data. In a multi board EGM the encrypted link between the MMB and the second board cannot be established without the SC.
1.13 Smartcard (SC) on the MMB
A SC, which is referred to in the following as SCMMB, will be attached to every EGM. It holds essential data for decrypting the game at start-up (the GK), for establishing a secure link between MMB and secondary boards on a multi board EGM, and for runtime protection, and holds additional data. In order to talk to SCMMB, each EGM needs to have an SCAK. With that key an authenticated and encrypted connection can be established between SCMMB and EGM. This prohibits an unauthorized person or machine from reading the GK out of the SCMMB.
1.13.1 Contents of SCMMB
The SCMMB contains
The entity ID and the jurisdiction ID show, which entity in which jurisdiction is allowed to use the SC.
Private/public key pairs are unique for each security device. This key pair is generated on the SC at initialisation (this process is called “personalization”), and the private key must never leave the SC. The public key is also stored in a database controlled by the manufacturer together with the serial number of the SC. This public key is signed by the manufacturer's private key. This signature is the proof to identify the SC to other SCs as the EGM manufacturer's device.
The signature of the public key is a hash value of the SC's public key encrypted with the private key. It is used to identify the manufacturer's SCMMB to another SC by the same manufacturer.
The manufacturer's public key is used to authenticate another device by the manufacturer. As was described above (about the establishment of a secure connection between MMB and a second board), SC “A” sends its signed public key to SC “B”. SC B checks this signature by using the public key. If the signature is valid, SC A knows that SC B is that manufacturer's device.
The “entity specific public key” allows the SC to check whether a license or additional data that should be copied onto the card is valid or not. Furthermore, this key is unique for each entity (casino, casino group, etc.). So if a license is issued it is only valid for one entity. If an entity sells an EGM to another entity they would need to contact the EGM manufacturer for a new SC. This helps to control the flow of machines and software. This key is optional and only necessary when an in-the-field licensing update is implemented.
The GK is used to decrypt the applications and the game at start-up.
The secrets and additional data can be used for so called dongle requests. With these secrets, the SCMMB is able to prove to the application that it is really the SC it is supposed to be.
SCMMB is a removable device. That makes it very easy to take a game from one EGM to another one. Only the SC, which fits a game, needs to be transferred to operate the game on the other EGM, providing the target EGM has the MSD with the game software package inserted.
1.13.2 Requirements for SCMMB
The SC must confirm to some hardware and software requirements. Most of them are concerning cryptography and secure storage of data.
Storage
The SC must provide
Cryptography
The SC must be able to
Functional Requirements
The SC must be able to
If no SC is connected to a second board, all algorithms and key storage mechanisms must be implemented in software. That means that the second board always behaves as if a would be connected to it.
In the following, the SC on the second board is referred to as SCSB.
1.14.1 Contents of SCSB
The SCSB contains
If the SCSB is not part of the EGM, the private/public key pair for inter-board authentication and the public key must be integrated in the software of the second board. This ensures that the operation of the MMB is exactly the same regardless of the presence of an SCSB
The private/public key, the signatures for the public key, and the public key have the same meanings as on the SCMMB.
SCSB is a removable device.
1.14.2 Requirements for SCSB
The requirements for SCSB are quite similar to that of SCMMB. Though, SCSB does not need to store the GK or license data.
Storage
The SC must provide
The SC must be able to
The creation of an SC can be separated into three different phases:
The physical generation of the card is done by the card manufacturer.
The operating system and the application software are loaded onto the SC. Depending on the type of card this upload is performed by the SC manufacturer or the gaming machine manufacturer.
In the personalization phase, all necessary data such as keys, hash values, entity ID etc. are brought onto the card. This phase will take place at the EGM manufacturer's facility. It also includes the generation of unique private/public key pairs on the card and the signing of these public keys. The public keys of the card are then stored together with the cards serial number in the EGM manufacturer's Key Database
1.16 Manufacturer Databases
To keep track of the different keys that will be used in the security system, and automate the issuing of SCs, databases need to be created. These databases will merely contain public keys (the public keys of the smart cards), the symmetric GKs, and the serial number or ID of the SC.
1.16.1 Public Keys of MMB Smart Cards
Every SC contains a unique private/public key pair used to identify itself to other smart cards by the EGM manufacturer. In order to do this, the public key of each SC must be signed with the manufacturer's private key. This signature is also stored on the SC.
Furthermore, to keep track of the SCs and to be able to encrypt data (e.g. GK, license, . . . ) for a specific SC, the public key of each SC must be stored together with the serial number of the device in a database controlled by the manufacturer. This is especially important if a licensing system is implemented to be able to create a license for a specific SC.
The generation and the registration of these private/public key pairs are called “Personalization”. This personalization process is applied after production of the SC and before the device is shipped to a customer.
1.16.2 Game Keys
It is defined that each game is encrypted with a unique symmetric key for each jurisdiction. Therefore, a database that holds all different Game Keys must be established.
When a new application for a jurisdiction is released, a new GK for this application/jurisdiction is created and stored in the database. The software package for this jurisdiction is encrypted with this new GK.
1.16.3 Game Database
For each game/application different versions of the encrypted software packages for the different jurisdictions should be available. This is due to the fact that each jurisdiction has a unique GK for a game. A database to handle these different software versions needs to be created that contains a connection between version and GK.
1.17 Game Distribution
As a requirement, an application on an EGM is only able to run if the relevant SC is inserted into the EGM. Thus, a distribution mechanism must be applied to deliver the software packages together with the matching SCs.
1.18 Terms
Signature Verification the encrypted hash value is decrypted with the public asymmetric key; the result is compared to a newly computed hash value of the signed data. If the hash values are equal the signature is correct.
Smart Card Access Key key to access confidential data or functionality on a smart card
1.19 Abbreviations
1.20 Preferred Detailed Specification of Dongle Internal to a Computer's Housing for
The objective of the section is to specify additional board hardware requirements related to copy protection of sensitive information contained within a microcontroller board on an Electronic Gaming Machine (EGM).
The goal of the concept from the hardware point of view is to protect those elements of the board considered to be of high security risk. The high security risk elements will be fully specified in this section. The area around the security elements is called Secured Area. The Secured Area must be fully enclosed. This includes also the implementation of a number of detection methods to prevent access by unauthorized person to the area. If any access from the outside is detected, all sensitive information on the board is deleted.
It must be guaranteed that no customized BIOS, Smartcard, Operating System (OS) loader, OS Image or Application can be used to obtain sensitive information from the microcontroller board. The sensitive information is considered to be plain text, such as the game application or secret keys, stored in the memory inside the secured area. This sensitive data might contain keys to decrypt the program, which is executed on the board.
The secure module is especially applicable for a smart card software protection system described above.
A set of definitions is made for a better understanding of the overall security concept.
1.21 General Definitions
This section describes general terms referring to the security concept.
1.21.1 Microcontroller Board
As shown in
1.21.2 Secure Area
The Secure Area (SA) 107 protects all sensitive components and data lines on the board. It has a series of sensors that detects any kind of intrusion. If such an intrusion by an attacker is detected, the Security Processor (SP) resets the CPU, deletes sensitive data in the secured area.
1.21.3 Security Processor
The Security Processor (SP) 112 surveys all sensors of the secure area. These sensors are a meander system, light sensors, and temperature sensors. If an intrusion is detected, it deletes all sensitive data on the board.
1.21.4 Sensitive Data
Sensitive data are protected against any change from the outside or from even being read from the outside. This can be decrypted application data and secret keys. The sensitive data are stored in the memory inside the secured area.
This section gives a conceptual overview of the security mechanisms on the microcontroller board 84.
It is assumed that the game application that will be executed on the board 84 is stored on an external device (e.g., a CD ROM and drive, compact flash memory, server, etc.) only in encrypted form. The decrypted and thus executable application is only available inside the secure area 107.
Only applications encrypted with the correct key(s) are allowed to be loaded onto the board 84. The decryption is either done by the sensitive data stored inside the secure area or with the help of a smart card. After a successful authentication and decryption, the application can be executed. This has also the effect that no software of an unauthorized party, which is not encrypted with the correct key(s), can be executed on the board 84.
The SA's only connection to the outside are the Input/Output (I/O) connectors 119. Via the I/O connectors 119, a mass storage device (
All critical components that hold or transfer sensitive data are placed within the SA 107. These are devices such as CPU 106, RAM 110, CPU chipset 108, SP 112, and BIOS EPROM 113. Also all data and address busses are within the SA 107.
Also all sensors, which are the light and the temperature sensors, are inside the SA 107 and thus cannot be modified from the outside.
The task of the SP 112 is the surveillance of the detection circuitry 122 (e.g., the light, wiring, and temperature sensors). When any of the sensors detects an intrusion, the SP 112 deletes the sensitive data inside the secure area.
The BIOS EPROM 113 is also inside the SA 112. Otherwise it would be possible for an attacker to replace the BIOS by a harmful one and hand over sensitive data to the outside (via the I/O connectors 119), or to run unauthenticated software on the board.
1.22 Definition of the Secure Area
The secure area 107 is a three-dimensional-volume which has a meander trace system on all sides, a light sensor system, and a temperature sensor system as detection methods for any possible intrusion. It contains all sensitive components of the board. Unencrypted software on the board is only allowed to be within this SA 107.
Tapping into critical signal lines and component pins, downloading or modifying content of any of the memory, or taking control over any of the secured components must be detected.
If such an intrusion by an attacker is detected, the SP 112 resets the CPU 106, deletes the sensitive data in the secure area. Thus, the attacker has no access to the sensitive data stored on the board.
For simplicity only one secure area is described herein, but more than one secure area may be on the board. All the connections and data lines between the SAs must also be protected.
1.23 Detection Circuitry
The detection circuitry 122 must monitor connectivity and other parameters of the security system to determine if there was an attempt of unauthorized access to the secure area 107. Its core part is the Security Processor (SP) 112.
The SP 112 operates the detection circuitry 122 and surveys all the sensors that are integrated into the secure area 107. If any of the sensors detects an intrusion, the SP 112 activates the deletion phase of the SA 107 and thus deletes the sensitive data.
In the deletion phase, two different tasks are computed by the SP 112. The first task is to reset the CPU 106. The second task of the SP 112 is the deletion of the sensitive data stored in the secure area.
The battery 118 supplies the SP 112 with power when the EGM is switched off. It may be placed inside or outside the SA 107.
1.24 Sensors in the Secure Area
At least three different detection sensors are integrated into the secure area 107. They act independently of each other but are all surveyed by the SP 112.
A meander trace system creates the cover of the secure area 107. The cover creates the SA 107 around the Secured Elements. The meander trace is measured for continuity by the detection circuit (
Unauthorized access to the secured elements within the area is detected. The SA 107 must be fully enclosed by the meander system. That means that all sides of the SA 107 are bordered by meander traces.
A meander trace 126, shown in
Protecting the secured elements by a meander system can be done in different ways. Possible solutions providing additional security levels are described below:
1. Use a cover consisting of a PCB 130 with a meander layer 132, including side protection.
2. Flexprint inside the covered area with a cutout for the BIOS and the connector (including side protection).
3. Use an off-the-shelf cover solution, e.g., GORE solution.
1.24.1.1 Security Cover
SIZE The security cover size will be defined during the layout phase of the microcontroller board. The smallest possible size should be achieved.
MATERIAL The material used must prevent fault triggering of the light sensors.
1.24.1.2 Mounting of the Cover
A mounting bracket is needed for the mechanical assembly of the cover and to prevent-false triggering of the light sensors. The cover is mountable when the microcontroller board is assembled.
1.24.1.3 Programming and Enabling of the SP
The final programming of the SP 112 is done at assembly time. That means that the SP is blank after production. Before the cover is assembled, the application is put onto the SP via a programming mechanism. When the cover is closed, the SP starts surveying the detection circuitry 122 after a defined time period (which can be in the range of 10 to 20 seconds). After this time period the sensitive data are deleted when the cover is re-opened.
1.24.2 Light Sensors
The light sensors are in the secure area 107 to detect an intrusion if one or all of the other sensors fail.
1.24.3 Temperature Sensors
The temperature within the secure area 107 must not exceed the temperature defined by the security system. These temperature limits are defined to assure that the detection system works properly.
1.25 Secured Elements
All elements that are within the secure area are referred to as “secured elements”. A secured element may be a component, a test point or a signal. Connection to a pin, via, or trace of any of the secured elements from the outside of the secured area must be detected.
The following components are considered to be secured elements and must be fully enclosed (all sides):
The following critical signals are considered to be Secured Elements and must be fully enclosed:
CPU signals
CPU chipset signals
RAM signals
All further bus signals on the microcontroller board
All uses of the word “must” when describing a function are for a preferred embodiment only. In less secure systems, most functions and requirements described with respect to the preferred system are optional.
Having described the invention in detail, those skilled in the art will appreciate that, given the present disclosure, modifications may be made to the invention without departing from the spirit and inventive concepts described herein. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.
This is a continuation of U.S. application Ser. No. 11/083,706, filed on Mar. 17, 2005, now U.S. Pat. No. 7,549,922, entitled, “Software Security for Gaming Devices,” assigned to the present assignee.
Number | Name | Date | Kind |
---|---|---|---|
4882473 | Bergeron et al. | Nov 1989 | A |
5036537 | Jeffers et al. | Jul 1991 | A |
5179517 | Sarbin et al. | Jan 1993 | A |
5276312 | McCarthy | Jan 1994 | A |
5326104 | Pease et al. | Jul 1994 | A |
5379344 | Larsson et al. | Jan 1995 | A |
5643086 | Alcorn et al. | Jul 1997 | A |
5752882 | Acres et al. | May 1998 | A |
5768382 | Schneier et al. | Jun 1998 | A |
5812662 | Hsu et al. | Sep 1998 | A |
6067621 | Yu et al. | May 2000 | A |
6071190 | Weiss et al. | Jun 2000 | A |
6149522 | Alcorn et al. | Nov 2000 | A |
6234898 | Belamant et al. | May 2001 | B1 |
6364769 | Weiss et al. | Apr 2002 | B1 |
6371852 | Acres | Apr 2002 | B1 |
6577733 | Charrin | Jun 2003 | B1 |
6579182 | Orus et al. | Jun 2003 | B1 |
6629591 | Griswold et al. | Oct 2003 | B1 |
6659345 | Sukeda et al. | Dec 2003 | B2 |
6729958 | Burns et al. | May 2004 | B2 |
6834802 | Sukeda et al. | Dec 2004 | B2 |
6847948 | Paolini et al. | Jan 2005 | B1 |
6852031 | Rowe | Feb 2005 | B1 |
6896618 | Benoy et al. | May 2005 | B2 |
7043641 | Martinek et al. | May 2006 | B1 |
7116782 | Jacson et al. | Oct 2006 | B2 |
7203841 | Jackson et al. | Apr 2007 | B2 |
20030054880 | Lam et al. | Mar 2003 | A1 |
20030203755 | Jackson | Oct 2003 | A1 |
20030217271 | Calder | Nov 2003 | A1 |
20040198494 | Nguyen et al. | Oct 2004 | A1 |
20040218762 | Le Saint et al. | Nov 2004 | A1 |
20060048236 | Multerer et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090233709 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11083706 | Mar 2005 | US |
Child | 12470995 | US |