Solar cell fabrication with faceting and ion implantation

Information

  • Patent Grant
  • 8697553
  • Patent Number
    8,697,553
  • Date Filed
    Thursday, June 11, 2009
    15 years ago
  • Date Issued
    Tuesday, April 15, 2014
    10 years ago
Abstract
Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.
Description
FIELD OF THE INVENTION

This invention relates to semiconductor devices and methods of fabricating them. More specifically, this invention relates to methods of fabricating solar cells with reduced ohmic losses.


BACKGROUND OF THE INVENTION

Semiconductor solar cells are well known for transforming light into electric current. The efficiency of solar cells is limited in part by ohmic losses, which are affected by the dopant diffusion and contact screen printing used to fabricate the solar cells.



FIG. 1 shows a prior art solar cell 100. The solar cell 100 converts light striking photo-receptive regions 135 on its top surface into electric current, which can be transmitted to a load 150. The solar cell 100 includes an n-type emitter layer 115 overlying a p-type substrate 110, thereby defining a p-n junction 111. The emitter layer 115 contains highly doped n-wells 117 that form gridlines and can be covered with an anti-reflective coating (ARC) 120. Metallic fingers 125 are formed on top of the n-wells 117 to couple the n-wells to a busbar 130. The busbar 130 is coupled to the load 150, which in turn is coupled to a metallic contact 140 on a backside of the substrate 110.


The emitter layer 115 is formed by exposing the substrate 110 to a source of n-type ions, which then diffuse into a top surface of the base 100. The doping profile of the solar cell 100 has several drawbacks.


First, producing this profile results in excess un-activated dopants near the top surface, as the dopants are driven into the bulk of the substrate 100. This effect leads to varying levels of light absorption, the creation of electron-hole pairs, and unwanted recombination of electron-hole pairs. This is known as “dead layer,” in which blue light is not absorbed close to the top surface of the photo-receptive regions 135. Because of the high doping level near the surface, electron-hole pairs created in the dead layer quickly recombine before they can generate any current flow. Facetting, used to reduce the amount of light reflected from the solar cell before it can generate current.


Second, diffusion techniques used to form a conventional profile are not optimal for the formation of selective doping regions with a homogenous high resistivity photo-receptive region and low-resistance regions for gridlines, contact fingers, busbars, metal-silicon interfaces, and backside metallization.


Third, direct overlay of metal on the semiconductor can result in different work functions at the interface between the conductive fingers 125 and the emitter layer 115. To better match the work functions between a metal contact and the doped silicon, some prior art techniques melt the contacts 125 to form a silicide at the interface. While forming a silicide may help tailor the work functions, there are still undesirable ohmic losses and the potential of metal shunting.


Finally, lateral positioning of dopants across a substrate is becoming difficult as the line widths and wafer thicknesses are decreasing. Geometries in solar cell gridlines are expected to drop from about 200 microns to 50 microns, and later to drop even smaller. Present screen-printing techniques are ill equipped to fabricate devices with such small displacements. Moreover, as wafers are getting ever thinner, vertical and batch diffusion and screen printing become extremely difficult.


SUMMARY OF THE INVENTION

In accordance with embodiments, solar cells are fabricated by precisely placing dopants both laterally, across layers of the underlying substrate, as well as into the bulk of the substrate. Ion beams are directed to create heavily doped areas that form gridlines, as well as lightly doped areas between the gridlines. By tailoring parameters, an atomic dopant profile is simultaneously matched to provide electrical junctions at appropriate depths using predetermined substrate doping levels and to provide the resistivity required for the formation of contacts at the substrate surface. Such independent control is unique to implantation methods.


In a first aspect, a semiconductor device includes a substrate having a surface that contains textured regions doped with a dopant to a first doping level and non-textured regions forming gridlines and doped with the dopant to a second doping level larger than the first doping level. The substrate is p-type or n-type; the dopant is of the opposite type. The semiconductor device includes conductive fingers coupled to the gridlines and a bottom portion that is coupled to a metallic contact containing impurities. The textured-regions are photo-receptive regions.


Preferably, each of the textured regions includes multiple textured elements, such as pyramidal elements having <111> planes, dome-shaped elements, or any other undulating (rising and falling) structures that reduce the amount of light reflected from the photo-receptive regions.


The dopant in each of the multiple textured elements has either a uniform thickness or a thickness that varies along the faces of the elements.


In one embodiment, each of the textured regions is covered with an anti-reflective coating. The dopants in the non-textured regions are interspersed with a metallic species.


In a second aspect, a method of fabricating a solar cell includes directing a uniform ion beam onto a surface of a substrate having non-textured and textured regions. Dopants are implanted into the textured regions at a first density and into the non-textured regions at a second density larger than the first density to form gridlines. The gridlines are coupled to contact fingers.


In one embodiment, the textured regions include multiple individual textured elements, such as pyramidal elements. Alternatively, the multiple textured elements are semi-spherical. The beam can be shaped to implant dopants into each of the textured elements individually or into a group of textured elements simultaneously.


Either the beam, the substrate, or both is rotated so that the beam is substantially perpendicular to faces of each of the multiple textured elements. The beam can also be scanned across the surface to thereby implant the dopants into the textured and non-textured regions.


In one embodiment, a cloud of ion plasma is used to conformally dope the whole of the substrate and any textured features on the surface.


In one embodiment, a resistance of the dopant in the non-textured regions is about 20 ohms per square, and a resistance of the dopant in the textured regions is less than about 100 ohms per square. A junction between the dopant in the textured region and the textured region is graded, a junction between the dopant in the non-textured region and the non-textured region is graded, or both.


The method also includes forming a silicide between the gridlines and the contact fingers and coupling the contact fingers to a busbar.


In a third aspect, a method of fabricating a solar cell includes etching a top surface of a substrate to form textured photo-receptive regions among planar regions. The textured regions include pyramidal shaped elements. The method also includes directing an ion beam onto the top surface, thereby implanting dopants into the textured regions at a first density and into the planar regions at a second density larger than the first density to form gridlines. A resistance of the dopant in the textured regions is less than 100 ohms per square, and a resistance of the dopant in the planar regions is about 20 ohms per square. The method also includes coupling contact fingers to the gridlines.


In a fourth aspect, a solar cell includes a substrate having a top layer and a bottom layer. The top layer has a surface containing pyramidal regions doped with a dopant to a first doping level and substantially planar regions forming gridlines and doped with the dopant to a second doping level larger than the first doping level. Adjacent ones of the planar regions are less than 50 microns apart. The gridlines are coupled to metallic fingers by silicide elements, and a metal contact is coupled to the bottom layer.


In a fifth aspect, a system for fabricating solar cells includes a source for producing ions, a beam shaper, and a controller. The beam shaper directs a beam containing the ions onto a substrate. The controller directs the beam shaper so that a textured photo-receptive region of the substrate is implanted with the ions to a first density and a planar region of the substrate defining a gridline is implanted with the ions to a second density larger than the first density.


The controller directs the beam shaper to step the beam to individually implant textured elements in the photo-receptive region. The controller also rotates, tilts, or translates the substrate, or any combination of these motions, when the beam is directed onto the substrate.


The controller directs the beam shaper and a duration of the implants so that a resistance of the photo-receptive region is less than 100 ohms per square and a resistance of the planar region is less than 20 ohms per square.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a prior art solar cell coupled to a load.



FIG. 2 is a side cross-sectional view of a portion of a solar cell in accordance with one embodiment.



FIG. 3 is a top view of a pyramidal facet of the solar cell of FIG. 2.



FIG. 4 is a graph of doping concentration versus depth for the planar region of the solar cell of FIG. 2.



FIG. 5 is a graph of doping concentration versus depth for the non-planar (textured) region of the solar cell of FIG. 2.



FIGS. 6A and B show sequentially implanting ions in an emitter region and facet regions of a solar cell in accordance with one embodiment.



FIG. 7 shows a pyramidal facet of a solar cell, having a uniform doping concentration in accordance with one embodiment.



FIGS. 8A-C show implanting ions into faceted regions of a solar cell in accordance with different embodiments.



FIGS. 9A-F show a solar cell during sequential fabrication steps for forming pyramidal facets in accordance with one embodiment.



FIG. 10 is a flow chart of steps for fabricating a solar cell in accordance with one embodiment.



FIG. 11 is a block diagram of a system for fabricating a solar cell in accordance with one embodiment.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are directed to methods of fabricating a solar cell by heavily doping its selective emitter region and more lightly doping its photo-receptive regions. In some embodiments, the selective emitter region and the photo-receptive regions are formed in the same processing step.


For the best performance of a solar cell, the photo-receptive regions are lightly doped to provide a homogeneous high sheet resistance. A more heavily doped region increases the chance of electron-hole recombination and thus decreases the efficiency of converting photons into electrical power. In accordance with embodiments, the n-doped layer of the photo-receptive regions of the solar cell is lightly doped to provide a sheet resistance of between 80 and 160 ohms per square, preferably 100 ohms per square, or an ion doping of around 1E+19 cm−3. Preferably, the gridlines, over which the conductive finger contacts are formed, are more heavily doped to couple the generated charge to the finger contacts. To provide the desired resistance, the selective emitter regions are doped to a sheet resistance of 10-40 ohms per square, preferably 25 ohms per square, or an ion doping of around 1E+20 cm−3. Preferably, the back surface of the solar cell is doped with a p-type layer to have a resistance between 30 and 70 ohms per square.


Some of the embodiments use shaped and parallel beams to implant dopants, allowing the implantation process to be completed more quickly and with a higher productivity. These beams help reduce the amount of unwanted dopants in the fabricated device.



FIG. 2 shows a portion of a solar cell 200 in accordance with one embodiment, with a light beam 250 impinging on a photo-receptive region 225. As with all the figures, the same label refers to the same element throughout. The solar cell 200 contains a p-type substrate 210 sandwiched between a bottom metal contact 205 and an n-type emitter layer 215. The substrate 210 can be mono-crystalline or multi-crystalline silicon, thin-film deposited silicon, or any other materials used to fabricate solar cells and other semiconductor devices.


The interface between the p-type substrate 210 and the n-type emitter layer 215 forms a p-n junction 213. The photo-receptive region 225 contains one or more faceted regions. By directing light that would normally be reflected away from the solar cell 200 back onto the solar cell 200, the faceted region 225 decreases the amount of light lost by reflection, thereby increasing the efficiency of the solar cell 200. In one embodiment, the faceted region 225 is also covered by an anti-reflective coating.


The solar cell 200 also contains n-doped regions 220 (gridlines) having a substantially planar top surface coupled to metallic contact fingers 240.


Generally, solar cells contain more faceted regions and selective emitters than that shown in FIG. 2. FIG. 2 shows only one faceted region (containing facets 230A and 230B) and only one emitter region merely to simplify the drawing.


In the embodiment of FIG. 2, the facets 230A and 230B are individual four-sided pyramidal elements, having exposed <111> planes.



FIG. 3 is a top level view of the pyramidal facet 230A. Preferably, the height of the facet 230A is less that 10 microns, with a base having a comparable width. Those skilled in the art will recognize that the exemplary facet 230A can have other dimensions, as well as other shapes that reflect light back onto the surface of the solar cell 200. As one other example, the facet 230A is dome shaped.



FIG. 4 shows a graph 300 that plots atomic concentration versus depth from a top surface (in angstroms) of the cell 200 for the planar regions 220. The graph 300 shows concentrations for a first implant stage 301 closest to the top surface, a second (main) implant stage 302, a third implant stage 303 closest to the PN junction 213, and the total concentration 310.



FIG. 5 shows a graph 400 that plots atomic concentration versus depth from a top surface of the cell 200 (in angstroms) along the non-planar, textured (e.g., having an exposed <111> surface) regions 225. The graph 400 shows concentrations for a first implant stage 401 closest to the top surface, a second (main) implant stage 403, a third implant stage 405 closest to the p-n junction 213, and total concentration 410. This doping profile reduces the “dead layer” effect.


Such simultaneous implantation of <111>and <100> crystalline-plane silicon leads to a unique atomic profile. The surface area is presented to the implant beam, that is, directed to the <100> plane. Due to the geometry changes, the dosage implanted into the <111> plane is 0.578 of the dosage simultaneously implanted into the <100> plane. Additionally, the angle of incidence changes for differently oriented planes, and thus the penetration of ions will vary as a cosine function. For example, for a 120 keV beam, the projected range can vary from 1610 angstroms from the surface of the <100> plane to 998 angstroms from the surface of the <111> plane.



FIGS. 6A and B show doping the regions 220 and 230A of FIG. 2 using an ion beam source 500, during sequential steps. FIG. 6A shows the ion beam source 500 first positioned above a surface of the substrate 200, implanting n-type dopants in the substantially planar region 220. Next, as shown in FIG. 6B, the source 500 is positioned so as to implant n-type dopants into right-hand and left-hand portions of the facet 230A. Both the left- and right-hand portions of the facet 230A are doped to a predetermined density and profile. Advantageously, processing these left- and right-hand portions does not require precise alignment of the source 500 with a wafer geometry or the use of a narrowly focused ion beam.


Such a change in the angle of implant and thus the implanted area can be used to advantage. As the implant angle deviates from the normal incidence, the lateral depth of the dopant is reduced. Similarly, the beam is spread over a larger area, as a cosine of the angle. Thus, the dopant dose is reduced. Such variation can be used to produce regions of high doping concentrations and deeper junctions versus regions of lower doping concentrations and shallower junctions.


The added surface area provided by the facet 230A has other advantages. As one example, during ion implantation the added surface area spreads the heat generated by the source 500, allowing for the use of higher density beams that increase productivity.


As shown in FIG. 6A, the left portion has a base labeled 240. In one embodiment, a diameter of the beam is much larger than the base 240, allowing a single beam to dope both the left and right portions simultaneously. In other embodiments, the diameter of the beam is large enough to implant multiple facets simultaneously. Those skilled in the art will recognize that other beam diameters can be used. Furthermore, a whole encompassing plasma beam can be used, such as to conformally dope the textured features on the surface.


In one embodiment, the source 500 emits a beam with the same density (e.g., ions per second) when the source 500 is positioned over the regions 220 and 230A. Because the region 230A is angled to the source, it provides a larger surface area for the beam, resulting in the same charge being deposited over a larger area in the region 230A than in the region 220. Accordingly, the region 220 is more highly doped than the region 230A.


In one embodiment, the exemplary facet 230A is formed of a silicon substrate etched along the <111> plane, resulting in facet faces that have an angle of 54.7° to the substrate surface.



FIGS. 6A-C show the beam source 500 non-perpendicular to the sloping (angled) face of the facet 230A. In this arrangement, the doping thickness along the facet 230A increases from the base of the facet 230A to its apex.



FIG. 7 shows an arrangement in which a beam source 550 is positioned perpendicular to the sloping faces of the facet 230A. In the first position (labeled 550A), the source 550 is perpendicular to the left face of the facet 230A. In the second position (labeled 550B), the beam source is perpendicular to the right face of the facet 230A.


In one embodiment, a single beam source is sequentially positioned in the first and second positions (550A and 550B); in another embodiment, separate beam sources are simultaneously positioned in the first and second positions so that the left- and right-portions are doped concurrently.


In accordance with embodiments, the substrate 200 and one or more ion beam sources are moved relative to each other in different ways to dope the substantially planar region 220 and the faceted region 230, which includes the individual facets 230A and 230B. To simplify the drawings, FIGS. 8A-C show only a single faceted region 230. As one example, FIG. 8A shows ions from the one or more ion beam sources aimed perpendicular to the top surface of the substrate 200.


In one embodiment, the facets 230A and 230B are individually doped by scanning an ion beam separately across each of them. Alternatively, separate parallel ion beams concurrently dope the individual facets 230A and 230B. In this way, the doping level of each facet or group of facets can be individually controlled, allowing a more precise and tailored doping profile of the solar cell 200.


As shown by the vertical and circular lines under FIG. 8B, the substrate 200 can be translated vertically (along the x-axis), rotated (along the y-axis), tilted, or any combination of these motions, relative to the one or more ion beam sources, so that the entire surface of the substrate 200 is implanted with dopants. In the example shown in FIG. 8C, the one or more ion beam sources are directed so that the ions are directed substantially perpendicular to the faces of the pyramidal facets. Again, the substrate 200 can be translated vertically, rotated, tilted, or any combination of these motions, relative to the one or more ion beam sources to implant the entire surface of the substrate 200 with dopants. Indeed, the ion beam can be an engulfing plasma of ions that conformally dope these textured features. This is particularly advantageous for multigrade silicon, where the faceting on the surface has no unique geometry and furthermore can have pin holes and re-entrant hillock features that may be observed by a line-of-sight dopant system. Such conformal doping will provide consistent doping independent of any surface features.


In still other embodiments, the ion beam is directed onto the substrate 200 so that it impinges at angles other than perpendicular to the planar region or perpendicular to the faces of the facets 230A and 230B. These other angles can be determined based on the desired doping profile to fit the particular application at hand. In one embodiment, the angle is no more than 20 degrees off perpendicular to a top of the substrate surface.



FIGS. 9A-F are side cross-sectional views of a portion of a semiconductor device 600, during the steps for fabricating a solar cell in accordance with one embodiment. Generally, a solar cell contains many portions similar to that shown in FIGS. 9A-F. The portion of FIGS. 9A-F and no others is shown merely to simplify the drawings.


As shown in FIG. 9A, a p-type substrate 601 is masked with a photoresist material 650, leaving the regions 655A and 655B exposed. The photoresist material 650 is patterned using photolithographic or standard contact printing or inkjet printing techniques known to those skilled in the art. The region below the material 650, where the gridlines are to be formed, is about 50 to 100 microns wide. Accordingly, the large geometries provide for the use of photolithography techniques of lower precision relative to techniques required for semiconductors with sub-micron geometries.


Next, as shown in FIG. 9B, the top layer of the device 600 is etched to form the faceted region, and the sacrificial material 650 is removed to expose the substantially planar surface 603. Preferably, the etching uses an acidic or alkaline etch, such as potassium hydroxide (KOH), to expose the <111> planes (textured regions) of the substrate 601, which contains the pyramidal facet regions 605A and 605B. Those skilled in the art will recognize that the regions 605A and 605B can be formed using other techniques, including optical, mechanical, and chemical techniques. Those skilled in the art will also recognize that the regions 605A and 605B can be formed into shapes other than pyramids, such as half domes, undulating waves, and other textured shapes.


Next, as shown in FIGS. 9C-E, the regions 605A, 603, and 605B are all implanted, respectively, using a uniform beam of n-type dopants, directed substantially perpendicular to the surface 603, thereby forming the regions 615A, 613, and 615B, respectively. As explained above with respect to FIGS. 6A-C, because the regions 615A and 615B have angled surfaces and the region 613 does not, the density of the n-type dopants per cubic centimeter is larger in the region 613 than in the regions 615A and 615B. Accordingly, the sheet resistance of the regions 615A and 615B is larger than that of the region 613. The region 613 is also referred to as the selective emitter region.



FIG. 9F shows the device 600 after later processing steps. During these steps (not shown), a thin layer of metal ions 620 is implanted into the top surface of the region 613, which is then topped with a metallic conductive finger 660. The metal ions 610 help to better match the work function between the finger 660 and the selective emitter 613. Examples of metal ions 610 include, but are not limited to, tantalum, aluminum, copper, or any combination of these. Preferably, the device 600 contains multiple fingers 660, all coupled by a busbar (not shown). In one embodiment, the fingers 660 are 50-100 microns wide and spaced apart by about 2-3 millimeters. Those skilled in the art will recognize that other widths and spacings are also possible.


Next, also as one of these later processing steps, p-type ions are implanted into the bottom of the substrate 601, forming the P+ region 630, thereby improving the conductivity of subsequently formed layers. Additional metal ions are then implanted into the P+ region 630 forming a metal silicon region 640, attached to a metal back side contact 645. The region 640 reduces the work function between the P+ silicon 630 and the contact 645.


Those skilled in the art will recognize that the process steps described in FIGS. 9A-F, as with all the process steps described in this Specification, are merely illustrative. Some of the steps can be deleted, other steps can be substituted, and the steps can be performed in different orders. As one example, the entire surface of the device 600 is faceted. A laser beam is then used to form the substantially planar region in which the selective emitter (603) is to be formed. The laser beam melts the facets in the selective emitter region, thereby melting the peaks of the facets and filling in the valleys between the peaks. The doping and other steps discussed with respect to FIGS. 9C-E are then performed.


Those skilled in the art will recognize many other ways to fabricate solar cells and other semiconductor devices in accordance with the embodiments. As one example, dopants are placed by implanting or depositing doped paste and then rapidly annealing the substrate, such as using a flash lamp or laser annealing to provide gridline doped layers.



FIG. 10 shows the steps of a process 700 for fabricating a solar cell in accordance with one embodiment. The process 700 starts in the step 701. In the step 703, the planar region (e.g., element 613 in FIG. 9C) and the non-planar regions (e.g., elements 615A and 615B in FIG. 9C) are formed on a semiconductor substrate. Next, in the step 705, the doping profiles (e.g., doping levels based on depth, such as shown in FIG. 5) are determined, based on the desired solar cell characteristics. Next, in the step 707, a next element (e.g., an emitter region, faceted region, or individual facet) is doped using an ion beam. In the step 709, the process determines whether there is another element (e.g., a next facet) to be doped. If there is another element, the ion beam is moved in step 711, and the process loops back to the step 707. In an alternative embodiment, in which a plasma is used, rather than stepping an ion beam in the step 711, a plasma engulfing beam is used to engulf the entire surface of the substrate. Otherwise, the process continues to the step 713.


A substrate can be implanted in any number of stages to fit the desired doping profile. As one example, implanting is performed in three stages, such as illustrated by the multiple doping profiles in FIG. 5.


In the step 713, contacts (e.g., fingers, busbars, and any backside contacts) are formed, followed by the step 715, in which the substrate is annealed. Annealing the substrate-heating it to a temperature below melting-restores the crystal structure damaged by ion implantation. Next, in the step 717, any post-processing steps are performed. These post-processing steps include cleaning, removing any contaminants from, and adding any protective coatings to the finished substrate. Finally, in the step 719, the process ends.


In one embodiment, the substrate has alignment markers on its surface, used to orient and step the beam during the step 711.


While the step 711 describes an ion beam being moved, it will be appreciated that the substrate, rather than the beam, can be moved, such as illustrated in FIGS. 8B and 8C.



FIG. 11 shows a system 800 for fabricating solar cells in accordance with one embodiment. The system 800 includes a single-gas delivery module 805, an ion source 810, an accelerator 815, a skewed Beam Scanning, Mass Analysis, and Beam Shaping module 820, a Measurement and Control module 825, and a single load lock 830 to handle the substrate 600. In another embodiment (not shown), the single-gas delivery module 805 and ion source 810 are replaced with a plasma source module, and the Beam Shaping module 820 is replaced with a spreader for engulfing the substrate 600 with a plasma beam.


In one embodiment, the ion source 810 has a long slot. In alternative embodiments, the ion source 810 includes multiple ion sources for the formation of broad and narrow, or plasma beams. The ion source 810 produces beam currents up to 100 mA of all species but can be dedicated to a single species at one time. The ion source 810 is also plug-compatible for each specific application: when a new application with a different ion beam source is required, the ion source 810 can be pulled out and replaced with a different one that meets requirements (e.g., different dopant) of the next application. The ion source 810 has a beam slot of less than 5 to 10 cm and a width of 1 to 2 mm. Alternatively, the ion source 810 is a plasma source and can be configured to produce a broad beam. The length can be stretched to cover one dimension of a 156 mm×156 mm substrate or both dimensions of the substrate.


In operation, the single-gas delivery module 805 and ion source 810 together generate an ion beam, which is accelerated by the accelerator 815, either in DC fashion or pulsed. In one embodiment, the accelerator has extraction and focusing elements with a limited energy range, such as between 15 and 150 keV. In other embodiments, other limited energy ranges are used. In one embodiment, to limit the energy requirements of the system 800, the accelerator 815 does not operate above 100 keV. In one embodiment, the substrate 600 is inserted into the system 800 after it has been etched, as shown in FIG. 9B.


Next, the resulting skewed beam is controlled using the Beam Scanning, Mass Analyzing, and Shaping module 820 to implant the substrate 600, such as shown in FIGS. 9C-D (for the substrate 600) or as shown in FIGS. 6A, 6B, and 7 (for the substrate 200 of FIG. 2). In one embodiment, the Beam Scanning, Mass Analyzing, and Shaping module 820 includes electrostatic and electromagnetic optics used to focus or shape the beam onto the substrate 600. The beam is further measured and controlled using the Measurement and Control module 825 before or at the same time as the beam impinges on the substrate 600. The substrate 600 can be stepped in front of the beam to implant dopants according to a predetermined pattern, using a single beam to cover the entire surface of the substrate 600. The substrate 600 can also be rotated, translated, and tilted, such as shown in FIGS. 8A-C.


The ion beam can be a broad beam (e.g., 10s of centimeters in diameter) that provides a constant flux of ions across the plane of the substrate 600, that is, scanned across the plane of the substrate 600. The beam is preferably scanned at an even rate across the plane of the substrate 600, across the entire planar and faceted regions. The scanning rate can be altered to achieve varying regions of high doping and low doping by overlapping the Gaussian spread of the beam.


The ion beam causes localized heating. Thus, slow scanning can be used with a wider ion implantation beam and faster scanning can be used with a narrower beam. Multiple passes may be needed to reach the required doping density, such as shown by the three implant steps in FIG. 5.


Preferably, the Beam Scanning, Mass Analyzing, and Shaping module 820 includes logic for doping substrates in accordance with the embodiments. Alternatively, the logic is contained in another element of the system 800. Preferably, the logic includes a memory containing machine-readable instructions for performing process steps (e.g., any one or more of the steps 703, 705, 707, 709, 711, 713, 715, and 717 in FIG. 10) and a processor for executing those steps.


In one embodiment, the substrate 600 is 156 mm×156 mm, but the system 800 is capable of processing wafers of other dimensions. In alternative embodiments, a wafer is deployed before the beam on a moving platen, or one or more wafers on a tray are exposed to the beam or plasma.


Finally, the processed single substrate 600 is removed from the system 800 through the single load lock 830.


It will appreciated that the embodiments described above are merely exemplary. For example, the embodiments show a p-type substrate with an n-type emitter layer. It will be appreciated that an n-type substrate with a p-type emitter layer can also be fabricated in accordance with the embodiments.


The following co-pending patent applications, each of which is incorporated by reference in its entirety, describe different ways of fabricating solar cells: Ser. No. 12/482,980, filed Jun. 11, 2009, titled “Solar Cell Fabrication Using Implantation,” by Babak Adibi and Edward S. Murrer, and having Attorney Docket No. SITI-00100; Ser. No. 12/482,947, filed Jun. 11, 2009, titled “Application Specific Implant System and Method for Use in Solar Cell Fabrications,” by Babak Adibi and Edward S. Murrer, and having Attorney Docket No. SITI-00200; and Ser. No. 12/483,017, filed Jun. 11, 2009, titled, “Formation of Solar Cell-Selective Emitter Using Implant and Anneal Method,” by Babak Adibi and Edward S. Murrer, and having Attorney Docket No. SITI-00300.


Though the embodiments are directed to solar cells, other embodiments can be used for other types of semiconductor devices, with any number of doping profiles. These distributions include gradual and abrupt distributions, such as box junctions, as well as other distributions that prevent the formation of electrical barriers.


While limitations in the prior art have been discussed, it will be appreciated that each embodiment will not necessarily solve all the limitations. Some embodiments may solve some limitations and other embodiments may solve other ones.


It will be readily apparent to one skilled in the art that other modifications may be made to the embodiments without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method of fabricating a solar cell comprising: providing a substrate having non-textured and textured regions, wherein the entire substrate is either p-type or n-type; exposing a surface of the substrate having non-textured and textured regions to a uniform plasma ion beam of dopant ions, thereby using a single ion implant step to implant dopants into the textured regions at a first density and into the non-textured regions at a second density larger than the first density to form gridlines on the non-textured regions; and coupling metallic contact fingers to the gridlines; and wherein exposing the surface comprises engulfing the entire surface of the substrate with the plasma ion beam of dopant ions; and wherein,the dopant ions are of the opposite dopant type to that of the substrate.
  • 2. The method of claim 1, wherein the textured regions each comprise multiple textured elements.
  • 3. The method of claim 2, wherein the multiple textured elements are pyramidal.
  • 4. The method of claim 2, wherein the multiple textured elements are semi-spherical.
  • 5. The method of claim 1, wherein exposing the surface comprises directing the plasma ion beam containing the dopants ions perpendicularly onto the surface.
  • 6. The method of claim 2, wherein the beam is shaped to implant dopants into each of the multiple textured elements individually.
  • 7. The method of claim 1, wherein the textured regions are photo-receptive.
  • 8. The method of claim 2, further comprising rotating a source of the ions, the substrate, or both so that the ion source is substantially perpendicular to faces of each of the multiple textured elements.
  • 9. The method of claim 1, wherein a resistance of the dopant in the non-textured regions is about 20 ohms/square.
  • 10. The method of claim 1, wherein a resistance of the dopant in the textured regions is about 100 ohms/square.
  • 11. The method of claim 1, further comprising implanting metallic ions onto the gridlines and thereafter coupling the metallic contact fingers.
  • 12. The method of claim 11, further comprising forming a silicide between the gridlines and the contact fingers.
  • 13. A method of fabricating a solar cell comprising: etching a top surface of a substrate to form textured photo-receptive regions among planar regions, wherein the textured regions comprise pyramidal shaped elements, wherein the entire substrate is either p-type or n-type;directing a plasma ion beam of dopants onto the top surface, thereby using a single ion implant step to implant dopants into the textured regions at a first density and into the planar regions at a second density larger than the first density to form gridlines, wherein a resistance of the dopant in the textured regions is less than 100 ohms per square and a resistance of the dopant in the planar regions is about 20 ohms per square;coupling contact fingers to the gridlines; and whereindirecting the plasma ion beam to the top surface comprises engulfing the entire surface of the substrate with the plasma ion beam of dopants;and wherein the dopants in the plasma ion beam of dopants are of the opposite dopant type to that of the substrate.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) of the U.S. provisional patent applications, Ser. No. 61/131,687, filed Jun. 11, 2008, and titled “Solar Cell Fabrication Using Implantation”; Ser. No. 61/131,688, filed Jun. 11, 2008, and titled “Application Specific Implant System for Use in Solar Cell Fabrications”; Ser. No. 61/131,698, filed Jun. 11, 2008, and titled “Formation of Solar Cell Selective Emitter Using Implant and Anneal Method”; Ser. No. 61/133,028, filed Jun. 24, 2008, and titled, “Solar Cell Fabrication with Faceting and Implantation”; and Ser. No. 61/210,545, filed Mar. 20, 2009, and titled “Advanced High Efficiency Crystalline Solar Cell Fabrications Method,” all of which are incorporated by reference in their entireties.

US Referenced Citations (338)
Number Name Date Kind
3607450 Kiewit Sep 1971 A
3786359 King Jan 1974 A
3790412 Moline Feb 1974 A
3948682 Bordina et al. Apr 1976 A
3969163 Wakefield Jul 1976 A
3969746 Kendall et al. Jul 1976 A
3976508 Mlavsky Aug 1976 A
4001864 Gibbons Jan 1977 A
4004949 Lesk Jan 1977 A
4021276 Cho et al. May 1977 A
4029518 Matsutani et al. Jun 1977 A
4056404 Garone et al. Nov 1977 A
4070205 Rahilly Jan 1978 A
4070689 Coleman et al. Jan 1978 A
4072541 Meulenberg, Jr. et al. Feb 1978 A
4086102 King Apr 1978 A
4090213 Maserjian et al. May 1978 A
4095329 Ravi Jun 1978 A
4116717 Rahilly Sep 1978 A
RE29833 Mlavsky Nov 1978 E
4131486 Brandhorst, Jr. Dec 1978 A
4131488 Lesk et al. Dec 1978 A
4141756 Chiang et al. Feb 1979 A
4144094 Coleman et al. Mar 1979 A
4152536 Ravi May 1979 A
4152824 Gonsiorawski May 1979 A
4179311 Athanas Dec 1979 A
4219830 Gibbons Aug 1980 A
4227941 Bozler et al. Oct 1980 A
4253881 Hezel Mar 1981 A
4273950 Chitre Jun 1981 A
4295002 Chappell et al. Oct 1981 A
4301592 Lin Nov 1981 A
4322571 Stanbery Mar 1982 A
4353160 Armini et al. Oct 1982 A
RE31151 King Feb 1983 E
4377722 Wested Mar 1983 A
4379944 Borden et al. Apr 1983 A
4404422 Green et al. Sep 1983 A
4421577 Spicer Dec 1983 A
4428783 Gessert Jan 1984 A
4448865 Bohlen et al. May 1984 A
4449286 Dahlberg May 1984 A
4456489 Wu Jun 1984 A
4479027 Todorof Oct 1984 A
4490573 Gibbons Dec 1984 A
4495375 Rickus et al. Jan 1985 A
4522657 Rohatgi et al. Jun 1985 A
4524237 Ross et al. Jun 1985 A
4533831 Itoh et al. Aug 1985 A
4539431 Moddel et al. Sep 1985 A
4540843 Gochermann et al. Sep 1985 A
4542256 Wiedeman Sep 1985 A
4581620 Yamazaki et al. Apr 1986 A
4587430 Adler May 1986 A
4589191 Green et al. May 1986 A
4633138 Tokiguchi et al. Dec 1986 A
4665277 Sah et al. May 1987 A
4667060 Spitzer May 1987 A
4676845 Spitzer Jun 1987 A
4681983 Markvart et al. Jul 1987 A
4719355 Meyers et al. Jan 1988 A
4742381 Fujii May 1988 A
4758525 Kida et al. Jul 1988 A
4828628 Hezel et al. May 1989 A
4830678 Todorof et al. May 1989 A
4834805 Erbert May 1989 A
4886555 Hackstein et al. Dec 1989 A
4900369 Hezel et al. Feb 1990 A
5009720 Hokuyo et al. Apr 1991 A
5112409 Warfield et al. May 1992 A
5125983 Cummings Jun 1992 A
5132544 Glavish Jul 1992 A
5290367 Hayashi et al. Mar 1994 A
5306647 Lehmann et al. Apr 1994 A
5330584 Saga et al. Jul 1994 A
5356488 Hezel Oct 1994 A
5374456 Matossian et al. Dec 1994 A
5421889 Pollock et al. Jun 1995 A
5516725 Chang et al. May 1996 A
5554854 Blake Sep 1996 A
5583368 Kenney Dec 1996 A
H1637 Offord et al. Mar 1997 H
5641362 Meier Jun 1997 A
5693376 Fetherston et al. Dec 1997 A
5760405 King et al. Jun 1998 A
5831321 Nagayama Nov 1998 A
5883391 Adibi et al. Mar 1999 A
5885896 Thakur et al. Mar 1999 A
5907158 Nasser-Ghodsi et al. May 1999 A
5932882 England et al. Aug 1999 A
5935345 Kuznicki Aug 1999 A
5945012 Chan Aug 1999 A
5963801 Aronowitz et al. Oct 1999 A
5985742 Henley et al. Nov 1999 A
5988103 Fetherston et al. Nov 1999 A
5994207 Henley et al. Nov 1999 A
5998282 Lukaszek Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6006253 Kumar et al. Dec 1999 A
6010579 Henley et al. Jan 2000 A
6013563 Henley et al. Jan 2000 A
6016036 Brailove Jan 2000 A
6033974 Henley et al. Mar 2000 A
6034321 Jenkins Mar 2000 A
6048411 Henley et al. Apr 2000 A
6051073 Chu et al. Apr 2000 A
6060718 Brailove et al. May 2000 A
6083324 Henley et al. Jul 2000 A
6084175 Perry et al. Jul 2000 A
6091021 Ruby et al. Jul 2000 A
6093625 Wagner et al. Jul 2000 A
6103599 Henley et al. Aug 2000 A
6113735 Chu et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6130380 Nakamura Oct 2000 A
6138606 Ling Oct 2000 A
6146979 Henley et al. Nov 2000 A
6150708 Gardner et al. Nov 2000 A
6153524 Henley et al. Nov 2000 A
6155909 Henley et al. Dec 2000 A
6159824 Henley et al. Dec 2000 A
6159825 Henley et al. Dec 2000 A
6162705 Henley et al. Dec 2000 A
6171965 Kang et al. Jan 2001 B1
6180496 Farrens et al. Jan 2001 B1
6184111 Henley et al. Feb 2001 B1
6186091 Chu et al. Feb 2001 B1
6200883 Taylor et al. Mar 2001 B1
6204151 Malik et al. Mar 2001 B1
6207005 Henley et al. Mar 2001 B1
6213050 Liu et al. Apr 2001 B1
6217724 Chu et al. Apr 2001 B1
6221740 Bryan et al. Apr 2001 B1
6221774 Malik Apr 2001 B1
6228176 Chu et al. May 2001 B1
6245161 Henley et al. Jun 2001 B1
6248649 Henley et al. Jun 2001 B1
6263941 Bryan et al. Jul 2001 B1
6265328 Henley et al. Jul 2001 B1
6269765 Chu et al. Aug 2001 B1
6271566 Tsuchiaki Aug 2001 B1
6274459 Chan Aug 2001 B1
6281428 Chiu et al. Aug 2001 B1
6287941 Kang et al. Sep 2001 B1
6290804 Henley et al. Sep 2001 B1
6291313 Henley et al. Sep 2001 B1
6291314 Henley et al. Sep 2001 B1
6291326 Henley et al. Sep 2001 B1
6294434 Tseng Sep 2001 B1
6300227 Liu et al. Oct 2001 B1
6321134 Henley et al. Nov 2001 B1
6335534 Suguro et al. Jan 2002 B1
6338313 Chan Jan 2002 B1
6365492 Suguro et al. Apr 2002 B1
6383876 Son et al. May 2002 B1
6391740 Cheung et al. May 2002 B1
6417515 Barrett et al. Jul 2002 B1
6429037 Wenham et al. Aug 2002 B1
6448152 Henley et al. Sep 2002 B1
6458723 Henley et al. Oct 2002 B1
6468884 Miyake et al. Oct 2002 B2
6476313 Kawano Nov 2002 B2
6486478 Libby et al. Nov 2002 B1
6489241 Thilderkvist et al. Dec 2002 B1
6495010 Sferlazzo Dec 2002 B2
6500732 Henley et al. Dec 2002 B1
6507689 Tirloni et al. Jan 2003 B2
6534381 Cheung et al. Mar 2003 B2
6544862 Bryan Apr 2003 B1
6552259 Hosomi et al. Apr 2003 B1
6552414 Horzel et al. Apr 2003 B1
6594579 Lowrey et al. Jul 2003 B1
6604033 Banet et al. Aug 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6613974 Husher Sep 2003 B2
6632324 Chan Oct 2003 B2
6636790 Lightner et al. Oct 2003 B1
6660928 Patton et al. Dec 2003 B1
6732031 Lightner et al. May 2004 B1
6780759 Farrens et al. Aug 2004 B2
6787693 Lizotte Sep 2004 B2
6874515 Ishihara et al. Apr 2005 B2
6949895 DiVergilio et al. Sep 2005 B2
7011733 Sandhu Mar 2006 B2
7022984 Rathmell et al. Apr 2006 B1
7066703 Johnson Jun 2006 B2
7078317 Henley Jul 2006 B2
7081186 Ehiasarian et al. Jul 2006 B2
7094666 Henley et al. Aug 2006 B2
7098394 Armer et al. Aug 2006 B2
7147709 Ong et al. Dec 2006 B1
7166520 Henley Jan 2007 B1
7174243 Lightner et al. Feb 2007 B1
7225047 Al-Bayati et al. May 2007 B2
7225065 Hunt et al. May 2007 B1
7228211 Lowrey et al. Jun 2007 B1
7250323 Gadeken et al. Jul 2007 B2
7339110 Mulligan et al. Mar 2008 B1
7354815 Henley Apr 2008 B2
7390724 Henley et al. Jun 2008 B2
7399680 Henley Jul 2008 B2
7427554 Henley et al. Sep 2008 B2
7447574 Washicko et al. Nov 2008 B1
7477968 Lowrey et al. Jan 2009 B1
7479441 Kirk et al. Jan 2009 B2
7480551 Lowrey et al. Jan 2009 B1
7498245 Aspar et al. Mar 2009 B2
7521699 Yamazaki et al. Apr 2009 B2
7523159 Williams et al. Apr 2009 B1
7532962 Lowrey et al. May 2009 B1
7532963 Lowrey et al. May 2009 B1
7547609 Henley Jun 2009 B2
7598153 Henley et al. Oct 2009 B2
7611322 Bluck et al. Nov 2009 B2
7674687 Henley Mar 2010 B2
7701011 Kamath et al. Apr 2010 B2
7727866 Bateman et al. Jun 2010 B2
7759220 Henley Jul 2010 B2
7767561 Hanawa et al. Aug 2010 B2
7772088 Henley et al. Aug 2010 B2
7776727 Borden Aug 2010 B2
7796849 Adibi et al. Sep 2010 B2
7867409 Brcka Jan 2011 B2
20010002584 Liu et al. Jun 2001 A1
20010017109 Liu et al. Aug 2001 A1
20010020485 Ford et al. Sep 2001 A1
20020090758 Henley et al. Jul 2002 A1
20020109233 Farrar Aug 2002 A1
20020109824 Yamaguchi Aug 2002 A1
20020139666 Hsueh et al. Oct 2002 A1
20020144725 Jordan et al. Oct 2002 A1
20020185700 Coffa et al. Dec 2002 A1
20030015700 Eisenbeiser et al. Jan 2003 A1
20030106643 Tabuchi et al. Jun 2003 A1
20030116090 Chu et al. Jun 2003 A1
20030129045 Bonora et al. Jul 2003 A1
20030137050 Chambers et al. Jul 2003 A1
20030230986 Horsky et al. Dec 2003 A1
20040025932 Husher Feb 2004 A1
20040067644 Malik et al. Apr 2004 A1
20040112426 Hagino Jun 2004 A1
20040187916 Hezel Sep 2004 A1
20040198028 Tanaka et al. Oct 2004 A1
20040216993 Sandhu Nov 2004 A1
20040232414 Suthar et al. Nov 2004 A1
20050045835 DiVergilio et al. Mar 2005 A1
20050150597 Henley et al. Jul 2005 A1
20050181584 Foad et al. Aug 2005 A1
20050247668 Malik et al. Nov 2005 A1
20050266781 Jaenen et al. Dec 2005 A1
20060019039 Hanawa et al. Jan 2006 A1
20060037700 Shi et al. Feb 2006 A1
20060148241 Brody et al. Jul 2006 A1
20060157733 Lucovsky et al. Jul 2006 A1
20060166394 Kukulka et al. Jul 2006 A1
20060211219 Henley et al. Sep 2006 A1
20060234484 Lanzerotti et al. Oct 2006 A1
20060279970 Kernahan Dec 2006 A1
20070012503 Iida Jan 2007 A1
20070029043 Henley Feb 2007 A1
20070032044 Henley Feb 2007 A1
20070035847 Li et al. Feb 2007 A1
20070068624 Jeon et al. Mar 2007 A1
20070081138 Kerkhof et al. Apr 2007 A1
20070084505 Zaidi Apr 2007 A1
20070087574 Gupta et al. Apr 2007 A1
20070119373 Kumar et al. May 2007 A1
20070134840 Gadeken et al. Jun 2007 A1
20070148336 Bachrach et al. Jun 2007 A1
20070169806 Fork et al. Jul 2007 A1
20070209707 Weltman Sep 2007 A1
20070217020 Li et al. Sep 2007 A1
20070235074 Henley et al. Oct 2007 A1
20070277875 Gadkaree et al. Dec 2007 A1
20070281172 Couillard et al. Dec 2007 A1
20070290283 Park et al. Dec 2007 A1
20080001139 Augusto Jan 2008 A1
20080038908 Henley Feb 2008 A1
20080044964 Kamath et al. Feb 2008 A1
20080078444 Atanackovic Apr 2008 A1
20080092944 Rubin Apr 2008 A1
20080092947 Lopatin et al. Apr 2008 A1
20080121275 Ito et al. May 2008 A1
20080121276 Lopatin et al. May 2008 A1
20080128019 Lopatin et al. Jun 2008 A1
20080128641 Henley et al. Jun 2008 A1
20080164819 Hwang et al. Jul 2008 A1
20080179547 Henley Jul 2008 A1
20080188011 Henley Aug 2008 A1
20080190886 Choi et al. Aug 2008 A1
20080206962 Henley et al. Aug 2008 A1
20080242065 Brcka Oct 2008 A1
20080275546 Storey et al. Nov 2008 A1
20080296261 Zhao et al. Dec 2008 A1
20090056807 Chen et al. Mar 2009 A1
20090081860 Zhou et al. Mar 2009 A1
20090124064 England et al. May 2009 A1
20090124065 England et al. May 2009 A1
20090140132 Lee et al. Jun 2009 A1
20090142875 Borden et al. Jun 2009 A1
20090152162 Tian et al. Jun 2009 A1
20090162970 Yang Jun 2009 A1
20090206275 Henley et al. Aug 2009 A1
20090227061 Bateman et al. Sep 2009 A1
20090227062 Sullivan et al. Sep 2009 A1
20090227094 Bateman et al. Sep 2009 A1
20090227095 Bateman et al. Sep 2009 A1
20090227097 Bateman et al. Sep 2009 A1
20090246706 Hendel et al. Oct 2009 A1
20090289197 Slocum et al. Nov 2009 A1
20090308439 Adibi et al. Dec 2009 A1
20090308440 Adibi et al. Dec 2009 A1
20090309039 Adibi et al. Dec 2009 A1
20090317937 Gupta et al. Dec 2009 A1
20100041176 Sullivan et al. Feb 2010 A1
20100055874 Henley Mar 2010 A1
20100059362 Anella Mar 2010 A1
20100110239 Ramappa et al. May 2010 A1
20100124799 Blake et al. May 2010 A1
20100167511 Leung et al. Jul 2010 A1
20100170440 Mizukami et al. Jul 2010 A9
20100178723 Henley Jul 2010 A1
20100180945 Henley et al. Jul 2010 A1
20100184243 Low et al. Jul 2010 A1
20100184248 Hilali et al. Jul 2010 A1
20100197125 Low et al. Aug 2010 A1
20100229928 Zuniga et al. Sep 2010 A1
20100240169 Petti et al. Sep 2010 A1
20100240183 Narazaki Sep 2010 A1
20100323508 Adibi et al. Dec 2010 A1
20110162703 Adibi et al. Jul 2011 A1
20110192993 Chun et al. Aug 2011 A1
20110309050 Iori et al. Dec 2011 A1
20120122273 Chun et al. May 2012 A1
20120125259 Adibi et al. May 2012 A1
20120129325 Adibi et al. May 2012 A1
20130115764 Pederson et al. May 2013 A1
Foreign Referenced Citations (63)
Number Date Country
1198597 Nov 1998 CN
1638015 Jul 2005 CN
101055898 Oct 2007 CN
101145569 Mar 2008 CN
102099870 Jun 2011 CN
102099923 Jun 2011 CN
102150277 Aug 2011 CN
102150278 Aug 2011 CN
102396068 Mar 2012 CN
102804329 Nov 2012 CN
102834905 Dec 2012 CN
4217428 Jun 1993 DE
19820152 Nov 1999 DE
2304803 Apr 2011 EP
2308060 Apr 2011 EP
2319087 May 2011 EP
2319088 May 2011 EP
2409331 Jan 2012 EP
2489757 Aug 2012 EP
2534674 Dec 2012 EP
63-143876 Jun 1988 JP
7-135329 May 1995 JP
2011-524638 Sep 2011 JP
2011-524639 Sep 2011 JP
2011-524640 Sep 2011 JP
2011-525301 Sep 2011 JP
2012-521642 Sep 2012 JP
2012-231520 Nov 2012 JP
2012-531520 Dec 2012 JP
100759084 Sep 2007 KR
WO2009033134 Mar 2009 WO
WO2009033134 Mar 2009 WO
WO2009064867 May 2009 WO
WO2009064867 May 2009 WO
WO2009064872 May 2009 WO
WO2009064872 May 2009 WO
WO2009064875 May 2009 WO
WO2009085948 Jul 2009 WO
WO2009085948 Jul 2009 WO
WO2009111665 Sep 2009 WO
WO2009111665 Sep 2009 WO
WO2009111666 Sep 2009 WO
WO2009111666 Sep 2009 WO
WO2009111667 Sep 2009 WO
WO2009111667 Sep 2009 WO
WO2009111668 Sep 2009 WO
WO2009111668 Sep 2009 WO
WO2009111668 Sep 2009 WO
WO2009111669 Sep 2009 WO
WO2009111669 Sep 2009 WO
2009-155498 Dec 2009 WO
2009152365 Dec 2009 WO
2009152368 Dec 2009 WO
2009152375 Dec 2009 WO
2009152378 Dec 2009 WO
WO2009155498 Dec 2009 WO
2010-030645 Mar 2010 WO
WO2010030645 Mar 2010 WO
2010108151 Sep 2010 WO
2011005582 Jan 2011 WO
2011100363 Aug 2011 WO
2012068417 May 2012 WO
2013070978 May 2013 WO
Non-Patent Literature Citations (87)
Entry
In the Unites States Patent and Trademark Office, U.S. Appl. No. 61/033,873, filed Mar. 5, 2008, Entitled: “Use of Chained Implants in Solar Cells”, First Named Inventor: Nicholas Bateman et al., Company: Varian Semiconductor Equipment Associates, Inc., Gloucester, Massachusetts.
In the Unites States Patent and Trademark Office, U.S. Appl. No. 61/095,010, filed Sep. 8, 2008, Entitled: “Use of Dopants With Different Diffusivities for Solar Cell Manufacture”, First Named Inventor: Nicholas Bateman et al., Company: Varian Semiconductor Equipment Associates, Inc., Gloucester, Massachusetts.
“Varian Introduces a New High-Energy Ion Implant System for Optimized Performance and Lowest Cost of Ownership,” Press Release, Business Wire, Jul. 14, 1999, 1 pg.
Walther, S.R. et al., “Using Multiple Implant Regions to Reduce Development Wafer Usage,” Jan. 1, 2006, American Institute of Physics, CP866, Ion Implantation Technology, pp. 409-412.
Semiconductor Consulting Service publication: “Process Technology for the 21st Century,”Chapter 10-Substrates, Isolation, Well and Transistor Formation, Jan. 1999, downloaded from IC Knowledge.com, http://www.icknowledge.com/our—products/pt21c.html., pp. 10-1-10-4.
“Leading Semiconductor Manufacturer Selects Axcelis HE3 Ion Implantation Equipment; 300 mm Facility to Choose Axcelis Platform for High Energy Implant,” Business Wire, Oct. 17, 2000, 1 pg.
Kondratenko, S. et al, “Channeling Effects and Quad Chain Implantation Process Optimization for Low Energy Boron Ions,” abstract, IEEE Xplore Digital Library, Issue date: Sep. 22-27, 2002, Current version date: Jan. 7, 2004, 1 pg., downloaded from ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=1257941.
Nitodas, S.F., et al., “Advantages of single and mixed species chaining for high productivity in high and mid-energy implantation,” published Sep. 2002, Ion Implantation Technology, Current version date Jan. 7, 2004, abstract, downloaded from ieeexplore.ieee.org., 1 pg.
Eaton Nova (Axcelis) 200E2 H/C Implanter, data sheet, 2 pgs. , Jan. 1990.
Anders, André, “Plasma and Ion Sources in Large Area Coating: A Review,” Elsevier, www.sciencedirect.com, available Sep. 13, 2005, Surface and Coatings Technology 200 (2005) pp. 1893-1906.
Anders, “Plasma and Ion Sources in Large Area Coating: A Review”, www.sciencedirect.com, Surface Coatings & Technology, Nov. 21, 2005, vol. 200, Issues: 5-6, pp. 1893-1906, Berkeley CA.
Cornet et al., “A New Algorithm for Charge Deposition for Multiple-Grid Method for PIC Simulations in r-z Cylindrical Coordinates”, www.sciencedirect.com, Journal of Computational Physics, Jul. 1, 2007vol. 225, Issue: 1, pp. 808-828, Sydney, Australia.
Douglas et al., “A Study of the Factors Which Control the Efficiency of Ion-Implanted Silicon Solar Cells”, IEEE Transactions on Electron Devices, vol. ED-27, No. 4, Apr. 1980, pp. 792-802.
Fu et al. “Enhancement of Implantation Energy Using a Conducting Grid in Plasma Immersion Ion Implantation of Dielectric/Polymeric Materials”, Review of Scientific Instruments, vol. 74, No. 8, Aug. 2003, pp. 3697-3700.
Goeckner et al., “Plasma Doping for Shallow Junctions”, Journal of Vacuum Science and Technology B, vol. 17, Issue: 5, Sep. 1999, pp. 2290-2293.
Jacques et al., “Plasma-Based Ion Implantation and Deposition: A Review of Physics, Technology, and Applications”, http://www.escholarship.org/uc/itemM4k974r2, Lawrence Berkeley National Laboratory, May 16, 2005, pp. 1-69.
Kwok et al. “One-Step, Non-Contact Pattern Transfer by Direct-Current Plasma Immersion Ion Implantation”, Journal of Physics D: Applied Physics, IOP Publishing, vol. 42, No. 19, Sep. 2009, pp. 1-6.
Kwok et al., “One-Step Non-Contact Pattern Transferring by Plasma Based Ion Implantation”, Journal of Physics D: Applied Physics, IOP Publishing, vol. 41, No. 22, Oct. 2008, pp. 1-6.
Minnucci et al. “Tailored Emitter, Low-Resistivity, Ion-Implanted Silicon Solar Cells”, IEEE Transactions on Electron Devices, vol. ED-27, No. 4, Apr. 1980, pp. 802-806.
Nielsen, “Ion Implanted Polycrystalline Silicon Solar Cells”, Physica Scripta, vol. 24, No. 2, Aug. 1, 1981, pp. 390-391.
Sopian et al., “Plasma Implantation for Emitter and Localized Back Surface Field (BSF) Formation in Silicon Solar Cells”, European Journal of Scientific Research, http://www.eurojournals.com/eisr.htm, ISSN 1450-216X, vol. 24, No. 3, Jan. 2008, pp. 365-372.
Tang et al., “Current Control for Magnetized Plasma in Direct-Current Plasma-Immersion Ion Implantation”, American Institute of Physics, Applied Physics Letters, vol. 82, No. 13, Mar. 31, 2003, pp. 2014-2016.
Xu et al., “Etching of Nanopatterns in Silicon Using Nanopantography”, Applied Physics Letters, vol. 92, Jan. 9, 2008, pp. 1-3.
Xu et al., “Nanopantography: A New Method for Massively Parallel Nanopatterning Over Large Areas”, Nano Letters, vol. 5, No. 12, Jan. 2005, pp. 2563-2568.
Yankov et al., “Plasma Immersion Ion Implantation for Silicon Processing”, Annalen der Physik, vol. 10, Issue: 4, Feb. 2001, pp. 279-298.
Young et al., “High-Efficiency Si Solar Cells by Beam Processing”, Applied Physics Letters, vol. 43, Issue: 7, Oct. 1, 1983, pp. 666-668.
Zeng et al., “Steady-State, Direct-Current (DC) Plasma Immersion Ion Implantation (PIII) for Planar Samples”, IEEE, Jan. 2000, pp. 515-519.
Zeng et al., “Steady-State Direct-Current Plasma Immersion Ion Implantation Using an Electron Cyclotron Resonance Plasma Source”, Thin Solid Films, www.elsevier.com/locate/tsf, vol. 390, Issues: 1-2, Jun. 30, 2001, pp. 145-148.
Com-Nougue et al., “CW CO2 Laser Annealing Associated with Ion Implantation for Production of Silicon Solar Cell Junctions”, Jan. 1982, IEEE, p. 770.
Armini et al., “Nuclear Instruments and Methods in Physics Research B6”, Jan. 1985, vol. 94-99, 1 Page, North-Holland, Amsterdam, Spire Corporation, Patriots Park, Bedford, Masachusetts 01730, USA.
Jager-Hezel, “Developments for Large-Scale Production of High-Efficiency Silicon Solar Cells,” Advances in Solid State Physics, vol. 34, Jan. 1994, pp. 97-113, <http://www.springerlink.com/content/982620t34312416v/>.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” Date of mailing: Jul. 31, 2009, International Application No. PCT/US09/47090, International Filing Date: Jun. 11, 2009, pp. 1-10.
Donnelly et al., “Nanopantography: A Method for Parallel Writing of Etched and Deposited Nanopatterns”, Oct. 2009, University of Houston, Houston, TX, 36 pages.
Examination Report in 048635-108068 dated Jul. 26, 2012 (Singapore Application No. 201009185-8).
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Apr. 6, 2011, International Application No. PCT/US11/24244, International Filing Date: Feb. 9, 2011, Authorized Officer: Blaine R. Copenheaver, pp. 1-9.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: May 25, 2010, International Application No. PCT/US10/28058, International Filing Date: Mar. 19, 2010, Authorized Officer: Lee W. Young, pp. 1-9.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Oct. 7, 2010, International Application No. PCT/US10/039690, International Filing Date: Jun. 23, 2010, Authorized Officer: Blaine R. Copenheaver, pp. 1-12.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Oct. 2, 2009, International Application No. PCT/US09/47094, International Filing Date: Jun. 11, 2009, Authorized Officer: Blaine R. Copenheaver, pp. 1-15.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Aug. 4, 2009, International Application No. PCT/US09/47102, International Filing Date: Jun. 11, 2009, Authorized Officer: Lee W. Young, pp. 1-11.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Jul. 29, 2009, International Application No. PCT/US09/47109, International Filing Date: Jun. 11, 2009, Authorized Officer: Lee W. Young, pp. 1-11.
“Notification of Transmittal of The International Search Report and The Written Opinion of The International Searching Authority, or The Declaration,” Date of mailing: Mar. 29, 2012, International Application No. PCT/US11/61274, International Filing Date: Nov. 17, 2011, Authorized Officer: Lee W. Young, pp. 1-9.
Office Action (Non-Final) dated Mar. 15, 2012 (U.S. Appl. No. 12/821,053).
Office Action (Non-Final) dated Jun. 7, 2012 (U.S. Appl. No. 12/482,947).
Office Action (Final) dated Aug. 17, 2012 (U.S. Appl. No. 12/821,053).
Office Action (Non-Final) dated Aug. 24, 2012 (U.S. Appl. No. 12/482,980).
Office Action (Non-Final) dated Aug. 31, 2012 (Chinese Application No. 200980127945.7).
Office Action (Non-Final) dated Sep. 25, 2012 (U.S. Appl. No. 12/483,017).
Pelletier et al., “Plasma-Based Ion Implantation and Deposition: A Review of Physics, Technology, and Applications”, http://www.escholarship.org/uchtem/84k974r2, Lawrence Berkeley National Laboratory, May 16, 2005, pp. 1-69.
Rentsch, et al. “Technology Route Towards Industrial Application of Rear Passivated Silicon Solar Cells”, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion. vol. 1 (2006) pp. 1008-1011.
Restriction Requirement dated Apr. 24, 2012 (U.S. Appl. No. 12/482,980).
Restriction Requirement dated Apr. 25, 2012 (U.S. Appl. No. 12/483,017).
Restriction Requirement in dated Oct. 5, 2012 (U.S. Appl. No. 12/728,105).
Vervisch et al., “Plasma Immersion Ion Implantation Applied to P+N. Junction Solar Cells”, CP866, Ion, Implantation Technology, American Institute of Physics, vol. 866, Jan. 2006, pp. 253-256.
Written Opinion dated May 10, 2012, (Singapore Patent Application No. 201106457-3).
Younger et al, “Ion Implantation Processing for High Performance Concentrator Solar Cells and Cell Assemblies,” Solar Cells, vol. 6, 1982, pp. 79-86.
“Implantation par Immersion Plasma (PULSION®),” Ion Beam Services (IBS), Zi Peynier Rousset, France, Dec. 2008.
Janssens et al., “Advanced Phosphorus Emitters for High Efficiency SI Solar Cells,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany Sep. 21-25, 2009.
Neuhaus et al., “Industrial Silicon Wafer Solar Cells,” Hindawi Publishing Corporation, vol. 2007, pp. 1-15, Sep. 14, 2007.
Nikiforov et al., “Large vol. ICP Sources for Plasma-Based Accelerators,” Korea Electrotechnology Research Institute (KERI), APAC 2004, Gyeongju, Korea.
Office Action (Non-Final) dated Dec. 5, 2012 (Chinese Application No. 200980128201.7).
Office Action (Non-Final) dated Jan. 14, 2013 (U.S. Appl. No. 12/728,105).
Office Action (Non-Final) dated Jan. 16, 2013 (U.S. Appl. No. 12/821,053).
Office Action (Non-Final) dated Jan. 28, 2013 (U.S. Appl. No. 12/482,685).
Steckl, “Particle-Beam Fabrication and in Situ Processing of Integrated Circuits,” Proceedings of the IEEE, vol. 74, Issue 12.
Written Opinion dated Jun. 8, 2012, (Singapore Patent Application No. 201009191-6).
Written Opinion dated Jun. 8, 2012, (Singapore Patent Application No. 201009194-0).
Written Opinion dated Jan. 11, 2013, (Singapore Patent Application No. 201106457-3).
Xu, et al., Nanopantography results: continuous writing of etched Si ‘nano-Ts’ with AR+/CI2 .
Restriction Requirement in U.S. Appl. No. 13/299,292 dated Aug. 13, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2012/64241, mailed on Mar. 26, 2013.
Japanese Office Action in Japanese Application No. 2011-513699, mailed on Jul. 23, 2013.
Chinese Office Action in Chinese Application No. 200980127944.2, mailed on Feb. 16, 2013.
Written Opinion in Singapore Application No. 201009193-2, mailed on Feb. 28, 2013.
Office Action in U.S. Appl. No. 12/482,980, mailed on Feb. 27, 2013.
Chinese Office Action in Chinese Application No. 200980127945.7, mailed on Jul. 25, 2013.
Japanese Office Action in Japanese Application No. 2011-513705, mailed on Jul. 16, 2013.
2nd Written Opinion in Singapore Patent Application No. 201009191-6 dated Jun. 14, 2013.
Office Action in U.S. Appl. No. 12/483,017, mailed on Apr. 23, 2013.
Chinese Office Action in Chinese Application No. 200980128202.1, mailed on May 8, 2013.
Japanese Office Action in Japanese Application No. 2011-513706, mailed on Jul. 30, 2013.
Examination Report in Singapore Application No. 201009194-0, dated Jun. 25, 2013.
Office Action in U.S. Appl. No. 12/728,105, mailed on May 21, 2013.
Office Action in U.S. Appl. No. 12/821,053, mailed on Aug. 13, 2013.
Written Opinion and Search Report in Singapore Patent Application No. 201107307-9, mailed on Apr. 22, 2013.
Office Action in U.S. Appl. No. 13/363,341, mailed on Apr. 5, 2013.
Restriction Requirement in U.S. Appl. No. 13/363,347, mailed on Jul. 9, 2013.
Restriction Requirement in U.S. Appl. No. 13/024,251, mailed on Jun. 19, 2013.
Related Publications (1)
Number Date Country
20090308450 A1 Dec 2009 US
Provisional Applications (5)
Number Date Country
61131687 Jun 2008 US
61131688 Jun 2008 US
61133028 Jun 2008 US
61210545 Mar 2009 US
61131698 Jun 2008 US