The present invention relates to solar cell modules.
Solar cells are expected to be a new energy source due to their ability to convert inexhaustible supply of sunlight directly into electricity.
Generally, a single solar cell can supply an output of only a few watts. For this reason, when solar cell is utilized as a power source for a house, a building, etc., a plurality of solar cells are connected together in the form of a solar cell module for increased output. The solar cell module includes a plurality of solar cells each having a front and a rear surfaces provided with electrodes, via which they are connected in series and/or parallel by wiring members.
The solar cells which are mutually connected via the wiring members are placed between a transparent front-surface protection member and a rear-surface protection member, being sealed in a encapsulant composed mainly of ethylene vinyl acetate copolymer (EVA) for example, for increased resistance to weathering and impacts so that practical tapping of electrical power can be possible in outdoor environment.
In this solar cell module, each of the solar cells 303 has electrodes on their front and rear surfaces. These solar cells are connected together by inner lead wires 306, sandwiched between the front-surface protection member 301 and the rear-surface protection member 305, and encapsulated by the transparent bonding members 302, 304.
Since the output from the solar cells must be taken out of the solar cell module, openings 305b, 304b are provided as shown in
In a solar cell module disclosed in the Patent Literature 1, the rear-surface-side bonding member 304 and the rear-surface protection member 305 are respectively provided with the openings 304b, 305b which have a size, for example, of 40 mm×70 mm in order to expose ends of the power output wires 307. In addition, a bonding member 309 is disposed between the solar cell 303 and the power output wires 307. The bonding member 309 is a laminated body which is composed of an adhering member 310 and a moistureproof member 311, made sufficiently larger than the openings 304b, 305b in the rear-surface-side bonding member 304 and the rear-surface protection member 305, and disposed between the power output wires 307 and the solar cell 303.
After all of these components have been disposed and stacked as described above, the solar cell module is placed in a laminator, so that the entire assembly is pressed together into an integrated body under a heat and a reduced pressure. The integration process leaves end portions of the power output wires 307 exposed in the openings 304b, 305b in the rear-surface-side bonding member 304 and the rear-surface protection member 305. Therefore, the end portions of the power output wires 307 may be bent out when it is necessary, whereby the power output wires 307 can be led out of the openings 304b, 305b very easily as shown in
Further, since the openings 304b, 305b are sealed by the bonding member 309 provided by a laminated body composed of the adhering member 310 and the moistureproof member 311, moisture for example, is prevented from passing through the openings into the solar cell module and degrading power output capability of the solar cell module. Therefore a good level of reliability is maintained.
[Patent Literature 1] JP-A 2004-356349 Gazette (
Patent Literature 1 gives no consideration to the location at which the openings 304b, 305b are made.
The power output wires 307 must be provided at an appropriate spacing from one power output wire 307 to the next for example, since they must come out of the openings 304b, 305b and since there is the terminal box attached therearound. Also, moisture will eventually enter from the openings 304b, 305b, so some preventative means should be provided to deal with moisture-caused performance deterioration. Location of the openings will also influence performance and product yield.
It is an object of the present invention to reduce adverse affect of moisture entry through the opening, for improved reliability and product yield of the solar cell module.
The present invention provides a solar cell module which includes: a front-surface protection member; a rear-surface protection member; a plurality of solar cells electrically connected by wiring members and disposed between the front-surface protection member and the rear-surface protection member; a bonding member for encapsulating the solar cells between the front-surface protection member and the rear-surface protection member; and output wires for taking an output from the solar cells. With the arrangement described above, the rear-surface protection member has an opening at a location facing a surface of one of the solar cells, and the power output wires are routed out of the rear-surface protection member through this opening.
Also, the present invention provides an arrangement that a sealing film is disposed in a manner to cover the opening. The sealing film has a slit for insertion of the power output wires, and the power output wires are routed out of the rear-surface protection member through the slit in the sealing film and the opening.
Also, a terminal box may be attached to the rear-surface protection member to cover the opening in the rear-surface protection member.
According to the present invention, the opening in the rear-surface protection member is faced by a rear surface of one solar cell, and therefore risks from the opening is limited only to one solar cell, and therefore the arrangement can minimize influence on the performance decrease.
Embodiments of the present invention will be described in detail with reference to the drawings. It should be noted here that throughout the drawings the same or equivalent parts and components will be indicated with the same reference symbols, and their description will not be repeated in order to avoid redundancy in description. It should also be noted that all the drawings are of a conceptual nature and may not reflect actual dimensional proportions, etc. Therefore, information about specific dimensions, etc. should be understood and determined from the description to be given hereafter. Keep in mind that proportional and other relationships may also differ from one drawing to another.
Now, reference will be made to
The solar cell module 10 includes solar cells 11, a front-surface protection member 12, a rear-surface protection member 13 and a bonding member 14. The solar cell module 10 is made by encapsulating a plurality of the solar cells 11 between the front-surface protection member 12 and the rear-surface protection member 13.
The solar cells 11 are connected with each other by wiring members 16. The connection between the solar cell 11 and the wiring member 16 is achieved by solder or resin adhesive.
Each solar cell 11 has a light receiving surface for sunlight incident, and a rear surface facing away from the light receiving surface. Each solar cell 11 has electrodes formed on its light receiving surface and its rear surface. The solar cell 11 has a configuration, which will be described later in more detail.
The wiring member 16 is connected to the electrode on the light receiving surface of one solar cell 11 and to the electrode on the rear surface of another solar cell 11 which is adjacent thereto. Thus, electrical connection is established between mutually adjacent solar cells 11, 11. The wiring member 16 is a thin platy piece of copper foil having its surfaces plated with solder.
If the wiring member 16 and the solar cell 11 are connected to each other with solder, the solder which is plated on the wiring member 16 is caused to melt to connect to the electrode on the solar cell 11.
If resin adhesive is used, a resin adhesive is applied between the wiring member 16 and the solar cell 11, so that the solar cell 11 and the wiring member 16 are connected to each other via the resin adhesive. It is preferable that the resin adhesive sets at temperatures not higher than the melting temperature of eutectic solder, i.e., approximately 200° C. The resin adhesive may be provided by an electrically conductive adhesive film for example. The electrically conductive adhesive film should at least contain a resin adhesive component and electrically conductive particles dispersed therein. This resin adhesive component containing the above-mentioned electrically conductive particles therein is provided on a backing film of polyimide for example. The resin adhesive component is a composition containing a thermosetting resin, and may be provided by epoxy resin, phenoxy resin, acrylic resin, polyimide resin, polyamide resin or polycarbonate resin. Only one kind may be selected from these thermosetting resins, or a combination of two or more kinds may be used. Preferably, one or more thermosetting resins selected from a group consisting of epoxy resin, phenoxy resin and acrylic resin should be utilized.
The electrically conductive particles may be provided by particles of a metal such as gold, silver, copper and nickel, or particles of an electrically conductive or insulating material having their surfaces coated with an electrically conductive layer of gold, copper, nickel or others.
The front-surface protection member 12 is disposed on the light receiving surface side of the bonding member 14 and protects the surface of solar cell module 10. The front-surface protection member 12 may be provided by water-shielding transparent glass, transparent plastic, etc.
The rear-surface protection member 13 is disposed on the rear surface side of the bonding member 14 and protects the rear surface of the solar cell module 10. The rear-surface protection member 13 may be provided by a film of a resin such as PET (Polyethylene Terephthalate), or a laminated film made by sandwiching a foil of Al between resin films. In the present embodiment shown in
The bonding member 14 encapsulates the solar cells 11 between the front-surface protection member 12 and the rear-surface protection member 13. The bonding member 14 may be provided by a transparent resin such as EVA, EEA, PVB, silicone, urethane, acrylic and epoxy. In the present embodiment, an EVA resin.
It should be noted here that the solar cell module 10 configured as the above may have an Al (aluminum) frame (unillustrated) attached therearound.
The wiring members 16 are connected to power output wires 20 for taking the solar cells' output to the outside of the module. The power output wires 20 serve as a route to carry the electrical output from the solar cells 11 to terminals in a terminal box 40, and are normally provided by a piece obtained by solder-plating an entire surface of a copper foil which has a thickness of approximately 0.1 mm through 0.3 mm and a width of 6 mm and cutting this foil into a predetermined length. The wire thus obtained is soldered to the wiring member 16. The power output wire 20 has its surfaces coated with an insulating film 20a.
The rear-surface protection member 13 has an opening 13a for the power output wires 20 to come out. As will be described later, this opening 13a in the rear-surface protection member 13 is made at a location facing a surface of one solar cell 11. As will be described later also, the bonding member 14 on the rear surface side has an opening for the power output wires 20 to come out, too. These openings are rectangular, having a size of 40 mm×70 mm for example.
The present embodiment includes a sealing film 30 which is sufficiently larger than these openings. As will be described later, this sealing film 30 has a slit for the power output wires 20 to be inserted therethrough. This slit is only slightly wider than the thickness of the power output wires 20, and is long enough for insertion of a plurality of the power output wires 20. As the power output wires 20 are inserted into the slit in the sealing film 30, the spacing, the length, etc. of the power output wires 20 are determined accordingly.
The sealing film 30 disposed to cover the opening 13a sets the power output wires 20 to come out of the rear-surface protection member 13 in the solar cell module 10 by predetermined length and spacing. Further, the sealing film 30 prevents moisture entry from the opening 13a.
The terminal box 40 is attached using a silicone resin for example, to cover the opening 13a in the rear-surface protection member 13. The power output wires 20 coming out of the opening 13a are then connected to the terminals in the terminal box 40 for connection to an external circuit.
Next, a configuration of the solar cells 11 will be described.
The solar cell 11 has a photoelectric conversion section and electrodes. The electrodes are, for example, finger electrodes and busbar electrodes.
The photoelectric conversion section produces carriers as it receives sunlight. In this Description, the term carriers refers to positive holes and electrons produced by the sunlight as it is absorbed in the photoelectric conversion section. The photoelectric conversion section has an n-type region and a p-type region therein, with a semiconductor junction formed in the interface between the n-type region and the p-type region. The photoelectric conversion section may be formed from a semiconductor substrate of a crystalline semiconductor material such as monocrystalline Si and polycrystalline Si; a semiconductor compound such as GaAs and InP; etc. The photoelectric conversion section in the solar cell utilizes an arrangement, for example, where an intrinsic amorphous silicon layer is placed between a monocrystalline silicon layer and an amorphous silicon layer of mutually opposing conductivity types for reduced defect in the interface and improved characteristic of hetero junction interface.
The finger electrodes collect carriers from the photoelectric conversion section. The finger electrodes are formed to cover substantially all of the light receiving surface in the photoelectric conversion section. The finger electrodes may be formed by using an electrically conductive resin paste made of a resin material as a binder and electrically conductive particles of e.g. silver as a filler. It should be noted here that the finger electrodes are formed both on the light receiving surface and on the rear surface of the photoelectric conversion section alike.
The busbar electrodes collect carriers from the finger electrodes. The busbar electrodes are formed to cross the finger electrodes. The busbar electrode may be formed by substantially the same method as for the finger electrodes, by using an electrically conductive resin paste made of a resin material as a binder and electrically conductive particles of e.g. silver as a filler.
The quantity of the busbar electrodes may be determined in consideration of the size of the photoelectric conversion section for example.
Next, as a specific configuration example of the solar cell 10, description will cover a case where the photoelectric conversion section has a structure called Heterojunction with Intrinsic Thin-layer, with a reference to
As shown in
The n-type monocrystalline silicon substrate 110 has its light receiving surface side formed with the p-type amorphous silicon layer 113 via the i-type amorphous silicon layer 112. The p-type amorphous silicon layer 113 has its light receiving surface side formed with the transparent conductive film 114. On the other hand, the n-type monocrystalline silicon substrate 110 has its rear surface side formed with the n-type amorphous silicon layer 117 via the i-type amorphous silicon layer 116. The n-type amorphous silicon layer 117 has its rear surface side formed with the transparent conductive film 118.
Electrodes 115, 119 including finger electrodes and the busbar electrodes, are formed on the light receiving surface side of the transparent conductive film 114 and on the rear surface side of the transparent conductive film 118 respectively.
Hereinafter, reference will be made to
As shown in
The power output wires 20 are inserted through the slit 30a of the sealing film 30. The sealing film 30 is disposed between the rear-surface protection member 13 and the solar cell 11. This slit 30a is only slightly wider than the thickness of the power output wires 20, and is long enough for insertion of a plurality of the power output wires 20 side by side. As the power output wires 20 are inserted into the slit 30a in the sealing film 30, spacing between the power output wires 20, the length by which each wire can be pulled out, etc. are determined accordingly.
The sealing film 30 disposed to cover the openings 13a, 14c, sets the power output wires 20 to come out of the rear-surface protection member 13 in the solar cell module 10 by predetermined length and spacing.
The sealing film 30 is first tentatively fixed so as to cover the opening 14c in the rear surface side bonding member 14b, and then the power output wires 20 are inserted through the slit 30a. This procedure prevents undesirable movement of the sealing film 30 during a step of modularization, resulting in improved assemblability.
After the laminating step, the sealing film 30 is at the openings 13a, 14c as shown in
The power output wires 20 coming out of the openings 13a, 14c and the opening 40c are then connected to terminals on a terminal block 40b inside the terminal box 40. Thereafter, the terminal box 40 is sealingly closed by an upper lid 41 attached to a body 40c which is a continuous part from the bottom 40a, whereby the solar cell module 10 is complete.
Next, a method of manufacturing the solar cell module 10 will be described with reference to
Further, though not illustrated, a vacuum pump is connected to the lower housing 200.
When manufacturing the solar cell module 10, first, the following components are placed on the heater plate 201 of the apparatus one after another in the order of listing: an front-surface protection member 12; a front surface side EVA sheet 14a (bonding member); a plurality of solar cells 11 . . . which are connected to each other with wiring members 16; a sealing film 30 at a place corresponding to an opening 14c in an EVA sheet 14b; the EVA sheet 14b (bonding member); and a rear-surface protection member 13. Power output wires 20 are inserted through the slit 30a in the sealing film 30, each of the power output wires 20 being tentatively held at its predetermined position.
After all of the above-mentioned components are laminated on the heater plate 201, the lower housing 200 and the upper housing 202 are coupled with each other. Thereafter, air in the lower housing 200 is removed by the unillustrated vacuum pump. During this process, the heater plate 201 is brought to a temperature range of approximately 130° C. through 200° C. Under this state, the diaphragm 203 is pressed down toward the solar cell module 10 which is placed on the heater plate 201. The EVA sheets 14a, 14b gelate to become a predetermined EVA layer (bonding layer) 14. Through this process, the solar cells 11 . . . , which are already sandwiched between the front-surface protection member 12 on the front surface side and the rear-surface protection member 13 on the rear surface side, are sealed into the EVA layer (bonding layer) 14. Meanwhile, the sealing film 30 flows into and fills the opening 14c in the EVA sheet 14b integrally therewith, thereby closing the opening 14c.
Thereafter, a terminal box 40 is attached to the rear-surface protection member 13 with a silicone resin 50, to close the opening 13a in the rear-surface protection member 13.
As shown in
Also, since the opening 13a does not face any gap between two solar cells 11, 11, the invention can enhance prevention of moisture entry from between the solar cells 11, 11 toward the front surface side thereof. A typical problem especially in cases where the front-surface protection member 12 is provided by glass and the solar cells 11 are provided by a type so called Heterojunction with Intrinsic Thin-layer structure, is that moisture on the front surface side will allow impurities from the glass to deteriorate characteristics of the amorphous layers. In the present embodiment, an opening 13a is made to face a rear surface of one solar cell 11. This arrangement reduces the problem of moisture finding its way through gaps between the solar cells 11, 11 to the front surface side, and thereby reduces the problem of performance decrease in the solar cells 11.
In the present embodiment, a total of four power output wires are routed of the opening 13a through the slit 30a in the sealing film 30. Accordingly, the terminal block of the terminal box 40 is provided with four terminals, for connection of power output wires 201 through 204. Each of the terminals in the terminal box 40 is connected to a back flow preventing diode. Each of these power output wires 201 through 204 is insulated from the other power output wires by an insulation film 20a. In the present embodiment, the power output wires 201, 204 are connected respectively to a positive terminal and a negative terminal for connection to external lead wires. The power output wires 202, 203 constitute so called transition wiring between solar cell strings, with part of the wires being routed to the terminals in the terminal box 40.
In
As has been described, the power output wires 201 through 204 are started from six solar cell strings, then routed through the opening 13a in the rear-surface protection member 13, and then connected to predetermined terminals in the terminal box 40, to constitute a solar cell module. Typically, power output wires 20 are stacked one after another. This means that the overall thickness will increase each time a wire connection is made. If the thickness keeps growing, it is likely that the stacked wires will tear the rear-surface protection member 13 in the solar cell module during the laminating step. For this reason, it is preferable that the overall thickness is small.
Now, the thickness can be reduced if the power output wires 20 are arranged as shown in
In this method of connection, a wiring member 16 which is connected to the light receiving surface side of a solar cell 11 is connected to another wiring member 16 which is connected to the rear surface side of an adjacent solar cell 11 via a power output wire. This wiring connects the solar cell strings. Then, the wire is routed out of the slit 30a of the sealing film 30, from a side closer to the solar cell 11 which has the wiring member 16 on its rear surface side. Then, the wire is pulled into the terminal box 40.
This embodiment shown in
With the above-described arrangement, the bottom 40a of the terminal box 40 is bonded around the opening 13a in the rear-surface protection member 13 using a silicone resin 50 for example. The bottom 40a of the terminal box 40 has an opening 40c for insertion of the power output wires 20. This opening 40c is smaller than the openings 13a, 14c. Also, the bottom 40a is larger than the opening 13a, 14c so as to provide complete coverage over the openings 13a, 14c. Specifically, the openings 13a, 14c are larger than the opening 40c of the terminal box 40, and smaller than the terminal box 40. As another difference, the terminal box 40 shown in
The power output wires 20 coming out of the openings 13a, 14c and the opening 40c are then connected to terminals on a terminal block 40b inside the terminal box 40. Thereafter, though not illustrated, the lid 402 of the terminal box 40 is sealingly attached to the main body 401, whereby the solar cell module 10 is complete.
In all of the embodiments described above, the opening 13a is covered by the sealing film 30 which has the slit 30a; however, the sealing film 30 may be eliminated. Elimination of the sealing film 30 will decrease moisture prevention capability, but risks from the opening 13a are limited only to one solar cell 11 since the opening 13a is faced by a rear surface of one solar cell 11, and thus the arrangement can minimize influence on the performance decrease in the solar cell module 10.
Also, the sealing film 30 described thus far may be provided by a laminated film of a resin layer and an adhering member layer. In this case, the rear surface side bonding member 14b is disposed between the sealing film 30 and the solar cell 11.
The present invention is also applicable to thin film solar cell modules which use thin films of silicon and compound semiconductors.
All of the embodiments disclosed herein are to show examples, and should not be considered as of a limiting nature in any way. The scope of the present invention is identified by the claims and is not by the descriptions of the embodiments given hereabove, and it is intended that the scope includes all changes falling within equivalents in the meaning and extent of the Claims.
10 solar cell module
11 solar cell
12 front-surface protection member
13 rear-surface protection member
13
a opening
14 bonding member
16 wiring member
30 sealing film
30
a slit
Number | Date | Country | Kind |
---|---|---|---|
2009-200470 | Aug 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/064677 | 8/30/2010 | WO | 00 | 2/28/2012 |