Priority is claimed to Japanese Patent Application No. 2018-180893, filed on Sep.26, 2018, the entire content of which is incorporated herein by reference.
The present invention relates to a solar cell and a method of manufacturing a solar cell.
Solar cells having high power generation efficiency include back contact type solar cells in which both an n-type semiconductor layer and a p-type semiconductor layer are formed on a back surface of the cell opposite to a light-receiving surface on which light is incident. An n-side electrode is formed on the n-type semiconductor layer and a p-side electrode is formed on the p-type semiconductor layer. An isolation groove for electrical insulation is provided between the n-side electrode and the p-side electrode. There is known a method of forming an isolation groove between electrodes by using ablation caused by laser irradiation.
From the perspective of improving the efficiency of collecting power, it is preferred to configure the isolation groove between electrodes to have a small width.
The disclosure addresses the above-described issue, and a general purpose thereof is to provide a solar cell having a higher power generation efficiency.
A method of manufacturing a solar cell according to an embodiment of the present disclosure includes: forming a metal layer on a semiconductor substrate; forming a resist layer on the metal layer, the resist layer including a resin and inorganic particles having a higher optical absorptance at a predetermined wavelength than the resin; forming an opening through which the metal layer is exposed, by irradiating the resist layer with a laser light having the predetermined wavelength and removing the resist layer; and wet etching the metal layer exposed in the opening.
Another embodiment of the present disclosure relates to a solar cell. The solar cell includes: a semiconductor substrate; a first conductivity type semiconductor layer provided in a first region on the semiconductor substrate; an insulating layer provided in a partial region adjacent to the first region on the first conductivity type semiconductor layer; a second conductivity type semiconductor layer provided in a second region on the semiconductor substrate adjacent to the first region and provided on the insulating layer; a metal layer provided on the first conductivity type semiconductor layer, the insulating layer, and the second conductivity type semiconductor layer; and a resist layer that is provided on the metal layer and includes a resin and inorganic particles. The metal layer and the resist layer have an opening that extends through the metal layer or the resist layer at a position overlapping the insulating layer. The opening of the resist layer is tapered such that an opening width grows smaller toward the metal layer.
Embodiments will now be described by way of examples only, with reference to the accompanying drawings which are meant to be exemplary, not limiting and wherein like elements are numbered alike in several Figures in which:
The invention will now be described by reference to the preferred embodiments. This does not intend to limit the scope of the present invention, but to exemplify the invention.
A brief summary will be given before describing an embodiment in specific details. The embodiment relates to a back contact type solar cell. A solar cell includes: a semiconductor substrate; a first conductivity type semiconductor layer provided in a first region on the semiconductor substrate; an insulating layer provided in a partial region adjacent to an edge of the first region on the first conductivity type semiconductor layer, a second conductivity type semiconductor layer provided in a second region on the semiconductor substrate adjacent to the first region and also provided on the insulating layer; a metal layer provided on the first conductivity type semiconductor layer, the insulating layer, and the second conductivity type semiconductor layer. The metal layer forms at least a part of the n-side electrode and the p-side electrode of the solar cell. An isolation groove to secure electrical insulation between the n-side electrode and the p-side electrode is provided in the metal layer. The isolation groove is formed by forming a resist layer on the metal layer, removing the resist layer by irradiating the resist layer with a laser light having a predetermined wavelength, forming an opening through which the metal layer is exposed, and wet etching the metal layer exposed through the opening. According to the embodiment, an isolation groove having a small isolation width is formed at a low cost by using a resist layer including a resin and inorganic particles having a higher optical absorptance at the predetermined wavelength than the resin.
A detailed description will be given of an embodiment to practice the present disclosure with reference to the drawings. In the explanations of the figures, the same elements shall be denoted by the same reference numerals, and duplicative explanations will be omitted appropriately.
The first electrode 14 includes a first bus bar electrode 14a extending in the x direction and a plurality of first finger electrodes 14b extending in the y direction intersecting the first bus bar electrode 14a and is formed in a comb-tooth shape. The second electrode 15 includes a second bus bar electrode 15a extending in the x direction and a plurality of second finger electrodes 15b extending in the y direction intersecting the second bus bar electrode 15a and is formed in a comb-tooth shape. The first electrode 14 and the second electrode 15 are formed such that the comb teeth of the electrodes are in mesh with each other and inserted into each another. Each of the first electrode 14 and the second electrode 15 may be a busbar-less electrode consisting only of a plurality of fingers and having no busbars.
The solar cell 10 includes a light-receiving surface 12 and a back surface 13. The light-receiving surface 12 means a principal surface on which light (sunlight) is mainly incident in the solar cell 10 and, specifically, means a surface on which the major portion of light entering the solar cell 10 is incident. The back surface 13 means the other principal surface opposite to the light-receiving surface 12.
The substrate 18 is formed by a crystalline semiconductor having the first conductivity. Specific examples of the crystalline semiconductor substrate include a crystalline silicon (Si) wafer like a monocrystalline silicon wafer and a polycrystalline silicon wafer. In this embodiment, it is shown that the substrate 18 is an n-type monocrystalline silicon wafer having the first conductivity type, and the first conductivity type is the n-type, and the second conductivity type is the p-type. The substrate 18 includes an impurity of the first conductivity type and includes, for example, phosphorus (P) as the n-type impurity to dope silicon. The thickness of the substrate 18 is, for example, 200 μm.
The solar cell may be formed by a semiconductor substrate other than a crystalline silicon wafer. For example, a compound semiconductor wafer made of gallium arsenide (GaAs), indium phosphorus (InP), etc. may be used. Alternatively, the semiconductor substrate may have the second conductivity type or may have the p-type.
The substrate 18 includes a first principal surface 18a on the side of the light-receiving surface 12, and a second principal surface 18b on the side of the back surface 13. The substrate 18 absorbs light incident on the first principal surface 18a and generates electrons and positive holes as carriers. The first principal surface 18a is provided with a texture structure (concave-convex structure) 18c for increasing the efficiency of absorbing incident light. Meanwhile, the second principal surface 18b may not be provided with a texture structure like that of the first principal surface 18a, and the second principal surface 18b may be flatter than the first principal surface 18a. From the perspective of improving the efficiency of collecting power by configuring the groove between the electrodes to have a small isolation width, it is preferred not to work the second principal surface 18b to form a texture structure. In other words, it is preferred to provide a texture structure only on the first principal surface 18a and not to form a texture structure on the second principal surface 18b.
The light-receiving surface protection layer 20 is provided on the first principal surface 18a of the substrate 18. The light-receiving surface protection layer 20 functions as a passivation layer for the first principal surface 18a. The passivation layer may include at least one of a substantially intrinsic amorphous semiconductor layer, an amorphous first conductivity type semiconductor layer, an amorphous second conductivity type semiconductor layer, and an insulating layer. The passivation layer can be made of amorphous silicon containing hydrogen, silicon oxide, silicon nitride, silicon oxynitride, or the like. The passivation layer has a thickness of, for example, about 2 nm-100 nm.
The light-receiving surface protection layer 20 may also have a function of an antireflection film or a protection film. The antireflection film or the protection film can be made of silicon oxide, silicon nitride, silicon oxynitride, or the like. The thickness of the antireflection film or the protection film is configured as appropriate in accordance with, for example, the antireflection property. For example, the thickness is about 50 nm-1100 nm.
A first region W1 and a second region W2 are provided on the second principal surface 18b of the substrate 18. The first region W1 corresponds to a region where the first electrode 14 of
The first region W1 is on the side of the first conductivity type and collects those of carriers generated in the substrate 18 that are of the first conductivity. Since the substrate 18 is of the first conductivity type, it can be said that the first region W1 is a region that collects majority carriers. Meanwhile, the second region W2 is on the side of the second conductivity type and collects carries of the second conductivity type, i.e., minority carriers. Given that the first conductivity type is the n-type and the second conductivity type is the p-type, the first region W1 collects electrons, and the second region W2 collects holes. The efficiency of collecting minority carriers is lower than that of majority carriers. Accordingly, the area of the second region W2 on the side of minority carriers is configured to be larger than the area of the first region W1 on the side of majority carriers in order to increase the power generation efficiency of the cell as a whole. For example, the width of the first region W1 in the x direction is about 500 μm, and the width of the second region W2 in the x direction is about 700 μm-1000 μm.
The first amorphous layer 21 is provided in the first region W1 on the second principal surface 18b of the substrate 18. The first amorphous layer 21 is made of an i-type or n-type amorphous semiconductor or an insulator. The first amorphous layer 21 is made of, for example, i-type or n-type amorphous silicon containing hydrogen, or a silicon compound or an aluminum compound containing at least one of oxygen and nitrogen. The thickness of the first amorphous layer 21 is about 1 nm-200 nm, and, preferably, about 2 nm-25 nm.
In this specification, a substantially intrinsic semiconductor will be referred to as “i-type semiconductor”. A substantially intrinsic semiconductor includes a semiconductor layer formed without positively using an n-type or p-type impurity element and includes a semiconductor layer formed without supplying a dopant gas during chemical vapor deposition (CVD) etc. Specifically, it includes silicon obtained by supplying silane (SiH4), etc. diluted with hydrogen (H2) without supplying a dopant gas such as diborane (B2H6) and phosphine (PH3).
The first conductivity type semiconductor layer 22 is provided on the first amorphous layer 21 in the first region W1. The first conductivity type semiconductor layer 22 is a semiconductor layer including an impurity of the first conductivity type, which is the same conductivity type of the substrate 18, and is, for example, a silicon layer including phosphorous (P). It is preferred that the impurity density of the first conductivity type semiconductor layer 22 be higher than that of the substrate 18. The first conductivity type semiconductor layer 22 has a thickness of, for example, about 2 nm-50 nm. The first conductivity type semiconductor layer 22 is formed by an amorphous or crystalline semiconductor. In the case the first conductivity type semiconductor layer 22 is made of an amorphous semiconductor, the first conductivity type semiconductor layer 22 is made of n-type amorphous silicon containing hydrogen. In the case the first conductivity type semiconductor layer 22 is made of a crystalline semiconductor, the first conductivity type semiconductor layer 22 includes, for example, at least one of n-type monocrystalline silicon, polycrystalline silicon, and microcrystalline silicon. The first conductivity type semiconductor layer 22 may be configured to include both an amorphous portion and a crystalline portion.
The insulating layer 23 is made of an insulating material and is made of, for example, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), or the like. The insulating layer 23 is provided on the first conductivity type semiconductor layer 22. The insulating layer 23 is provided in a partial region (third region) W3 adjacent to the edge (outer circumference) of the first region W1 and is not provided in a fourth region W4 corresponding to the central part of the first region W1. The x-direction width of the third region W3 in which the insulating layer 23 is provided is about ⅓ the x-direction width of the first region W1. The x-direction width of the fourth region W4 in which the insulating layer 23 is not provided is also about ⅓ the x-direction width of the first region W1. For example, the x-direction width of each of the third region W3 and the fourth region W4 is about 150 μm-200 μm.
The second amorphous layer 24 is provided in the second region W2 on the second principal surface 18b of the substrate 18 and in the third region W3 on the insulating layer 23. The second amorphous layer 24 is made of an i-type or p-type amorphous semiconductor or an insulator. The second amorphous layer 24 is made of, for example, i-type or p-type amorphous silicon containing hydrogen, or a silicon compound or an aluminum compound including at least one of oxygen and nitrogen. The thickness of the second amorphous layer 24 is about 1 nm-200 nm, and, preferably, about 2 nm-25 nm.
The second conductivity type semiconductor layer 25 is provided on the second amorphous layer 24 in the second region W2 and in the third region W3. The second conductivity type semiconductor layer 25 is a semiconductor layer including an impurity of the second conductivity type different from the first conductivity type and is, for example, a silicon layer including boron (B). The second conductivity type semiconductor layer 25 has a thickness of, for example, about 2 nm-50 nm. The second conductivity type semiconductor layer 25 is formed by an amorphous or crystalline semiconductor and includes p-type amorphous silicon containing hydrogen, or at least one of p-type monocrystalline silicon, polycrystalline silicon, and microcrystalline silicon. The second conductivity type semiconductor layer 25 may be configured to include both an amorphous portion and a crystalline portion.
The transparent electrode layer 26 is formed on the first conductivity type semiconductor layer 22 in the fourth region W4 and on the second conductivity type semiconductor layer 25 in the second region W2 and in the third region W3. The transparent electrode layer 26 is formed by, for example, a transparent conductive oxide (TCO) such as tin oxide (SnO2), zinc oxide (ZnO), and indium tin oxide (ITO) that is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum, etc. The thickness of the transparent electrode layer 26 may be, for example, about 50 nm-100 nm.
The metal layer 27 is provided on the transparent electrode layer 26. The metal layer 27 is a conductive material layer containing a metal such as copper (Cu), tin (Sn), gold (Au), silver (Ag), nickel (Ni), and titanium (Ti). The metal layer 27 is a seed layer to form the plating layer 28 and has a thickness of, for example, about 50 nm-1100 nm.
An isolation groove 16 is provided in the transparent electrode layer 26 and the metal layer 27. The isolation groove 16 is located in the third region W3 in which the insulating layer 23 is provided. The width of an isolation region W5 in which the isolation groove 16 is provided is smaller than the width of the third region W3. The x-direction width of the isolation region W5 is equal to or smaller than ½, and, preferably, equal to or smaller than ⅓, the x-direction width of the third region W3. The x-direction width of the isolation region W5 is, for example, about 20 μm-60 μm.
The plating layer 28 is provided on the metal layer 27. The plating layer 28 includes a metal such as copper (Cu), tin (Sn), gold (Au), silver (Ag), nickel (Ni), and titanium (Ti) and is configured to include a material common to the metal layer 27. The plating layer 28 is not provided in the isolation region W5 in which the isolation groove 16 is located. The plating layer 28 is provided in a resist region W6 located to correspond to the third region W3, in such a manner that the plating layer 28 is not in contact with the metal layer 27.
The resist region W6 corresponds to a region in which a resist layer for patterning the plating layer 28 is provided. The resist region W6 is a region wider than the isolation region W5, and the entirety of the isolation region W5 is included inside the resist region W6. The resist region W6 may be configured to be aligned with the third region W3, configured to be located only inside the third region W3, or configured to overlap the edge of the third region W3 at least in part. The resist region W6 may overlap the second region W2 and the fourth region W4 adjacent to the third region W3.
In this embodiment, each of the first electrode 14 and the second electrode 15 is comprised of the transparent electrode layer 26, the metal layer 27, and the plating layer 28. The first electrode 14 collects carriers of the first conductivity type via the first conductivity type semiconductor layer 22 in the fourth region W4. The second electrode 15 collects carriers of the second conductivity type via the second conductivity type semiconductor layer 25 in the second region W2. The first electrode 14 and the second electrode 15 are electrically isolated by the isolation groove 16.
A description will now be given of a method of manufacturing the solar cell 10 with reference to
Subsequently, as shown in
Subsequently, as shown in
The thickness of the resist layer 30 is not less than 1 μm and not more than 30 μm, and is, for example, about 10 μm-20 μm. The thickness of the resist layer 30 need not be uniform. The thickness of the resist layer 30 may vary depending on the location. For example, the thickness of the resist layer 30 may be relatively larger near the center of the resist region W6, and the thickness of the resist layer 30 near the outer edge of the resist region W6 may be relatively small. The top surface of the resist layer 30 may consequently have a gently convex curved shape.
Subsequently, as shown in
Subsequently, as shown in
The laser light 40 is radiated as it is moved in the y direction orthogonal to the paper surface of
As a light source for the laser light 40, solid-state laser such as Nd:YAG, rare-earth (Nd, Er, Yb)-doped fiber laser, or the like may be used. The laser light 40 may be a pulse laser or a continuous wave laser. The laser light 40 may have a Gaussian intensity distribution or a uniform top hat intensity distribution. It is preferred that the wavelength of the laser light 40 be not less than 500 nm and not more than 2000 nm, and, more preferably, not less than 800 nm and not more than 1500 nm. By selecting such a wavelength, the resist layer 30 is suitably removed, and, at the same time, a damage to the metal layer 27 is inhibited. This is because, generally, the longer the wavelength in the wavelength range from visible to near-infrared, the smaller the optical absorptance of a metal material.
Given that the metal layer 27 is made of copper (Cu), for example, the optical absorptance at the wavelength (355 nm) of the third harmonic of Nd:YAG laser is about 75%, and the optical absorptance at the wavelength (532 nm) of the second harmonic of Nd:YAG laser is about 55%. Meanwhile, the optical absorptance of copper (Cu) near 800 nm is about 10%, and the optical absorptance for the fundamental wave (1064 nm) of Nd:YAG laser is about 8%. Therefore, the damage to the metal layer 27 is more suitably reduced by using a wavelength in the near-infrared range of equal to or longer than 800 nm. By using inorganic particles having a higher optical absorptance at the wavelength of the laser light 40 than the metal layer 27, the energy of the laser light 40 is efficiently absorbed by inorganic particles, i.e., by the resist layer 30.
Subsequently, as shown in
By removing the resist layer 30 subsequently, the solar cell 10 shown in
A description will now be given of the material of the resist layer 30. As described above, the resist layer 30 is comprised of a mixture of a resin base member and inorganic particles dispersed in the resin. The resin used in the base member is a thermosetting or UV curable resin called a plating resist. For example, acrylic resin or epoxy resin may be used. The resin has a low optical absorptance at the wavelength of the laser light 40 used to form the opening 32 and can be substantially transparent for the wavelength of the laser light 40. Meanwhile, inorganic particles dispersed in the resin are embodied by a colorant like carbon black and have a high optical absorptance at the wavelength of the laser light 40. In other words, the optical absorptance of inorganic particles at the wavelength of the laser light 40 is higher than the optical absorptance of the resin used in the base member at the wavelength of the laser light 40. According to this embodiment, the resist layer 30 is suitably ablated by irradiating it with a laser a small number of times, by using the resist layer 30 including inorganic particles in the resin at an appropriate density. For example, the resist layer 30 having a thickness of about 10 μm-20 μm is removed by a single session of laser irradiation and the damage to the metal layer 27 underneath the resist layer 30 is prevented, by configuring the density of carbon black to be not less than 0.3 weight % and not more than 2 weight %.
In the example shown in
According to this embodiment, the opening 32 having a small opening width W is formed in the resist layer 30 by irradiating it with a laser a small number of times, by using the resist layer 30 in which inorganic particles having a high optical absorptance for the laser light 40 are dispersed in the resin base member having a low optical absorptance for the laser light 40. This secures a small isolation width of the isolation groove 16 formed in the metal layer 27 and the transparent electrode layer 26 in the subsequent wet etching step. By configuring the isolation groove 16 to have a small width, the area of contact between the metal layer 27/transparent electrode layer 26 with the semiconductor layers 22, 25 is increased, and the power collection efficiency of the first electrode 14 and the second electrode 15 is increased. In this way, the power generation efficiency of the solar cell 10 is improved.
According to this embodiment, ablation caused by optical absorption in inorganic particles included in the resist layer 30 equalizes the amount of energy absorbed per a unit volume of the resist layer 30 even if the thickness of the resist layer 30 in the region irradiated by the laser light 40 is not uniform. In the case the resist layer 30 is patterned by screen printing, the printing position of the resist layer 30 may be slightly shifted depending on the precision of the printing position. The top surface of the resist layer 30 printed has a convexly curved shape, and the thickness may vary depending on the location. Therefore, the impact from a shift in the printing position could produce a variation in the thickness at different positions of laser irradiation. Even when such a variation occurs during the manufacturing, the energy is uniformly absorbed by the resist layer 30 in the region irradiated by the laser light 40 to cause ablation so that the variation in the opening width W of the opening 32 thus formed is reduced. This secures a uniform isolation width of the isolation groove 16 and increases the reliability of the solar cell 10.
According to this embodiment, the resist layer 30 is removed over the entirety of the direction of thickness of the resist layer 30 in a single session of laser irradiation, by adjusting the density of inorganic particles included in the resist layer 30. This reduces the cost for patterning the opening 32. In particular, the combined use of screen printing and laser irradiation reduces the cost as compared with the case of patterning the resist layer 30 by using photolithographic technique.
One embodiment of the disclosure is summarized below. A method of manufacturing a solar cell (10) according to an embodiment includes:
forming a metal layer (27) on a semiconductor substrate (18);
forming a resist=layer (30) on the metal layer (27), the resist layer including a resin and inorganic particles having a higher optical absorptance at a predetermined wavelength than the resin;
forming an opening (32) through which the metal layer (27) is exposed, by irradiating the resist layer (30) with a laser light (40) having the predetermined wavelength to remove the resist layer (30); and
wet etching the metal layer (27) exposed in the opening (32).
The inorganic particles may have a higher optical absorptance at the predetermined wavelength than the metal layer (27).
The method may further include: forming, before irradiation with the laser light (40) having the predetermined wavelength, a plating layer (28) on the metal layer (27) by using the resist layer (30) as a pattern mask.
The opening (32) of the resist layer (30) may be tapered such that an opening width grows smaller toward the metal layer (27).
The resist layer (30) may be screen-printed on the metal layer (27).
The thickness of the resist layer (30) may be not less than 1 μm and not more than 30 μm. A density of the inorganic particles included in the resist layer (30) may be not less than 0.3 weight % and not more than 2 weight %.
The predetermined wavelength may be not less than 500 nm and not more than 2000 nm.
The laser light (40) may have a top hat intensity distribution.
The method may further include: forming a first conductivity type semiconductor layer (22) provided in a first region (W1) on the semiconductor substrate (18), an insulating layer (23) provided in a partial region (a third region W3) adjacent to an edge of the first region (W1) on the first conductivity type semiconductor layer (22), and a second conductivity type semiconductor layer (25) provided in a second region (W2) on the semiconductor substrate (18) adjacent to the first region (W1) and provided on the insulating layer (23).
The metal layer (27) may be formed on the first conductivity type semiconductor layer (22)e, the insulating layer (23), and the second conductivity type semiconductor layer (25).
The opening (32) of the resist layer (30) may be formed to be aligned with the insulating layer (23).
A solar cell according to an embodiment includes:
a semiconductor substrate (18);
a first conductivity type semiconductor layer (22) provided in a first region (W1) on the semiconductor substrate (18);
an insulating layer (23) provided in a partial region (third region W3) adjacent to the first region (W1) on the first conductivity type semiconductor layer (22);
a second conductivity type semiconductor layer (25) provided in a second region (W2) on the semiconductor substrate (18) adjacent to the first region (W1) and provided on the insulating layer (23);
a metal layer (27) provided on the first conductivity type semiconductor layer (22), the insulating layer (23), and the second conductivity type semiconductor layer (25); and
a resist layer (30) that is provided on the metal layer (27) and includes a resin and inorganic particles, wherein
the metal layer (27) and the resist layer (30) have an opening (32) that extends through the metal layer (27) or the resist layer (32) at a position overlapping the insulating layer (23), and
the opening (32) of the resist layer (30) is tapered such that an opening width grows smaller toward the metal layer (27).
According to the variation, the amount of light absorbed by the resist layer 30 near the surface of the metal layer 27 is increased by providing the second resist layer 36 with a higher density of inorganic particles at the interface between the metal layer 27 and the first resist layer 34. This promotes ablation of the resist layer 30 near the surface of the metal layer 27 and ensures that the resist layer 30 in the isolation region W5 irradiated with the laser light 40 is properly removed. Since the intensity of the laser light 40 reaching the metal layer 27 is further reduced, the damage to the metal layer 27 caused by irradiation with the laser light 40 is further reduced. In the case that the second harmonic (532 nm) of Nd:YAG laser is used, the resist layer 30 is properly removed and, at the same time, the metal layer 27 is prevented from being damaged. In further accordance with the variation, it is also possible to secure a large range of irradiation condition (process window) of the laser light 40 capable of forming the opening 32 properly. In the case a picosecond pulsed laser having a wavelength 532 nm is used, for example, the opening 32 for which no exfoliation occurs in the surrounding part is formed by a single session of laser irradiation using the laser light 40 of about 0.45 J/cm2-4.5 J/cm2.
The resist layer (30) may include a first resist layer including a resin and inorganic particles and a second resist layer including a resin and including inorganic particles at a higher density than the first resist layer. The second resist layer may be formed between the metal layer (27) and the first resist layer, and the second resist layer may have a smaller thickness than the first resist layer.
The embodiment of the present invention is not limited to those described above and appropriate combinations or replacements of the features of the embodiment and the variations are also encompassed by the present invention.
It should be understood that the invention is not limited to the above-described embodiments and modifications but may be further modified into various forms on the basis of the spirit of the invention. Additionally, those modifications are included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2018-180893 | Sep 2018 | JP | national |