This patent application is related to, and based upon, Australian Provisional Patent Application Number SPEP-15863657 filed Jan. 31, 2012, and Indian Patent Application 3599/CHE/2012 A filed on Aug. 31, 2012, both applications of which are incorporated by reference herein and the priority benefits of which are hereby claimed.
The present invitation relates to a soil anchor footing, and more particularly for a foundation supporting system within the ground surface for columns, walls, light posts, sign posts, electrical substation equipment, railway infrastructure, light industrial structures, or the like, and a method for making the same.
The advent of technology has led to a sea change in the civil engineering construction industry. Foundation support systems for the columns of buildings are characterized by suitable footings based upon the soil condition. A footing is basically an enlarged base for a foundation which is designed to distribute the building load over a larger area of soil and to provide a firm, level surface for constructing the structures. The purpose of the footing is to also provide stability to the structure against swaying or falling due to horizontal forces, such as, for examp-le, high velocity or turbulent winds. In the present invention, the anchors play an important role. The primary function of these anchors is to transmit upward and downward forces, due to column axial load and overturning moments, to the soil at certain depths below the ground.
The depth of the excavation is determined by the structural engineer depending upon the type of soil where the construction is to occur. Surface soil is removed so as to expose the soil that is to be compacted enough so as to bear the load of the column/structure. The depth of the excavation will be just deep enough to place the footings. The footings are poured concrete that help to spread the weight of the structure, walls, piers, columns, light post structures, and the like. The total area of the footings is roughly determined by dividing the total load, including an estimated mass for the footing itself, by the soil bearing capacity.
Concrete is one of the best footing materials because it is hard, durable, and strong in compression. It is easily cast into the unique shapes required for each type of footing. Alternatively, footings can be cast directly within the trench. While this saves the cost of footing forms, care must be taken so that no soil from the sides is mixed in the concrete. Footings can also be piles, bored piers, or of the raft slab type.
Several of the problems being addressed by the present invention is to have the footing that will be light in weight, economical, environmentally friendly, easy to construct, able to be formed relatively quickly, and will require less space as compared to conventional pad type footings. Here the footing forces are resisted by closely spaced deformed steel bars driven into the soil. The steel bars act like mini piles, resisting uplift and downward forces.
In connection with conventional type pad footings, if the vertical loads are relatively small, any overturning moments are resisted by means of the weight of the footing. Hence, it requires large volumes of concrete, more space, more excavation, and more soil disposal. Examples are light posts, substation electrical equipment supports, sign posts, and the like. In accordance with the present invention, the column vertical load and overturning moments are resisted by means of steel bar soil anchors, and by means of their upward and downward load capacity within the soil. The soil anchor footing requires minimum excavation, less soil disposal, is relatively light in weight, requires less space, saves construction time, and provides much higher overturning moment-resistant capacity.
Though the aforenoted conventional and similar systems have been designed to provide certain advantages, they also suffer from various shortcomings. A few of such prior art systems are discussed hereinbelow so as to help distinguish the present invention from such known prior art systems.
U.S. Pat. No. 4,290,245 discloses an earth anchor for embedding the same within the ground and to acquire a secure and snug retention incorporating a shank portion having a helical blade affixed thereto and having a linear cutting edge positioned at a lagging angle off the perpendicular or radius from the shank portion.
Similarly, U.S. Pat. No. 4,742,656 relates to an earth anchor for embedding the same within the ground and incorporating a helical blade(s), having flattened side edges, intervened by rounded or accurate corners, and connecting with its shank for securing with any driving apparatus useful for the power driving of such an earth anchor into the ground.
Both of the anchors disclosed within these prior art patents, however, are expensive and need special machinery to install. They also need a reinforced concrete footing slab to be cast on top of these screw anchors.
In accordance with the present invention, however, steel deformed bars are being used which are readily available, are inexpensive, and are easy to install. The pre-cast type footing in accordance with the present invention can be installed within the ground within a few minutes. As the bars are driven into the ground, they have much higher uplift and downward force resistant capacity than screw type anchors. Furthermore, recycled bars can also be used which will be even cheaper, and moreover, such helps to protect environment since recycled materials are being used. Also, within the soil anchor footing, no additional reinforcement is required within the top slab.
U.S. Pat. No. 5,873,679 discloses a foundation pier adapted to be secured to a support beam of a movable dwelling for supporting the dwelling and for resisting seismic forces applied to the dwelling. It appears that this foundation pier has limita-tions as to its applications and can be used only for small loads. The present inven-tion, however, is more versatile, can be used for higher loads, and thereby has broader applications.
U.S. Pat. No. 5,924,264 relates to a foundation system comprising a pre-fabricated set of concrete forms for a manufactured building that is already on-site and in-place. The concrete form set includes standard-length sections that bolt together immediately below the rim of the manufactured building. This invention has a specific use like in the case of pre-fab building wall foundations. The present invention, however, discloses a different product and has broader applications.
U.S. Pat. No. 7,308,776 discloses a pole anchor footing system for effectively supporting a post structure within a ground surface. The pole anchor footing system includes a resilient body having a neck portion and a base portion, and an elongate member extending into the body from an upper end of the body. In accordance with the present invention, the footing gets its strength from the anchor bars that are embedded within the ground, while in the prior art, the footing obtains its strength from its pyramidal shape. This has very limited applications when compared to those of the present invention.
U.S. Pat. No. 7,549,259 pertains to a device for creating a footing for a structure including a reinforcing member having a base extending in a first direction, and a leg extending in a second direction, and it is concerned with fence post footings as part of a retaining wall, secured by horizontal anchors. Hence, this device again has limited use. At the same time, the proposed invention is structurally different from the prior art and it also has broader applications.
U.S. Pat. No. 8,037,651 discloses a ground anchor assembly which includes at least two threaded studs, and an anchor plate having at least two openings of appropriate size and shape to receive the at least two threaded studs. The patented system is concerned with installing anchor bolts into concrete in such a way that their alignment is intact. A completely different product is envisaged by the present invention which has broader applications.
Lastly, US 2008/0302028 discloses a ground anchor which comprises an anchoring screw having a screw flight extending around a screw axis wherein the screw flight is generally rigid with some lateral resilient flexibility. This system has the inherent disadvantage of being cumbersome and expensive. But in accordance with the present invention, steel deformed bars are being used which are readily available and are relatively inexpensive. They are also easy to install. The pre-cast type footing in accordance with the present invention can be installed within the ground in one operation and within a few minutes, and is a complete product, as opposed to the prior art system wherein the same requires the casting of a reinforced concrete slab on top of screw anchors.
Briefly, in accordance with the principles and teachings of the present invention, the soil anchor footing comprises the use of steel deformed bars which act as mini piles. Having deformed surfaces, the bars have high soil adhesion, hence, more uplift and downward force resistance capacity. The bars are closely spaced, 100 mm to 300 mm center-to-center spacing therebetween, so that the footing requires a smaller space. Since the bars are pushed into the ground, very small excavations are required to accommodate the same, only the footing top slab being required, thereby resulting in less soil disposal. The footing can also be of the pre-cast type, wherein the whole footing can be installed within the ground by pile driving equipment or a mobile press, making the construction work very fast and simple.
The proposed invention comprises a soil anchor footing as well as a method for making the same. This is a special type of footing which can be cast-in-situ or may be of the pre-cast type. In the cast-in-situ type, 150 mm to 350 mm is excavated within the ground so as to accommodate the top slab. Deformed steel bars of 12 mm to 36 mm size, 0.3 m to 2 m long, are then pushed into the ground in accordance with a predetermined grid pattern. A concrete slab of about 200 mm to 400 mm thick is then cast on top of the bars so as to effectively encase all of the bars, and hold-down bolts which can also be chemically or mechanically secured over the slab. In the pre-cast type, the whole footing is made in the factory or within a controlled environment. The deformed bars are cast into the concrete slab in a grid pattern. Once the concrete is cured so as to achieve its full strength, it is brought to the site. The footing is placed over the excavated area with the bars extending downwardly into the ground and with the slab disposed atop the bars. It is then pushed into the ground using pile driving equipment or a mobile press. The hold-down bolts can be part of the pre-cast concrete slab or can be chemically or mechanically secured over the concrete slab later on. The footing in accordance with this is invention is ideal to support building columns, masonry walls, or similar structures, such as, for example, light poles, sign posts, substation electrical equipment supports, and the like.
This footing is light in weight, economical to produce, environmentally friendly, easy to construct, saves time in both manufacture and installation, and requires less space as compared to conventional pad type footings.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings. Like reference numerals indicate corresponding parts throughout the various drawing figures:
In connection with a first embodiment of a soil anchoring footing as constructed in accordance with the principles and teachings of the present invention, the first embodiment soil anchoring footing is illustrated in
Once all of the anchor bars 1 are embedded within the ground 3, a 200 mm to 400 mm thick concrete slab 2 is cast over these bars so as to encase the exposed upper 150 mm to 350 mm portions of the anchor bars 1 within the concrete slab 2 such that approximately 50 mm of the concrete slab 2 is disposed above the upper portions of the anchor bars 1. In this manner, all of the anchor bars 1 are effectively connected together. The concrete slab 2 is cured for approximately 7 days. After this, chemical or mechanical anchor bolts, hold-down bolts, or starter bars 4 are appropriately affixed into concrete slab 2 so as to accommodate an upstanding steel or concrete column. This concrete slab has no limitation in size and shape. It can be of 0.3 m to 10 m in width or diameter. Hence, it can serve a multiplicity of advantages and has diverse flexibility.
With reference now being made to
Generally, chemical and mechanical anchor bolts 4 can be secured within the concrete slab 2 as per the manufacturer's recommendations. In connection with the use of such anchor bolts 4, holes are drilled into the concrete slab 2 and the anchor bolts 4 are inserted. The anchor bolts 4 are bonded into the concrete slab 2 by means of chemical adhesives, or by means of friction as the anchor bolts 4 expand when tightened as is known in the art, or still further, they can be screwed into the concrete slab 2 using ferrules, not shown. The anchor bolts 4 can also be of the cast-in-situ type. In that case, they are mild steel bars 4 with threaded tops, and cogs or hooks at their base portions so as to be cast along with concrete slab 2.
Similarly, upstanding reinforcing starter bars 4 for the concrete column or brick or block wall 5, can be installed by drilling holes within the concrete slab 2 using suitable chemical adhesives similar to those used within the chemical anchors. They can also be of the cast-in-situ type with cogs or hooks on their bases.
The footing can also be of the pre-cast type. In this case, the entire footing is made in a factory or controlled environment. In this case, the footing is cast with deformed steel or fiber reinforced plastic (FRP) anchor bars 1 embedded within the concrete slab 2 as shown in
The ground is tested to determine the uplift and downward load capacity resistance or support of the deformed bars within the soil. The footing size, slab thickness, concrete strength, bar diameter, number of bars, spacing between adjacent bars, and the depth to which the deformed bars are embedded within the ground 3 as required for a proper footing structure are worked out based upon column base forces and structural engineering principles, or structural analysis software packages. Outer anchor bars 1 can be spaced closer together as they are more effective in resisting overturning moments. The footing slab has a substantially flat configuration with a planar upper surface and an opposing mutually parallel planar lower surface, wherein such surfaces are capable of holding or supporting the desired loads.
In accordance with yet another embodiment utilizing the principles and teachings of the present invention, the concrete slab 2 can be constructed so as to effectively have a stepped configuration with a pedestal portion 6 at the center thereof as is illustrated in
In yet another embodiment constructed in accordance with the principles and teachings of the present invention, and as illustrated within
With reference lastly being made to
The significant difference, however, between the fifth embodiment soil anchor footing as disclosed within
Deformed reinforcing bars, also known as rebar, are very common in the construction industry. They are used in concrete columns, beams, floor slabs, and the like. A pattern is formed within the external surface portions of the bars which helps the concrete to adhere to or grasp the bars. The exact patterns are not specified, but the spacing, number and height of the bumps are in accordance with known standards. Because of the grooves on their surface, they have much better bonding with concrete compared to plain round bars. Furthermore, it is known that deformed bars have strength values of 500 MPa (megapascals) as opposed to strength values of 250 MPa characteristic of plain bars. They are normally manufactured in 6 m or 12 m lengths, however, they can readily be cut to any length as per the building requirements.
The aforenoted footings are smaller in size, lighter in weight, and have higher uplift force and overturning moment resistance capacities compared to conventional concrete pad type footings. The footings will also incur less settlement compared to conventional pad footings.
The aforenoted footings can be quite economical where column vertical loads are small and overturning moments are high, such as, for example, in connection with electrical substation minor equipment footings, sign posts, light poles, and the like. The footings can also be more suitable where access is tight and excavation can disturb neighboring footings.
The aforenoted footings are also environmentally friendly as they cause little disturbance to the ground. The ground excavation is very little, so that soil disposal problems are significantly reduced. Recycled bars can also be used in the footings.
There will be some corrosion in connection with steel bars over an ex-tended period of time, however, as the stress within the bars is very low, about 2% of full capacity, the footing service life can easily be more than 50 years.
Another added advantage is that the footings can be pre-cast in the factory, can be brought to the site, and the entire footing can be inserted into the ground by applying a uniform pressure over or across the top of the slab using a pile driving equipment or a mobile press. Care should be taken, not to damage the concrete slab, using timber pieces or a suitable buffer on top of the concrete slab. The building column is then installed over the footing. This will reduce construction time dramatically.
The aforenoted footings may not be suitable for use within hard rocky ground as it will be difficult to push the anchor bars 1 into the rock.
Instead of deformed bars, we can use plain bars as well. But these plain bars have to be provided with a bent portion or hook at the top end portion embedded within the concrete slab, or a thicker concrete slab must be used to achieve optimal anchorage length. Similarly, instead of concrete slabs, steel plates can be used which can be welded to the bars.
Various embodiments under this invention are possible without deviating from the spirit of the invention such as:
In short, the distinguishing features of the present invention soil anchor footing are noted hereinbelow:
I have brought out the novel features of the invention by explaining some of the preferred embodiments in accordance with the principles and teachings of the present invention so as enable to a person in the art to understand and appreciate the invention. It is also to be understood that the invention is not limited in its application to the details set forth in the above description or illustrated in the accompanying drawings. Although the invention has been described in considerable detail with particular reference to certain preferred embodiments thereof, variations and modifications can be effected within the spirit and scope of the invention as described herein above and as defined in the appended claims.